
1

COMBINED SAFETY AND SECURITY CERTIFICATION	

G. Romanski

Verocel, Inc., USA, Romanski@verocel.com

Keywords: MILS, Certification, Safety, Security.

Abstract

New systems are being developed which are used in safety
critical systems but must also satisfy security requirements.
To reduce space, weight and power, a Multiple Independent
Layered Security (MILS) platform could be used to support
many applications. A MILS platform could support safety
critical, and non-safety related functions, and manage Top-
Secret, Secret, and Unclassified data, by providing the
necessary protection and controls to manage them. The
certification of such a platform must organize a lot of
interrelated data that both safety and security domain auditors
find acceptable. The approach used to capture and manage the
certification evidence to satisfy both safety and security
properties is presented.

1 Introduction

The certification guidance documents, for safety and security
state that software that is linked together and loaded into a
single address space, may be certified independently of other
components. In DO-178C [5] Data and Control Coupling
must be verified by test to ensure that the links between code
and links between code and data are interpreted correctly by
the target hardware.

To reduce the number of possible links, and to help isolate
potential problems to smaller components, the safety and
security industry has moved to modular components. These
components are mapped to robustly partitioned systems that
integrate the components in a way that isolates their behavior
so that it is only visible through published and agreed
interfaces. Components cannot affect each other or be
affected by each other except through the published and
agreed interfaces that are controlled by the system integrator.
These interactions are not limited to data, but they also
include timing interactions, and interactions through shared
resources.

Over the last 10 years most of the new transport aircraft
developed include Integrated Modular Avionics (IMA)
systems. The most commonly used specification for IMA
systems is ARINC 653 [1]. These IMA platforms are capable
of supporting many applications and provide an abstraction
layer that controls collaboration between applications, fault
management and interfaces to sensors and effectors. With the

increase in processing power of the platforms, the
applications have evolved to take advantage of the
computational power offered and they have become more
sophisticated and more complex. This has led to an increase
in the amount of certification data that must be developed.

Over the last 5 years in addition to IMA platforms, Multiple
Independent Layered Security (MILS) architectures have
started to be used. These architectures provide robust and
secure partitioning to allow software applications at different
and independent security levels to coexist on the same
platform. The applications are loaded by the system
integrators onto a secure MILS platform. This platform is
configured to allow the applications to provide their services
but at the same time to prevent them from violating the
security policies established by the system integrator.

As new systems are developed, more integration means that
safety critical applications may process data that may have
various levels of security. Some applications may be
compromised if they are penetrated by external attacks that
deny service or corrupt data. Others may need to protect data
from being leaked to users without appropriate security
clearance. Flight plans for covert operations must be
protected yet flight plans must be filed with air traffic
controllers to coordinate safe flight in non-segregated air
space. Control of secure information is becoming more
important with the increase in automation. This is
particularly relevant in the remote control of unmanned air
systems from ground-based stations.

The emergent solution for such systems are MILS
architectures that support both Safety and Security based
applications. These must be constructed well and support
both safe and secure partitioning with a secure load and
configuration system. The advantage of such systems is that
they can support incremental certification where components
can be assessed independently for safety, and for security.
Each partition becomes a separate security domain that is
unable to obtain or disclose information except through
authorized channels. This means that analysis of an
application running in a top-secret partition need not be
evaluated with a high level of rigor, as it will be unable to
send information directly or indirectly to a partition with a
lower security level.

2 Process Driven Certification

2

Building a certification package for a security/safety critical
system must be done in accordance with a set of process
plans. DO-178C does not prescribe the process plans content
or structure, but it expects them to be developed and reviewed
as an integrated set. Together the plans provide a rigorous
definition of what is to be done. Certification auditors will
review the process plans and their use as described in section
9. The Common Criteria [2] provides a very broad
description of the activities and objectives to be satisfied for
the security domain. For a MILS type architecture, this is
condensed to a description of a Separation Kernel Protection
Profile (SKPP)[4] that is used to describe the attributes of a
Secure Target (ST). Note that security certification of the
MILS kernel focuses on the software architecture. The
hardware architecture is the subject of a separate certification
effort. The software certification assumes that the hardware
performs as specified. Tests verify the correct behavior of the
software running as a complete integrated image on the target
hardware with no instrumentation of the code while under
test.

Both security and safety verification work use process plans
that describe activities to be performed, the criteria that must
be satisfied before an activity is to start, and the criteria that
confirm the completion of an activity. During the
development of the certification materials, Quality Assurance
personnel perform in-process checks, and end-of-phase
checks. The in-process checks confirm that the documented
versions of the process plans are being used, and that they are
being followed. The end-of-phase checks verify that the set
of activities representing each phase of verification are
complete.

3 Requirements as Artifacts

Certification evidence is based on artifacts. The starting point
is always the requirements, as these describe the intended
behavior of the system and the software. DO-178C identifies
requirements into one of two categories, high-level
requirements and low-level requirements. High-level
requirements are those that describe the “black-box” behavior
of a system or software and they might not map directly to the
architecture of the software. Low-level requirements are
hierarchical, and follow the hierarchical structure of the
software to which they correspond. Relationships are
recorded between the requirements that capture various types
of hierarchical or behavioral dependencies.

It is common practice in industry to capture the requirements
in a database driven repository. The common practice is to
extract the requirements as a whole or in sets and to baseline
them in documents so that they can controlled and reviewed.
The baseline identifiers are then used to identify the
requirements of the system that will be built and verified.

An alternative approach is to apply a version identification to
each requirement individually and to maintain lifecycle status
over each requirement individually. A requirement may
consist of a textual statement together with supplemental

context information and various attributes. The requirement
may be comprised of diagrams, tables, or other
representations, or may simply reference such representations.
All of the requirement information must held under
Configuration Management (CM) control with direct and
automatic links from the database to the CM repository or in
the requirements repository itself. Version control of the
individual requirements must extend to the version control in
the CM representations so that a known and consistent set of
requirements is always maintained.

Through the use of this finer granularity of control over the
requirements, they can be processed through the review
cycles individually or in small sets using attributes that
control their states. A requirement will be in the Initial state
when it is first introduced, either through import from another
source or creation directly in the database. When the
engineer responsible for them deems one or more
requirements complete, they are transitioned to a Ready-for-
review state. An independent engineer will review a
requirement and mark it Passed or Failed. Failed
requirements will transition back to the responsible engineer
who may modify the requirement, change the version, and
transition it back to a Ready-for-review state. Passed
requirements will have an associated checklist that captures
the criteria satisfied during requirement review and the
history of the requirement review process. By increasing the
granularity with which the requirement are managed, and by
controlling this through an automated repository, the
workflow can be shortened. It is no longer necessary to wait
until an entire requirements document is ready for review, the
reviews may be performed individually as soon as each
requirement is ready.

Even though the certification guidance documents demand
evidence of final review, the certification auditors will look
for evidence that the review cycle was carried out in
accordance with the plans. The evidence that shows
requirements that failed review that were subsequently
corrected and re-reviewed is important. These incremental
steps must not be omitted from the certification package. The
requirements presented for review must be identified by
versions of the documents in which they were captured or by
versions of the individual requirements that were reviewed
individually.

4 Types of Requirements
During the development and certification of a MILS platform
there are no System Level requirements. The platform itself is
a component that will become part of a system when
populated with application software. The applications will be
based on System Level requirements. Several other
requirement sets are defined during a typical MILS
certification, for example:

• Requirements describing the Application
Programming Interface (API) layer provide a
specification that describes the behavior of the MILS

3

system. These are a subset of the high-level
requirements.

• Requirements describing the secure behavior
provided by the MILS kernel. These requirements
are used for penetration testing, a form of testing
which tries to induce security failures.

• Robust partitioning requirements are developed from
a Robust Partitioning Analysis. A Goal Structuring
Notation (GSN)[3] set of diagrams are prepared and
analyzed. The diagrams capture the analysis
performed and document the goals of robust
partitioning by the MILS Kernel. The goals are
traced to requirements at various levels of detail and
ultimately trace to solutions that reference
requirements and certification evidence directly.
GSN was used for robust partitioning analysis
because many of the vulnerabilities due to robust
partitioning led to negative requirements. For
example, “a partition shall not be able to change the
memory of another partition”. Such requirements
are difficult to verify directly so an indirect approach
was chosen based on the use of GSN.

• High-level requirements that describe the black box
behavior of the MILS system, including the interface
as presented to the board support package.

• Low-level requirements correspond to the actual
software. They are structured and are map to
Directories, Files, and Functions. At each of these
levels more detailed requirements may be added to
capture finer grained behavior.

Relationships are established between requirements.
Hierarchical relationships are simple with simple references,
but more complex relationships also exist.

5 Requirements Traceability

It is common practice in industry to represent traceability
between requirements through the use of tables. One-to-one,
one-to-many, and many-to-one relationships are shown on
rows of a table with appropriate groupings. Other, document
style representations are also used, where a document lists
sets of requirements in sequence. An alternative is to capture
the requirements as artifacts in a database and to capture the
relationships between requirements as artifacts in the database
as well. The requirement relationship artifacts will have
version, status and review information attached to them and
they represent the traceability between the requirements. A
high-level security requirement may map to several lower-
level requirements that in turn trace to the code that
implements the expected behavior. There may be a
significant difference between the abstraction levels of the
requirements and an explanation or rational for the traces
must be provided and reviewed with independence. The
hierarchical low-level requirement traceability typically
corresponds to the structure of the software. The traceability
from high-level to low-level is typically complex and requires
a high level of domain expertise. The traceability may be
demonstrated by hyperlinking from one requirement to the

trace justification data to the corresponding traced
requirement, and presenting this information for review using
a standard browser.

DO-178C does not describe the type of information to be
provided in the traceability between requirements, but in
practice auditors will ask for it if they do not understand the
relationships. In the security domain Common Criteria (CC)
v2.3 part 3 paragraph 314 states:

“… the developer provide evidence , for each
adjacent pair of TSF (Trusted Security Function)
representations, that all relevant security
functionality of the more abstract TSF
representation is refined in the less abstract TSF
representation. …”

By recording these relationships, their versions and their
review status, it is possible to automate impact analysis
between requirements. A change to a low-level functional
requirement may propagate to a high-level security
requirement that may change its state which forces the
requirement to be re-evaluated. This propagation of the
impact due to changes includes the requirements and the
explanation or rational they are associated with.

The alternative approach using documents to manage change
control over traceability means, annotating and revising
documents followed by a document review cycle. For large
sets of requirements, such changes would need to be
performed in batches. This makes the process unwieldy and
stretches the intervals between review cycles, delaying the
project.

5 Other artifacts

The software development and verification also included
many other artifacts including Design descriptions, Source
Code, Test Specifications, Tests, Coverage Analysis and so
on. These artifacts are linked to the requirement and to each
other as described in the planning documents. The artifacts
are maintained in CM, but links in the requirements database
should reference these artifacts directly.

Two approaches are used for version management. One
approach identifies complete sets of artifacts and baselines
these sets calling them versions. An individual file is not
versioned, instead the file version is tied to the baseline. This
is often used during a development process where the
software components are released in complete software
builds, where all of the latest file versions of the files
comprise the version built.

For verification an alternative may be used, where each
artifact is identified and is individually versioned, with
lifecycle status information just like the requirements in their
database. The use of individual file version control rather

4

than baseline control, increases the granularity over the
control over individual artifacts.

The review process for the artifacts could be exactly the same
as for requirements, except that different review criteria
would be used. Review checklists may be captured in the
database and may be extracted and checked by QA personnel,
or presented to the certification auditors.

Through the use of a fine-grained database and requirements
repository, impact analysis may be automated, and localized
as much as the traceability links allow. A change to the
source code of a function may cause a function level low-
level requirement to be changed, but the low-level
requirements of other functions in the same source file may
be unaffected. Only the affected requirements and the
artifacts that are dependent on them would have a state
change in the database requiring the artifacts to be revisited
by reviewers.

This fine granularity imposed on the artifacts makes
concurrent working efficient because it reduces information
that must be re-reviewed, and makes revisions less expensive
through the use of automation. Automation also makes the
verification processes more efficient by reducing the clerical
errors that are often made when maintaining this information
manually in documents.

6 Formal and Semiformal Methods

The SKPP requires use of formal methods to analyze
information flow and to demonstrate that the Separation
Kernel does not permit unauthorized information flow, and
protects itself when adversaries attempt to compromise its
behavior.

This is accomplished by translating the source code to a form
that lends itself to analysis using automated theorem provers.
A separate organization performed work on the formal proofs.
The database was extended so that the requirements for the
proofs were linked to the theorems, the source code, the
extracted data flows and the proof results.

Special analysis is sometimes necessary as the objectives of
safety and security sometimes clash. Simply stopping the
operational system could mitigate a security failure while a
safety critical failure may require special recovery actions.
Managing requirements and analyses while satisfying safety
and security properties is most complex during the
management of failure conditions. If an application fails, a
safety critical system identifies, isolates and instigates
preplanned recovery functions and records the failure through
a health management system. This must be accomplished
without disturbing any other application on the same
platform. If a security based application fails, the platforms
responsibilities are to isolate the application, prevent the
propagation of unauthorized dataflow, and to inject a security
violation event to the security audit log.

Modeling such failure conditions formally is difficult
especially as they are asynchronous. A semiformal approach
using GSN has been used to capture and analyze the intended
behavior. The resulting arguments are presented as evidence
that the Separation Kernel (the core of the MILS system)
preserves it safety and security properties in the presence of
asynchronous events.

The use of data-flows used for the capture of requirements
intended to test the Data/Control coupling objectives was also
used as a semiformal method for the identification data paths
that may be exploited as covert channels.

7 Maintaining the Database

A busy verification company will have many projects and
many database repositories being used concurrently. Some
companies arrange for database super-users to perform all
official recording and update of requirements in each
repository. A better approach is to provide everyone on the
project controlled-access to the database they are working on.
As work is often performed in several locations concurrently,
it is important to solve a performance problem due to the
network bandwidth. A single consistent database is required
for a project. A single physical database could be used, but
for any project other than the very small, network bandwidth
will always be a problem. A solution that should be adopted
is to use replicated databases that give everyone access to a
single logical database that is synchronized automatically.

As each artifact is individually versioned, and the status of
each artifact is known at all times, following the documented
processes is enforced by the database. A design description
cannot be officially reviewed until its requirements have
passed review. Similarly for test cases; they cannot be
officially reviewed until the requirements they are verifying
are reviewed. These lifecycle relationships and dependencies
are built-in and enforced in accordance with the documented
process plans. By increasing the level of granularity of the
artifacts and maintain their traceability, it is possible to work
in parallel as much as the database allows, knowing that the
order of verification steps is in accordance with the process
plans.

The alternative approaches of managing the verification
processes in batches, requires much more manual
management and intervention.

8 Final Delivery

At the completion of the project, a large amount of data is
available in the database and in the CM system. The
traditional approach is to extract the documents, and cross
check all of the information being packaged together. This is
a tedious and error prone process that requires minute
attention to detail.

An alternative is to use the information present in the
database and CM repository. The extraction of this may be

5

automated. It could simply be accomplished by traversing a
specified database, pulling the artifacts that correspond to a
nominated variant using a baseline set. Information in the
database could be formatted using specified style sheets and
referenced information in the CM system could be fetched
and saved in a set of directories in the file store. As the
information in the database “knows” how to access all CM
files, it is possible to generate a set of files that can be viewed
by a generic browser. Traceability in the database can be
converted to hyperlinked files that represent the “threads” of
traceability an auditor is going to inspect. Picking a Security
requirement, and following a link to an API level
requirement, may be performed by clicking on the traceability
link. This link also exposes the rationale for the trace, the
reviewers, and review evidence. A click on the API level
requirement will trace to the low-level requirements, their
review history, design, source code, test specifications etc.

9 Certification Audits

The certification authority or their representatives perform
audits at several points of the certification process. For safety
critical certification audits, they typically impose four SOI’s
(Stage of Involvement). SOI#1 is performed when the
planning stage is complete, SOI#2 is performed when at least
fifty percent the design and code development and review is
complete, SOI#3 is performed when at least fifty percent of
the testing is complete and SO#4 is the final audit. The final
audit examines the package presented.

The security audits are not specified with the same rigor, but
progress on preparation of the security evidence is examines
with equivalent care and attention.

The purpose of an audit is to obtain confidence that the entire
certification package is complete and sound. It takes a long
time to develop certification packages, and the auditors do not
have the time or resources to perform a complete review of all
artifacts. To compensate for this they rely on three principles:

1. The process plans for the certification work must be
complete and they must be sound. This is
accomplished through reviews early on in the
project.

2. The results of using the process plans must be
complete and sound. This is examined by taking
several “threads” starting from highest-level
requirements and tracing through all related artifacts
and their evidence of review.

3. The quality assurance records are examined to verify
that the process plans were being used consistently
throughout the project and that all phases of the
project have been completed.

The assumption is then made that if the “threads” examined
are sound, and the approved processes were followed and
completed then all other “threads” would also be sound.
Once confidence is established the authorities are prepared to
sign the audit reports.

The auditors for safety and security domains are typically
highly experienced and very knowledgeable in their own
domains. While they understand the needs and goals of their
counterparts, they do not have the same level of knowledge.
It is incumbent on the certification applicant and the verifiers
to bridge the gaps during these audits.

10 Conclusions

The certification evidence for safety and security based
operating system could be performed in parallel as the same
evidence can satisfy many of the properties of the two
domains. As is typical in software engineering projects,
development, testing, certification for both safety and security
may be performed concurrently. By maintaining fine-grained
control, individually versioning requirements and all artifacts,
and by maintaining the state of all database artifacts the
impact of the software revisions can be isolated as much as
possible. This reduces the rework necessary when software is
‘improved’. It also maximizes workflow. This overlap
between the safety and security domains should be exploited
wherever possible, as much of the information developed for
the safety domain helps in the security domain. Some of the
analyses needs domain specific information to be captured
and managed. The integration of the safety and security
requirement into a single database, and the integration of this
with CM repositories allow the automation of traceability.
The automated traceability provide a huge benefit to the
management and productivity on a MILS safety and security
certification project.

References

[1] ARINC, “Avionics Application Software Standard,
Part 1 Required Services” ARINC 653-2, December 1, 2005.
[2] ISO/IEC, “Common Criteria for Information
Technology Security Evaluation, Part 3 Security Assurance
Requirements”, ISO/IEC 15408, August 2005.
[3] Kelly, T. P. and Weaver, R. A. “The Goal
Structuring Notation – A Safety Argument Notation,”
Proceedings of Dependable Systems and Networks 2004,
Workshop on Assurance Cases, July 2004.
[4] National Security Agency - USA, “US Government
Protection Profile for Separation Kernels in Environments
Requiring High Robustness”, SKPP Version 1.03, June 29,
2007
[5] RTCA, “Software Considerations in Airborne
Systems and Equipment Certification” DO-178C, December
13, 2011

