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Abstract 

Model-Driven Development (MDD) has proven to be a very 
powerful tool to produce software for embedded systems that 
control sophisticated equipment. It is therefore even more 
critical that such software be verified to be correct and to 
clearly understand what the safety implications of potential 
failures in sensors, actuators or faults of the software itself 
are. Using vectors of logic-labelled finite state machines, a 
clear semantics is obtained as well as executable models that 
provide the benefits that MDD promises. Since we can 
perform effective model-checking on these models, we show 
in this paper that we can use this to systematize and automate 
the failure mode and effect analysis of systems with 
embedded software. We illustrate this with two ubiquitous 
examples in the literature of model-checking for software in 
embedded systems. 

1 Introduction 

More and more, software for systems (in particular embedded 
systems) is being developed under a Model-Driven 
Development (MDD) approach. Model-Driven Engineering 
provides the capacity to describe behaviour at a high level and 
allows direct implementation on many platforms. Software 
production using MDD presents numerous advantages. 
Hence, more and more systems are using software that was 
developed under such an approach. This makes it far more 
critical that such software be correct by default. Ensuring that 
the software is free of faults is critical, because software 
failure can lead to catastrophic failure of machines and 
equipment driven by such software. Avoiding this is central to 
system safety. 
 
A very successful tool for model-driven engineering of 
embedded systems is finite-state machines (FSMs) whose 
transitions are labelled with expressions of a common-sense 
logic [2]. These are remarkably expressive when compared to 
other paradigms for modelling behaviour, such as Petri Nets, 
Behavior Trees, and even standard FSMs, e.g. those of 

executable UML [8] or StateWorks [12]. The use of efficient 
and practical model-checking techniques, however, was 
previously limited. The reason is that only a single, sequential 
FSM [4] could be efficiently model-checked, whereas 
systems are usually composed of various components 
exhibiting concurrent behaviours. 
 
We have recently shown [3], nevertheless, that models 
composed of multiple finite-state machines can be structured 
as a vector whose execution uses a round-robin, sequential, 
off-line schedule. This enables efficient model-checking of 
the requirements. This extension also includes an extension to 
the implementation that builds Kripke structures for an 
individual FSM to one that derives rules for a collective of 
sequential finite state machines (that operate following a 
deterministic sequence). Moreover, the very interpreter that 
actually implements and runs these rules also constructs the 
corresponding Kripke structure. As a result, formal 
verification of correctness properties using standard tools 
such as NuSMV is possible.   
 
In this paper, we show how this technology can be applied to 
carry out failure mode and effects analysis (FMEA) directly, 
automatically (and with a mathematical foundation) from the 
software model. That is, the model-checking aspect 
completely verifies the desirable properties. The model 
(having several components) is shown to be correct. 
Importantly, we can systematically study the effects of 
hypothetical defects or failures in one or more components. 
Such hypothetical situations are reflected as properties that no 
longer hold. 
 
Moreover, this analysis not only carries out FMEA for the 
software; we describe here how the analysis can be carried 
out for other parts or participants in the system. That is, we 
can model (using the vector of logic-labelled finite-state 
machines) sensors, actuators, and operators outside the 
software itself. For this enlarged system, we can investigate 
which properties are impacted by unanticipated or faulty 
behaviour of such sensors, actuators, or human operators. The 
MDD approach and its interpretation enable also the 
validation by simulation of the FMEA. 
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We illustrate this approach with two case studies widely used 
in the software engineering and model-checking literature 
(the mining pump and the industrial press). Correct behaviour 
of these systems is crucial due to their safety requirements. 

2 Logic-Labelled Finite-State Machines 

Finite-state machines (FSMs) are a widely used formal model 
for system behaviour, particularly the dynamics of a software 
system. Typically, a finite state machine is composed of a set 
S of states, one of which is designated an initial state s0. The 
behaviour is specified by the transitions that shift the machine 
form a current (source) state to a new (target) state. We 
consider here Logic-Labelled Machines; that is, for each 
source state si there is a logic theory Ti and a list of transitions 
<ti1, ti2,…,tin>. Each transition tij is labelled with a proposition 
pij of the logic and a target state sij. It is important to highlight 
that the outgoing transitions of a state are represented as a list, 
since the semantics of the FSM consists of evaluating each 
proposition in sequence (determining if in the theory Ti the 
proposition is true). When a proposition is true, the transition 
fires and the current state changes to the corresponding target 
state. 
 
States themselves have three sections. An OnEntry section, an 
OnExit section, and an Internal section. The OnEntry section 
and the OnExit section are always executed exactly once for 
each state. The OnEntry section is executed as soon as a 
machine makes such a state the current state, while the 
OnExit section is executed on departure from a state. Thus, 
the OnExit section of a transition source state is executed 
before the OnEntry section of the target state. The Internal 
section is only executed when no transition fires, i.e. the list 
of the outgoing transitions of the current state is exhausted 
without any proposition of the transition list evaluating to 
true. After the Internal section is executed, the FSM resumes 
evaluating the list of transitions from the beginning. 
 
Figure 1 shows an example of such a FSM. The language for 
transitions is expressions in simple C (C without control 
structures, but including function calls and assignment), while 
the language for a state section uses statements in simple C. 

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry 
{timeLeft=0<currentTime;}
OnExit {}
{}

TRUE

TRUE

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

 
Figure 1. FSM for the timer of a Microwave. 

 
In Fig. 1, for example, the initial state is state 1 INIT. There 
is a transition from state 2 TEST to state 3 ADD_60 whose 
proposition is 
buttonPushed && !doorOpen && (currentTime < 4035) 

that indicates the timer should change state to a state that adds 
60 seconds to currentTime (the OnEntry section of the 

3 ADD_60 state) if the button has been pushed, the door is 
not opened, and the current time is below the maximum value 
(so that a further 60 seconds would not overflow its register). 

3 Vectors of logic-labelled FSMs. 

The challenge, however, is that although in theory a system 
can be represented by a single logic-labelled finite-state 
machine, such a model is usually extremely hard to 
comprehend or design. It is much more manageable to build a 
system of conceptually separate, interacting components. Our 
case studies will illustrate this. For an immediate example, we 
note that Fig.1 is just the timer of a microwave, but there are 
other components like the light (which has two states, on 
when the door is open or the beam is cooking, or in the state 
of off when the door is closed and cooking is not going on). 
Similarly, there is a bell that becomes armed when cooking 
starts and rings when cooking completes. 
 
If one considers all these components as concurrent 
subsystems, then the challenge is that the possible states of 
the composed system is the Cartesian product of the space of 
states of the components. Any part of the system may change 
state without the other parts acting. This quickly becomes an 
unmanageable state space (in order to perform model-
checking). Note that most likely the designers and users of the 
system does not need, require or desire this wide capacity for 
arbitrary behaviour. And in fact, in the context of system 
safety, what is desired is a precise, and possibly unique path 
or significantly constrained behaviour. 
 
We use an approach inspired by the time-triggered 
architecture for scaling down this complexity. The set of 
logic-labelled FSMs that constitute a system is also 
represented as a list. Commencing from the first FSM on the 
list, the semantics of the vector-model is that, of the current 
machine, only one ringlet is executed. That is, on the current 
machine, the analysis of its current state is performed. For the 
initial ringlet of the state, the OnEntry section proceeds, 
followed by the evaluation of the list of transitions until  

• one transition fires and the OnExit section is 
executed or 

• none of the transitions fires and the Internal section 
is executed. 

Once this happens, the execution of the vector moves to the 
next FSM in the list (in circular fashion, the last FSM is 
followed by the first). 
 
This actually converts the execution of concurrent FSMs into 
a single thread with far fewer states and deterministic 
execution, enabling model-checking on a complex system. 
 
Such a vector of deterministically executing FSMs also 
greatly simplifies communication, as all synchronisation 
points are now deterministic as well. In terms of semantics, if 
a variable has no declaration, it is shared by the vector, but 
never modified by the environment (so in the language of 
model-checking, the Kripke structure is deterministic, and 
only simple C statements in the FSMs can modify its value). 
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A variable in a FSM can be further restricted to be a local 
variable and thus, not visible to any other FSM in the vector 
(for example, the declaration int currentTime in state 1 
INIT of Fig. 1). Variables declared extern are not only 
common to all FSMs but can also be modified from outside 
the software. In the example of Fig. 1, we have extern 
buttonPushed because it is not the software of the timer 
which set the variable buttonPushed to true or false, but 
the operator of the microwave by pressing the button (or the 
button by being faulty). In the language of model-checking, 
such external variables lead to non-deterministic states in the 
Kripke structure and so is the case in our interpreter and 
generator of Kripke structures for the model checker NuSMV. 
Thus, our Kripke structures correctly model the software 
being in any possible system state (for example, the 
microwave could be turned on, with the user pushing the 
button, or it could also be turned on due to a faulty button). 
For safety, it is critical that the model-checking of the 
software be performed with all possible combinations of 
external variables the software does not have control over. 
Importantly, in our interpreter, external variables are read 
only once, at the commencement of the evaluation of a 
ringlet. This prevents inconsistencies due to changes within 
the environment once a Kripke state has commenced. 
Moreover, this ensures that system safety properties do not 
depend on the speed the software runs relative to sensor 
perception. That is, if we prove our models correct (with 
formal model-checking), such correctness is not subject to the 
software running fast enough. In the example of the 
microwave, while the user may push and release the button 
too quickly to be noticed, such input cannot trigger 
unspecified system behaviour or falsify a property of the 
behaviour. Even if the user pushes and releases the button too 
quickly to be detected, we can formally prove that if the 
button is held for long enough to process a minimum number 
of Kripke states, correct behaviour will ensue. 

4 Case studies 

We show here two case studies that first show how the 
techniques described above are used to formally prove (using 
model-checking) safety properties of the software (beyond 
what previously has been reported in the literature). Then we 
proceed to describe how the models enable failure mode and 
effects analysis. 
 

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

alarmOn

~alarmOn

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

pumpShallGoOn

pumpShallGoOff  

4.1 The Mining Pump 

The mining pump is a case widely discussed in the literature 
[4, 9, 10] where software is controlling a safety-critical 
system. The pump prevents a mineshaft from flooding, but 
must not run if flammable gas concentration is high. We 
follow Burns and Lister [1] where formality is provided. We 
use this case study as it enables the presentation of our 
methodology, for constructing the model, for performing 
model checking, for performing failure mode and effects 
analysis (FMEA) [11], and for directly executing the models 
on a platform (thus, fulfilling the promise of model-driven 
engineering). This case study is also illustrative of the power 
of using FSMs with transitions labelled by a question to a 
common-sense logic such as DPL [2].  
We summarise here the development of the model. Details 
can be found elsewhere [3]. The initial model for this system 
appears in Figure 2. It consists of a vector of two logic-
labelled FSMs, each with its associated logic.  

%Alarm.d 
name{ALARM}. 
input{CO2SensorHigh}. 
input{airFlowLow}. 
A0: {} =>  ~alarmOn. 
A1: CO2SensorHigh =>  alarmOn. A1>A0. 
A2: airFlowLow =>  alarmOn. A2>A0. 
output{b alarmOn,"alarmOn"}. 

name{MINEPUMP}. 
input{lowWaterSensorOn}.  input{highWaterSensorOn}.  
input{operatorButtonOn}. 
input{methaneSensorHigh}.  input{indicateOn}.  input{indicateOff}. 
 
P0: {} =>  ~pumpShallGoOn. 
P1: highWaterSensorOn =>  pumpShallGoOn.                                                     
P1>P0. 
P2: lowWaterSensorOn =>  ~pumpShallGoOn.                                                        
P2>P1. 
P3: 
{~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> 
pumpShallGoOn.                    P3>P2. P3>P0. 
P4: 
{~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=
> ~pumpShallGoOn.                  P4>P3. 
P5: indicateOn => pumpShallGoOn.                                                                
P5>P2. P5>P4. P5>P0. 
P6: indicateOff => ~pumpShallGoOn.                                                              
P6>P5. 
P7: methaneSensorHigh => ~pumpShallGoOn.                                                        
P7>P5. P7>P3. P7>P1. 
 
N0: {} =>  ~pumpShallGoOff. 
N1: {~indicateOn,lowWaterSensorOn} =>  pumpShallGoOff.                                          
N1>N0. 
N2: 
{~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operato
rButtonOn}=> pumpShallGoOff.      N2>N0. 
N3: indicateOff => pumpShallGoOff.                                                              
N3>N0. 
N4: methaneSensorHigh => pumpShallGoOff.                                                        
N4>N0. 
 
output{b pumpShallGoOn,"pumpShallGoOn"}.  output{b 
pumpShallGoOff,"pumpShallGoOff"}. 

Figure 3. The logic for the FSM for the alarm. 

Figure 2. The complete model for the mine pump. Figure 4. The logic for the pump engine. 
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The logic appears in Figure  and 4: the FSMs for the alarm 
will move from the state of not ringing to ringing if the logic 
can determine the predicate alarmOn. The logic would like 
to have information about whether the CO2 level is high or 
the airflow is low (that is the role of the input clauses). The 
logic will attempt to establish the predicate alarmOn (this is 
the role of the output clause). The “=>” operator is read as 
“usually” (unlike implication in the sense of propositional 
logic); for example, rule A0 says that usually the alarm is not 
on, but rule A1 says that if the CO2 level is high, the logic 
shall recommend the alarm be on; and rule A1 takes 
precedence over A0 (this is the role of the precedence 
operator “>”). In practice, modelling with FSMs and non-
monotonic logic results in very concise and transparent 
models. For example, Fig. 4 is the complete model for the 
mine pump. By comparison, an equivalent model using 
Behavior Trees takes several A4 pages.  A video of the model 
in operation and validating the 3-state operator switch vs. the 
2-state operator switch appears in youtu.be/y4muLP0jA8U. 
 
The compilation of the logics into simple expressions and the 
analysis of safety properties using model checking reveal that 
the switch of the supervisor must be a 3-state switch (on, off 
and inactive). Once the logics are compiled, the complete, 
correct model (proven by model-checking the derived Kripke 
structure generated as described earlier) appears in Fig. 5. 
 

supervisorButtonOff && !supervisorButtonOn

2 INACTIVE
OnEntry {extern supervisorButtonOn;
          extern supervisorButtonOff;
          extern supervisorButtonInactive;
  indecateOn=0; indicateOff=0;}
OnExit {}
{}

1 INDICTAE_ON
OnEntry { indecateOn=1; }
OnExit {indicateOn=0;}
{}

1 INDICTAE_OFF
OnEntry { indecateOff=1; }
OnExit {indicateOff=0;}
{}

supervisorButtonOff && !supervisorButtonOn

 !supervisorButtonOn && !supervisorButtonOff

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

(indicateOn  ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && || 
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

CO2SensorHigh || airFlowLow !CO2SensorHigh && !airFlowLow

 
Figure 5. Complete and correct model of the mine pump with 

all expressions compiled to simple C. 
 
In this model, we can formally verify that the software 
satisfies several safety properties, far more properties than 
anywhere before in the literature. 
 

• Property-1 “If CO2 is high, the alarm must ring.” 
• Property-2 “If air flow is low, the alarm must ring.” 
• Property-3 “If methane levels are high, the pump 

must be turned off.” 
• Property-4 “If the supervisor switches off when 

running, the pump will be turned off.” 
• Property-5 “If the operator turns her switch off when 

the pump is running and the water level is neither 

low nor high, then the pump motor goes off.” 
• Property-6 “The pump is turned on when the water 

is above the high water sensor (and the low-water 
sensor’s signal is consistent with this), unless the 
supervisor turns it off or methane levels are high.” 

• Property-7 “If the supervisor sets the switch to 
inactive and the pump is running when the water is 
not above the high water sensor and the low-water 
sensor indicates a low level, the pump turns off.” 

• Property-8 “If there is low methane, low water, and 
the pump is not running, but the supervisor puts the 
switch to on, then the pump is turned on.” 
 

We stress this point as models in previous research articles 
actually fail some of these properties (or incorrectly suggest 
that a 2-way switch for the operator is sufficient). Moreover, 
we can not only model and simulate the software but the other 
components of the system as well, and perform a failure mode 
and effects analysis. We can efficiently generate tables such 
as the one shown below, which was obtained by injecting 
faults through altering the FMSs that represent the sensor 
and/or actuator, and then re-running the model checker. A 
similar table can be obtained for the properties that fail if 
multiple sensors and/or actuators fail simultaneously (e.g. 
with common-mode failures that cannot just be derived from 
Table 1). 
 

Failures Consequences 
 Property that fails 
 1 2 3 4 5 6 7 8 
CO2-sensor stuck high         
CO2-sensor stuck low X        

Airflow sensor stuck high  X       

Airflow sensor stuck low         

Bell stuck ringing         

Bell stuck not ringing X X       

Supervisor button stuck in on    X   X  

Supervisor button stuck in off      X X X 

Operator button stuck in on     X    

Operator button stuck in off       X  

Methane sensor stuck in high      X  X 

Methane sensor stuck in low   X      

(High water) sensor stuck in on     X  X  

(High water) sensor stuck in off      X X  

(Low water) sensor stuck in on      X   

(Low water) sensor stuck in off     X X  X 

Motor stuck running   X X X  X  

Motor stuck not running      X  X 

Table 1. FMEA Table Level 1 for the mine pump case study. 

4.2 The Industrial Press 

The industrial metal press has been also widely studied in the 
literature of model-checking for failure analysis [5, 6, 7]. In 
this system, a plunger is initially resting at the bottom with 
the motor off. When power is supplied, the controller turns 
the motor on, causing the plunger to rise. When at the top, the 
plunger shall be held there until the operator pushes and holds 
the down the button. This causes the controller to turn the 
motor off and the plunger to fall. If the operator releases the 
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button while the plunger is falling slowly, above a point of no 
return (PONR), the controlling software turns the motor on 
again, causing the plunger to start rising again, without 
reaching the bottom of the press. However, if the plunger is 
falling fast, below the point of no return, then the controlling 
software leaves the motor off until the plunger reaches the 
bottom. This is the main critical safety feature, as turning the 
motor on with too much inertia on the plunger results in 
catastrophic scenarios. When the plunger reaches the bottom, 
the software must receive a signal to turn the motor on, so the 
plunger rises again. 
We emphasize that the summary above of the behaviour of 
this system may differ from other descriptions in the 
literature, as these differ among themselves when one 
analyzes the details. For example, the On/Off button is 
modelled inaccurately and the infra-red link described in the 
original source is not described in recent FMEA analysis 
using design behaviour trees. This results in an unsafe 
cyclical behaviour of the system for that model. Namely, it is 
possible for the operator to keep the button pushed and the 
power on, enabling the motor to raise the plunger. As a result, 
the motor goes off bringing the plunger down, and then as the 
power is on (no switch on the motor), the motor goes on again 
raising the plunger immediately. We have demonstrated this 
fault in such model in simulation and by running the model in 
two platforms (illustrating this defect in a video 
http://youtu.be/blUpMdH14pM), and also the corresponding 
correction. Such a correction appears as part of the properties 
we can formally verify about the corrected model. 

• Property-1 “If the operator is not pushing the button 
and the plunger is at the top, the motor should 
remain on”. 

• Property-2 “If the plunger is falling below the 
PONR, a state modeled by the plunger falling fast, 
then the motor should remain off.” 

• Property-3 “If the plunger is falling above the 
PONR, a state modeled by falling slow, and the 
operator releases the button, the motor should turn 
on, before the plunger changes state.” 

• Property-4 “Once the plunger is down, a new signal 
is needed to turn the motor on and raise the plunger 
again.” 
 

Our approach again allows carrying out the failure mode and 
effects analysis (FMEA) by systematically injecting failures 
in the FSMs that model the sensors and the actuators of the 
system. Again, we illustrate this by obtaining a table of 
properties that fail with one component failing. Clearly, the 
exercise can be repeated for two components failing 
simultaneously (or 3 or more). That is, our software generates 
the Kripke structure for input for NuSMV when presented with 
the vector of FSMs with one faulty, and the model-checker 
highlights which of the properties no longer holds. 
 

Failures Consequences 
 Property that fails 
 1 2 3 4 
Bottom sensor stuck indicating press away from bottom    X 
Bottom sensor stuck indicating press at bottom     

PONR sensor stuck on above PONR  X   

PONR sensor stuck on below PONR   X  

Top sensor stuck indicating press away from top X    

Top sensor stuck indicating press at top     

Operator button stuck on pressed X    

Operator button stuck on released     

Motor fails, leaves motor stuck on running    X 

Motor fails, leaves motor stuck on off X   X 

Power switch button stuck to supply power    X 

Power switch button stuck to no power X X X X 

Table 2. FMEA table at level 1 for the industrial press. 
 

In Figure  we have modelled actuators like the motor (the 
FSM in Figure g) and thus can introduce a failure to the 
system as a faulty motor. We have also modelled all the 
sensors, and even the operator (Figure h). Thus, one can even 
analyse behaviour by the human operator that is not 
compliant. We emphasize here we are not aiming at being 
comprehensive. These are illustrative case studies. For 
example, we could also model other failures. Like a bottom 
sensor which, with certain frequency/probability, indicates 
incorrectly the position of the plunger and analyze the 
properties that no longer hold regarding the correctness of the 
system. Our point here is that the FMEA analysis is 
significantly automated for the safety analyst. We also have a 
formal methodology that provides clear and sound evidence 
of the correctness and reliability of the software. In particular, 
the path to establish the criticality of each sensor/actuator 

OpeningPress
OnEntry {signalMotorOn=1;}

buttonPushed

PowerOn sensorAtTopActive

Open

Closing
OnEntry{signalMotorOn=0;}

!buttonPushed && !low

sensorAtBottomActive

PressClosed
OnEntry{signalMotorOn=0;}

(a) States for the Controller.

PlungerAtBottom PlungerRisingBelowPONR

! low

motorOn && sensorAtBottomActive ! motorOn

PlungerFallingFast

PlungerRisingAbovePONR

! motorOn

PlungerFallingSlow

sensorAtTopActive PlungerAtTop
! motorOn

motorOn

low

sensorAtBottomActive

(b) States for the Plunger.

IndicatingPressAwayFromBottom
OnEntry 
{ sensorAtBottomActive=0;}

IndicatingPressAtBottom
OnEntry 
{sensorAtBottomActive=1;}

!signalPlungerAtBottom

signalPlungerAtBottom

(c) States of the Bottom
Sensor.

IndicatingPressHIGHerThanPONR
OnEntry  {low=0;}

IndicatingPressLOWerThanPONR
OnEntry {low=1;}

signalPlungerBelowPONR

! signalPlungerBelowRONR

(d) States of the PONR
Sensor.

PressAtTop
OnEntry 
{ sensorAtTopActive=1;}

PressAwayFromTop
OnEntry 
{sensorAtTopActive=0;}

signalPlungerAtTop

! signalPlungerAtTop

(e) States of the Top Sen-
sor.

ButtonPressed
OnEntry 
{ buttonPushed=1;}
.

ButtonIsReleased
OnEntry 
{buttonPushed=0;}
.

operatorPushingButton

!operatorPusshingButton

(f) States of the Button.

ElectricMotorOn
OnEntry 
{ motorOn=1;}

ElectricMotorOff
OnEntry
 {motorOn=0;}

signalMotorOn

! signalMotorOn

(g) States of the Electric
Motor.

PushingTheButton
OnEntry
 {operatorPushingButton=1;}

ButtonFree
OnEntry 
{operatorPushingButton=0;}

operatorPressesButton

! operatorPressesButton

(h) States of the Operator.

Fig. 4: Corrected complete model of the industrial press that mimics the Design Behavior Tree [29, Fig. 4 and high-res gif].
This model correctly pauses for a signal that turns the system on before rising again.

When commencing the injection of the corresponding
dosage, if the batteries have normal charge, there is no air on
the line, the flow is not blocked, there is normal volume and
the ssButton is held pressed, then a timer sound is made,
the display shows dots, the timer is set to 2 minutes and the
pump starts pumping. The display shows PUMP_RUNNING.

A volume is consider normal if it is greater than five. If
the volume is between 1 to five then the display shows the
message VOLUME_LOW, even if the pump is running.

If the dosage was interrupted because of an incident and
then the situations is fixed, the recalculating will reset the
timer on the ssButton is held press again. Every time the
pump starts, the timeBeeper sounds for 3 seconds. If the
ssButton is released during those three seconds, the pump
does not actually start and the display shows the message
PUMPING_ABORTED.

2) Formal verification of properties and validation on a
robot.: Only a few properties have been formally verified for
this case study using model checking techniques.

1) If there is blockage in the line, the pump must be
stopped.

2) If there is air in the line, the pump must be stopped.
3) As soon as the pump operation is interrupted, the drug

volume must be re-calculated.

IV. CONCLUSION
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[8] M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel, “Designing
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with respect to safety, to ensure a minimum standard of to 
mitigate a risk, and perhaps introduce further redundancy or 
safety checks becomes systematic.  
 
Furthermore, we do not make any assumptions about 
initialisation of variables, or the state of external inputs when 
the FSMs start. This allows for a more rigorous mathematical 
proof of safety properties without any implied “common 
sense” assumptions. For example, the LTL formula to verify 
Property 1 above was defined as 
 

LTLSPEC 
G ( (buttonPushed=0 & sensorAtTopActive=1) -> 
signalMotorOn=1 
) 

 
in [4: page 1248], making the assumption that the software 
would already have been initialised.  In fact, this property is 
false in the initial state of the Kripke structure. For our 
models, we do not make such implicit assumptions, but 
express this in the NuSMV model-checking language. For 
example, the property is true if the FSM for the controller 
(Figure a), by indicating that state 1 OpeningPress must 
have been reached: 
 
LTLSPEC 
G ( (buttonPushed=0 & sensorAtTopActive=1 & pc = 
M0S1R0) -> X(signalMotorOn=1) 
) 

4 Conclusions 

Our approach here contrasts with the Behavior Tree approach, 
where several concurrent threads and channels of 
communication occur within the Behavior Tree, resulting in 
computations too complex to perform any sort of formal 
model checking without a large number of simplifying 
assumptions. None of our verifications required more than a 
few seconds, although in some cases, the generated Kripke 
structures result in files of several Megabytes in size (by 
contrast, comparable Kripke structures for independent 
execution would be in the Gigabyte or even Terabyte range). 

Moreover, previous research of this type has assumed that any 
update of internal variables always takes precedence over 
external events (arguing that the software runs much faster 
than the possibility of a user pressing and releasing a button, 
but there is also an admission that this is risky [5] and their 
model checking is not sound). We do not have to make these 
types of assumptions. We establish very clearly the point in 
the ringlet of a finite-state machine that a snapshot of the 
environment is taken, and do not make any assumptions about 
the speed and timing of sensor updates. Our models exhibit 
deterministic behaviour even if sensors are updated much 
faster than the software may be able to execute.  
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