
	

1

TOWARDS UNDERSTANDING THE DO-178C / ED-12C
ASSURANCE CASE

C.M. Holloway

NASA Langley Research Center, Hampton VA, USA, c.michael.holloway@nasa.gov

Keywords: assurance case, software, standards, certification,
confidence

Abstract
This paper describes initial work towards building an explicit
assurance case for DO-178C / ED-12C. Two specific
questions are explored: (1) What are some of the assumptions
upon which the guidance in the document relies, and (2) What
claims are made concerning test coverage analysis?

1 Introduction
For about two decades, compliance with Software
Considerations in Airborne Systems and Equipment
Certification (DO-178B / ED-12B) [7] has been the primary
means for receiving regulatory approval for using software on
commercial airplanes. Despite frequent and occasionally
strident criticisms of the standard from various quarters, the
empirical evidence is quite strong that it has been successful.
Not only has no fatal commercial aircraft accident been
attributed to a software error, many of the technological
improvements that have been credited with significantly
reducing the accident rate have relied heavily on software.
For example, controlled flight into terrain—once one of the
most common accident categories—has been nearly
eliminated by Enhanced Ground Proximity Warning Systems,
which are software-intensive [15].

The next edition of the standard, DO-178C / ED-12C, has
been published by the issuing bodies [8]. New editions of
two associated documents have also been published: Software
Integrity Assurance Considerations for Communication,
Navigation, Surveillance and Air Traffic Management
(CNS/ATM) Systems (DO-278A / ED-109A) [10], and
Supporting Information (DO-248C / ED-94C) [9].
Additionally four new guidance documents have been
published to address software tool qualification
considerations (DO-330 / ED-215) [11], model-based
development and verification (DO-331 / ED-216) [12],
object-oriented technology (DO-332 / ED-217) [13], and
formal methods (DO-333 / ED-218) [14]. These standards
have not yet received official regulatory authority approval,
but the granting of approval is expected in due course.

The stated purpose of DO-178C / ED-12C remains essentially
unchanged: providing guidance “for the production of
software for airborne systems and equipment that performs its

intended function with a level of confidence in safety that
complies with airworthiness requirements.” In DO-178B /
ED-12B little or no rationale is given for how a particular
objective or collection of objectives contributes to achieving
this purpose. Thus, the assurance case for the document is
implicit. Empirical evidence suggests that this implicit
assurance case is adequate, but its implicitness makes
analysing why it is adequate quite difficult. DO-178C / ED-
12C is also mostly rationale-free, but the revised edition of
DO-248C / ED-94C includes a new section: ‘Rationale for
DO-178C [ED-12C] / DO-278A [ED-94C]’. This rationale
section provides a basis from which building an explicit
assurance case may be feasible.

This paper describes preliminary work towards building such
an explicit assurance case for DO-178C / ED-12C. Two
specific questions are explored: (1) What are some of the
assumptions upon which the guidance in the document relies,
and (2) What claims are made concerning test coverage
analysis?

The remainder of the paper is organized as follows. Section 2
provides brief background material about the DO-178C / ED-
12C document and the assurance case concept. Section 3
explores question (1). Section 4 discusses some initial
possible answers to question (2). Section 5 explains potential
future work and presents concluding remarks.

2 Background
The primary intended audience of this paper is people who
are at least passingly familiar with both DO-178B / ED-12B
and the assurance case concept. This section provides
background information for readers who fall outside of this
primary audience.

2.1 About DO-178C / ED-12C

Appendix A in DO-178C / ED-12C [8] contains a summary
of the history of the DO-178 / ED-12 series of documents.
The information below is derived from, and all quotations are
taken from, this appendix.

The initial document in the series was published in 1982, with
revision A following only three years later in 1985. Work on
revision B began in the fall of 1989; the completed document,
which was a complete rewrite of the guidance, was published
in December 1992. This version introduced the notion of five

	

2

different possible software levels, with Level A denoting the
highest level (on which the most rigorous objectives were
levelled), and Level E denoting the lowest level (on which no
objectives were levelled).

Twelve years after the adoption of DO-178B / ED-12B,
RTCA and EUROCAE moved to update it, when they
approved the creation of a joint special committee / working
group in December 2004 (SC-205/WG-71).

This group began meeting in March 2005, and completed its
work in November 2011. It operated under directions that
called for (among other things) maintaining an “objective-
based approach for software assurance” and the “technology
independent nature” of the objectives. The special
committee/working group was also directed to seek to
maintain “backward compatibility with DO-178B / ED-12B”
except where doing so would fail to “adequately address the
current states of the art and practice in software development
in support of system safety”, “to address emerging trends”, or
“to allow change with technology.” The documents produced
by the efforts are listed above.

As a result of the terms of reference and operating
instructions, DO-178C / ED-12C can be best thought of as an
update to, as opposed to a re-write or substantial revision of,
DO-178B / ED-12B. Differences between the documents
include simple corrections of known errors and
inconsistencies, changes in wording intended for clarification
and consistency, an added emphasis on the importance of the
full body of the document, a change in tool qualification
criteria and the related creation of a separate document for
tool qualification, modification of the discussion of system
aspects related to software development, closing of some
perceived gaps in guidance, and the creation of technology-
specific supplements for formal methods, object-oriented
technology, and model-based design and verification.

2.2 About the assurance case concept

The basic concept of an assurance case is simple1: provide a
structured argument supported by evidence explaining why a
particular claim about a system property is true. The most
common instantiation of the concept involves claims about
the system property of safety; hence the specific term safety
case is perhaps more widely known than the more generic
term.

Claims, arguments, and evidence constitute the three
necessary components of an assurance case. Each of these
components must be stated explicitly and clearly in order to
produce a cogent assurance case. A critical aspect of an
explicit and clear statement is articulating the context within

1 Although the concept is simple, much active research is on-
going about how to best create, express, analyse, improve,
and maintain assurance cases (for example, [1], [2], [4], [5],
[19]).

and assumptions upon which the claims, arguments, and
evidence depend.

Some existing approaches and notations for expressing
assurance cases distinguish between context and assumptions
[3]. For the purposes of this paper, we consider such a
distinction to be unnecessary. Both refer to information that is
not directly part of the explicit claims, arguments, or
evidence, but without which the claims, arguments, and
evidence cannot be understood fully or evaluated properly.

As a simple example of the importance of context and
assumptions, consider the following claim: Improved helmet
design will reduce the severity of concussions in football.
Someone reading this claim in Edinburgh, Scotland, UK, is
likely to find it unintelligible. “Helmets in football? There
are no helmets in football!” In contrast, someone reading the
same claim in Edinburgh, Indiana, USA, is likely to find it
easy to understand. They will assume that the claim is to be
interpreted within the context of American football, in which
helmets are a required piece of equipment (aka kit).

Because of the importance of explicitly enumerating
assumptions, one of the first activities that must be
undertaken in trying to articulate the assurance case implicitly
contained in DO-178C / ED-12C is to understand the context
within and assumptions upon which the guidance rests.
Initials steps towards this articulation are described in the
next section.

3 Foundational assumptions
The work towards identifying all the relevant context and
assumptions for the guidance has just begun. Thus far, four
important categories have been discovered: the goal of
satisfying airworthiness requirements; an implied relationship
between safety and correctness; permission of process
flexibility; and reliance on standard software engineering
practices.

3.1 Satisfying airworthiness requirements

As noted in the introduction, the stated purpose of DO-178C /
ED-12C is to “provide guidance for the production of
software for airborne systems and equipment that performs its
intended function with a level of confidence in safety that
complies with airworthiness requirements” [8, p. 1] The
document itself does not provide any additional details about
what constitutes the airworthiness requirements. Users of the
document are expected to know the specific requirements that
apply to the system they are developing. These requirements
must be included as a critical part of the context of any
assurance case.

3.2 Relationship between safety and correctness

Section 2 of DO-178C / ED-12C and Section 5.2 of the
Rationale make clear that the guidance is based on the
assumption that adequate system safety processes have been
followed in determining the requirements placed on the

	

3

software and its criticality level. For example, the Rationale
states that “Software/assurance levels and allocated system
requirements are a result of the system development and
safety assessment processes” [9, p. 126]

These sections also make clear that all relevant safety-specific
requirements are expected to be included. That is, one of the
inputs that must be available before the guidance is applied is
a comprehensive set of the requirements, including all of the
requirements that must be satisfied to ensure an adequate
level of safety is maintained. DO-178C / ED-12C is not
concerned with determining or analysing these safety
requirements, but only in satisfying them. Hence, it is strictly
true, as is often asserted, that the standard is not a safety
standard [6]. Conducting system safety analysis is
intentionally outside of the scope of the guidance. Guidance
for it is expected from other documents (for example [16],
[17]).

A reader may thus ask how safety can be legitimately
mentioned as an important part of the purpose of the
guidance. The answer to this question is based on the
following reasoning, which is not explicitly stated, but
definitely implied. Given a set of requirements that includes
everything necessary to provide an adequate level of safety,
then ensuring that the requirements are met necessarily
ensures that the adequate level of safety is provided. So, the
guidance needs to be concerned only with ensuring that
software satisfies its requirements. Within the context to
which the guidance applies, software system correctness
necessarily implies software system safety. This implication
does not hold in the general case, but it does hold in this
specific case. Thus, the DO-178C / ED-12C assurance case
can concentrate on demonstrating correctness of
implementation.

3.3 Permission of process flexibility

Another foundational assumption of DO-178C / ED-12C may
come as a surprise to people whose only exposure to the
guidance and its ancestors comes through criticisms by
academics: developers are permitted wide process flexibility.
As stated in the Rationale, “The committee wanted to avoid
prescribing any specific development methodology. [The
guidance] allows for a software life cycle to be defined with
any suitable life cycle model(s) to be chosen for software
development. This is further supported by the introduction of
‘transition criteria’. Specific transition criteria between one
process and the next are not prescribed, rather [the guidance]
states that transition criteria should be defined and adhered to
throughout the development life cycle(s) selected” [9, p. 126].

The DO-178C / ED-12C guidance does include detailed
descriptions of specific activities that may be performed in
order to satisfy particular objectives. However, the guidance
also explicitly states that the activities themselves may be
changed: “The applicant should plan a set of activities that
satisfy the objectives. This document describes activities for
achieving those objectives. The applicant may plan and,

subject to approval of the certification authority, adopt
alternative activities to those described in this document. The
applicant may also plan and conduct additional activities that
are determined to be necessary” [8, p. 3].

This flexibility must be considered in the creation of an
assurance case. It means that certain parts of the argument
should permit alternate instantiations. An instantiation based
on the activities described in the guidance can be developed,
but it should be made clear that this is only an example, and
that other instantiations may be possible.

3.4 Reliance on standard software engineering practices

The fourth foundational assumption of DO-178C / ED-12C
that has been uncovered thus far is that it relies in substantial
part on the efficacy of standard software engineering
practices. The overview section of the Rationale identifies
this reliance clearly: “Since DO-178C / DO-278A heavily
borrows from standard software engineering principles that
are well understood, rationale is only provided for those
elements within the document that are specific to aircraft
certification (or CNS/ATM system approval). The reader is
directed to the public literature for rationale for items not
covered in this section” [9, p. 125].

In creating an assurance case, a decision must be made about
how to handle those parts of the guidance for which the
rationale lies in standard practice. One option is to terminate
the analysis of such parts with a reference to practice.
Another option is to continue the analysis by including
claims, arguments, and evidence provided in the ‘public
literature’ mentioned in the Rationale (such as [6] [18]).

4 Test Coverage Analysis
Besides exploring the assumptions underlying the DO-178B /
ED-12C guidance, the other preliminary work that has been
conducted thus far is considering a specific aspect of the
guidance, namely test coverage analysis. This area was
chosen because test coverage has been among the most
frequently criticised aspects of DO-178B / ED-12B, and is
likely to continue to be so for the updated guidance.

The particular question that guided the initial work was,
“What claims are made concerning test coverage analysis?” A
careful articulation of the actual claims concerning test
coverage should help clarify whether the criticisms are valid,
or simply based on misunderstandings. Valid criticisms will
definitely affect the assurance case that is eventually
produced, by identifying parts of the case in which confidence
should not be placed. The potential effect on the assurance
case of existing misunderstandings is less clear-cut.

Guidance for testing is provided in Section 6.4 [8, pp. 44-51],
with test coverage analysis guidance given in Section 6.4.4 [8,
pp. 49-51]. Testing objectives are summarised in Table A-6
[8, p. 101]; test coverage objectives are summarised in Table
A-7 [8, p. 102]. Supporting Information [9] contains a

	

4

discussion in the Rationale section [9, p. 129-130] and several
frequently asked questions and discussion papers related to
test coverage:

• FAQ #42 What needs to be considered when performing

structural coverage at the object code level? [9, p. 22]
• FAQ #43 What is the intent of structural coverage

analysis [9, pp. 23 – 24]
• FAQ #44 Why is structural testing not a DO-178C / DO-

278A requirement? [9, p. 24]
• FAQ #74 What is the difference between the

development and life cycle objectives stated in DO-178C
for Level A versus Level B software, and how does that
relate to safety? [9, pp. 38-39]

• DP #8 Structural Coverage and Safety Objectives [9, pp.
70 – 71].

• DP #13 Discussion of Statement Coverage, Decision
Coverage, and Modified Condition/Decision Coverage
(MC/DC) [9, pp. 81- 88].

The guidance and supporting information distinguishes
between the purposes of testing and the purposes of test
coverage analysis. Testing is intended “to demonstrate that
the software satisfies its requirements and demonstrate that
errors that could lead to unacceptable failure conditions, as
determined by the system safety assessment process, have
been removed” [8, p. 44]. The objectives associated with
testing involve the relationship between executable object
code and its requirements, along with the compatibility of the
executable object code with the target computer. Testing is
all about the software product itself.

Test coverage analysis, on the other hand, has different
purposes. Two types of coverage analysis are described in
the guidance: requirements-based test coverage analysis, and
structural coverage analysis. The purpose of the former is
simply to analyse the test cases that were used in the
requirements-based testing to confirm that they satisfy the
criteria of the guidance. The purpose of the latter is a bit less
well understood. Hence the abundance of popular criticism of
the structural coverage criteria, and the amount of space
devoted to it in Supporting Information. Determining the
structural coverage claims that should be included in an
assurance case is difficult. The discussion in the rest of this
section is only a beginning towards that determination.

Concerning structural coverage analysis, the guidance states
that it “determines which code structure, including interfaces
between components, was not exercised by the requirements-
based test procedures. The requirements-based test cases may
not have completely exercised the code structure, including
interfaces, so structural coverage analysis is performed and
additional verification produced to provide structural
coverage” [8, p. 49].

It is important to recognize that structural coverage analysis is
not presented in the guidance as a form of testing. It is
presented as a means of determining whether the
requirements-based tests covered the code to the extent

required by the software level. If the analysis shows that
adequate coverage has been achieved, no additional tests are
required2.

Evaluating the thoroughness of requirements-based testing is
the purpose explicitly mentioned in the guidance. FAQ #43
mentions two additional purposes: providing “evidence that
the code structure was verified to the degree required for the
applicable software level”, and providing “a means to support
demonstration of absence of unintended functions.”

Concerning the first of these additional purposes, the
guidance requires demonstrating increasingly higher degrees
of coverage for higher software level. Level D does not
require any structural coverage analysis. Level C requires
achieving statement coverage (every statement in the program
is invoked at least once). Level B requires decision coverage
(every entry and exit point to the program is invoked at least
once and every decision in the program has taken on all
possible outcomes at least once). For Level A software,
achieving modified condition / decision coverage (MC/DC) is
required (decision coverage with the additional requirement
that “each condition in a decision has been shown to
independently affect a decision’s outcome” [8, p. 114]).

Intuitively, the notion of basing the thoroughness of coverage
requirements on the criticality of the software makes sense.
Executing more code structure should justify higher
confidence that errors have not been missed than executing
less. For the Level C and B requirements, the Rationale
section [9, p. 130] provides little additional insight beyond
this intuitive notion. For the Level C requirement it simply
states that statement coverage was “deemed satisfactory”, and
for Level B it says that decision coverage “was considered
sufficient to address the increase in the associated hazard
category.”

The Rationale’s discussion about the reasons behind the
MC/DC requirement does provide insight. MC/DC was
introduced in DO-178B / ED-12B. Its introduction is
identified as a compromise “based on experience gained from
three aircraft programs, where an approach derived from
hardware logic testing that concentrated on showing that each
term in a Boolean expression can be shown to affect the
result, was applied to software.” This compromise was
between the committee’s desire that for level A software all
logic expressions should be fully explored, and the
recognition that “the use of techniques such as multiple
condition decision coverage, or exhaustive truth table
evaluation to fully explore all of the logic was …
impractical.”

2 If someone says, for example, “You have to do MC/DC
testing on Level A software,” they are either using the
language very loosely, or they do not know what they are
talking about (or perhaps both). Anyone doubting the truth of
this statement should consult FAQ #44 [9, p. 24].

	

5

Concerning demonstrating unintended function, structural
coverage analysis serves to help close a gap that might be left
by requirements-based testing. As FAQ #43 states, “Code
that is implemented without being linked to requirements may
not be exercised by requirements-based tests. Such code
could result in unintended functionality” [9, p. 23]. Because
unintended functions could conceivably have a negative
impact on system safety, detecting and eliminating them
increases in importance with higher software levels.
Structural coverage analysis is intended as a means to
increase confidence that the code that really exists in the
software has been reached, and thus any unintended
functionality has been exposed.

As noted at the beginning of this section, the motivating
question for the initial exploration was “What claims are
made concerning test coverage analysis?” Claims identified
thus far include the following:

• Requirements-based test coverage analysis confirms that

the requirement-based tests satisfy the criteria of the
guidance.

• Structural coverage analysis confirms whether the
requirements-based tests covered the code to the extent
required by the software level.

• Structural coverage analysis identifies unintended
functions that exist in the software.

Refinements and additions to these claims are likely to be
made as the effort continues.

5 Future Work
This paper has described preliminary work towards building
an explicit assurance case for DO-178C / ED-12C. The next
steps to be followed include receiving feedback from readers
of the paper; articulating the top-level claim of the assurance
case; completing the determination of the assumptions
underlying this claim, and deciding how to handle each of
these assumptions in the assurance case; deciding what
notation(s) to use; completing the test coverage analysis
work; and determining whether to take a breadth-first or
depth-first approach to discovering sub-claims, arguments,
and evidence.

Once these steps are taken, the creation of a full assurance
case can commence. Readers interested in collaborating in
the endeavour are encouraged to contact the author.

References
[1] R. Bloomfield, P. Bishop. “Safety and Assurance Cases:

Past, Present and Possible Future”, Making Systems
Safer, C. Dale and T. Anderson (eds), Springer-Verlag,
pp. 51-67, (2010).

[2] P. Graydon, I. Habli, R. Hawkins, T. Kelly, and J. Knight.

“Arguing Conformance”, IEEE Software, 29 (3), pp. 50-
57, (2012).

[3] GSN Community. GSN Community Standard Version 1,

(2011). [http://www.goalstructuringnotation.info/
documents/GSN_Standard.pdf] Visited 20 July 2012.

[4] R. Hawkins, T. Kelly, J. Knight, and P. Graydon. “A New

Approach to Creating Clear Safety Arguments”,
Advances in Systems Safety, C. Dale and T. Anderson
(eds), Springer-Verlag, pp. 3-23, (2011).

[5] C. M. Holloway. “Safety Case Notations: Alternatives for

the Non-Graphically Inclined?” Proceedings of the 3rd
IET International System Safety Conference, (2008).

[6] J. Knight. Fundamentals of Dependable Computing for

Software Engineers. CRC Press, (2012).

[7] RTCA / EUROCAE. “Software Considerations in

Airborne Systems and Equipment Certification”, DO-
178B/ED-12B (1992).

[8] RTCA / EUROCAE. “Software Considerations in

Airborne Systems and Equipment Certification”, DO-
178C/ED-12C, (2011).

[9] RTCA / EUROCAE. “Supporting Information for DO-

178C [ED-12C] and DO-178A [ED-109A]”, DO-
248C/ED-94C, (2011).

[10] RTCA / EUROCAE. “Software Integrity Assurance

Considerations for Communication, Navigation,
Surveillance, and Air Traffic Management (CNS/ATM)
Systems”, DO-278A/ED-109A, (2011).

[11] RTCA / EUROCAE. “Software Tool Qualification

Considerations”, DO-330/ED-215, (2011).

[12] RTCA / EUROCAE. “Model-Based Development and

Verification Supplement to DO-178C [ED-12C] and
DO-178A [ED-109A]”, DO-331/ED-216, (2011).

[13] RTCA / EUROCAE. “Object-Oriented Technology and

Related Techniques Supplement to DO-178C [ED-12C]
and DO-178A [ED-109A]”, DO-332/ED-217, (2011).

[14] RTCA / EUROCAE. “Formal Methods Supplement to

DO-178C [ED-12C] and DO-178A [ED-109A]”, DO-
333/ED-218, (2011).

[15] J. Rushby. “New Challenges in Certification of Aircraft

Software”, Proceedings of the 11th International
Conference on Embedded Software (EMSOFT), pp. 211-
218, (2011).

[16] Society of Automotive Engineers. Guidelines for

Development of Civil Aircraft and Systems, SAE ARP
4754a, (2010).

	

6

[17] Society of Automotive Engineers. Guidelines and
Methods for Conducting the Safety Assessment Process
on Civil Airborne Systems and Equipement, SAE ARP
4761, (1996).

[18] I. Sommerville. Software Engineering. 9th edition.

Addison-Wesley, (2011).

[19] T. Yuan, T. Kelly. “Argument Schemes in Computer

System Safety Engineering”, Informal Logic, 31 (2), pp.
89-109, (2011).

