
Validation of Object Oriented Software Design

With Fault Tree Analysis

Massood Towhidnejad Dolores R. Wallace Albert M. Gallo, Jr.

Department of Computing SRS Information Services Code 304

Embry-Riddle University Software Assurance Technology Center Software Assurance Technology Center

Daytona Beach, FL 32114 NASA - Goddard Space Flight Center NASA - Goddard Space Flight Center

towhid@erau.edu dwallac@pop300.gsfc.nasa.gov Albert.M.Gallo@nasa.gov

Abstract

Software plays an increasing role in the safety critical

systems. Increasing the quality and reliability of the

software has become the major objective of software

development industry. Researchers and industry

practitioners, look for innovative techniques and

methodologies that could be used to increase their

confidence in the software reliability. Fault tree analysis

(FTA) is one method under study at the Software

Assurance Technology Center (SATC) of NASA’s

Goddard Space Flight Center to determine its relevance to

increasing the quality and the reliability of software. This

paper briefly reviews some of the previous research in the

area of Software Fault Tree Analysis (SFTA). Next we

discuss a roadmap for application of the SFTA to

software, with special emphasis on object-oriented design.

This is followed by a brief discussion of the paradigm for

transforming a software design artifact (i.e., sequence

diagram) to its corresponding software fault tree. Finally,

we discuss challenges, advantages and disadvantages of

SFTA.

1. Introduction

Fault Tree Analysis (FTA) [1] is a technique used in the

area of reliability. Initially, FTA was introduced in the

1960s, with the primary purpose of identifying those

circumstances that could cause a system to reach a

hazardous or unsafe state. FTA is powerful static analysis

tool. Given a specific hazardous state, FTA uses a

backward (also referred as top-down or deductive) search

technique in order to identify conditions that would cause

the system to reach that state. In other words, once a

specific hazard is identified (hypothesized), FTA will

search all possible combinations of the conditions (initial

states) that could force the system to reach that state.

FTA is a graphical analysis tool and uses two techniques

in its analysis: qualitative and quantitative. Through the

qualitative technique, FTA is capable of identifying all

possible combinations of conditions that would cause the

system to reach a hazardous state. These combinations of

conditions are referred to as a cut set. A minimum cut set

represents a minimum number of conditions that need to

be satisfied in order to force the system into a hazardous

state. The quantitative approach uses probability

information associated with each condition (initial state)

in order to calculate the probability of occurrence of the

specific hazardous state. One of the advantages of the

FTA is the fact that all attention is paid to a specific

hazardous state and identification of preconditions that

need to be satisfied in order to reach such a state. Of

course, this could also become a disadvantage if FTA is

the only technique used to identify hazardous states. This

is due to the fact that it is possible for the analyst to

overlook a specific hazardous state. In order to prevent

this situation, other techniques such as Failure Modes and

Effects Analysis (FMEA) [2], a forward (also referred as

bottom-up or inductive) search, need to be used in

conjunction with the FTA to identify all possible

hazardous states for a system.

FTA is typically applied to hardware systems, but

recently attempts have been made to apply FTA to

software. Section two elaborates on previous research in

the area of the Software Fault Tree Analysis (SFTA), also

a road map to application of Fault Tree (FT) throughout

the development life cycle is presented. Section three

presents application of the fault three to object oriented

design. Section four briefly discusses the paradigm for

conversion of the Unified Modeling Language (UMLTM)

diagram to its corresponding FT. Finally, the last section

of this paper discusses some of the advantages and

disadvantages of application of the FT to software.

2. Software Fault Tree Analysis

There has been significant research on software fault tree

analysis, with the majority having been conducted by

Leveson [3], Lutz [4], and Dugan [5]. In most cases,

however, SFTA is used at the code level, and the size of

the software (measured by lines of code) to which the

SFTA has been applied, is relatively small, approximately

one thousand lines of code. Leveson [6] has generated a

set of templates that could be used in SFTA, where a

specific language construct (syntax) has been represented

in the form of fault tree. It is important to mention that

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

when FTA is applied to software, and specifically at the

code level, we are only addressing the qualitative

analysis, since at this level quantitative analysis does not

make sense. Therefore, at implementation (coding

phase), the objective of using SFTA is to identify the set

of instructions that could possibly cause the software to

reach a hazardous state. Therefore, one could use SFTA

in combination with formal code inspection in order to

increase their confidence in the safety of the software

under investigation. Finally, it has been pointed out by a

number of researchers that SFTA shows some weaknesses

when there are loops involved in the code, but loops are

almost always present in software. Therefore, this is a

weakness that needs to be overcome. Additional work by

some researchers like Helmer [7], and Modugna [8]

resulted in the application of the SFTA to requirements

with some success in the detection of the weak or missing

requirements.

2.1 Application of SFTA during software

development life cycle

Researchers and practitioners generally agree that

applying SFTA at the code level is a very cumbersome

and labor-intensive activity. In addition, it is a well-

known fact that defect detection and correction at the

implementation phase is much more costly than at the

earlier stages of the software development life cycle.

Given this rationale, the SATC team recommends

applying SFTA to requirements and design. The process

is to use SFTA during the requirements and design phase

to identify the critical component of the software where

safety and hazardous states are the major concerns. Then

SFTA may be applied at the code level only for these

critical components. The above approach follows the

principle of divide and conquer, which is one of the

fundamental methods of solving problems. By

partitioning the system (to the safety critical component

and those that are not safety critical), we narrow the scope

of the area in which FTA has to be applied. Of course it

is assumed that special attention is given to the flagged

components (i.e., safety critical partition) during the

development and verification and validation activities.

SFTA at requirements phase

The main objectives of applying SFTA during this phase

of software development are to:

Identify weaknesses that exist in the requirement

specification. Weak requirements will either be

modified or additional requirements will be added in

order to eliminate or mitigate these weaknesses.

Identify all the requirements that have a direct effect

on the safety of the system. This can be done either

through the knowledge collected as part of the

requirements elicitation, or identifying the pattern of

use and the surrounding environment that could

affect the software, by forcing it to a hazardous state.

Once requirements with safety considerations are

identified, these requirements will be traced

throughout the development life cycle. It is assumed

that a requirement traceability matrix is included in

the software development artifacts to help with this

task.

SFTA at design phase

The main objectives of applying SFTA during this phase

are to:

Identify the weaknesses of the high-level design. At

this stage, appropriate modifications will be

implemented in order to strengthen the overall

design.

Identify the components/modules and subcomponents

that have direct effect on software safety. These

modules and those implementing the requirements

with the safety consequences are identified. Then,

special attention may be given to the generation of

their implementation, by guaranteeing the elimination

of design factors that could force the system into a

hazardous state.

The details of the application of SFTA during the design

phase are discussed in Section 3 of this paper.

SFTA at implementation phase

The main objective of applying FTA to code is to identify

critical code components that have direct bearing on the

safety of the software. In this phase, fault trees will be

generated for all the modules previously identified

(during the detailed design phase) as critical modules

affecting software safety. The goals here are to:

Identifying a set of key instructions that could place

the system in a hazardous state

Add appropriate safeguards that prevent the software

from reaching such a state.

As previously mentioned, the majority of the previous

research in SFTA has been applicable to this phase of the

software development.

One of the major advantages of the above approach is to

avoid generating fault trees unnecessarily for significant

amounts of code in the system. It limits the application of

FT to small, but critical portions of the code that affect the

safety of the software. Applying FTA to the entire

system requirements specification and the detailed design

phase will be much more efficient than broadly applying

it at the code level. Another advantage of this approach is

that by applying SFTA at every stage of development,

safety issues are identified early in the development life

cycle and remedies can be implemented as early as

possible.

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

3. Application of SFTA to Unified Modeling

Language Artifacts

Applying SFTA during the detailed design phase will

produce the best return on investment. It is here that a

software product exists in its most ideal form for SFTA to

be applied. Software is represented in the form of some

number of modules where functionality, interfaces,

inputs, and outputs are well defined. This is the closest

we get to representing software structure in a way that is

analogous to hardware modeling, a point prior to

development where the salient system features, i.e., gates,

encoder, functionality, interfaces, inputs and outputs are

well defined. The same can be said about a software

system at the detailed design phase. Here the software is

represented with an equivalent amount of detail that we

can achieve the equivalent degree of insight. Applying

SFTA at this point enables us to identify modules

(objects, methods, or functions) that could directly affect

the safety of the system.

In both the preliminary and detailed design phases, once a

module or a set of modules is identified as having

possible impacts on the safety of the system, additional

safeguards need to be embedded into the design in order

to guarantee their safe operation. It is worth mentioning

again that generating fault trees for the system at this

point will be a much more efficient choice than

generating them during the implementation phase.

With the exception of Pai’s work [9] on dynamic fault

trees for systems, we were unable to find any previous

dynamic work that applied SFTA during the design phase.

The SATC team chose the Object Oriented Design (OOD)

methodology as the vehicle for the application of SFTA at

the design level. There are two primary reasons for

choosing OOD: 1) much recent software design uses

OOD and the designs are implemented using OO

languages, and 2) recently many OODs use the UMLTM

(Unified Modeling Language), which is standardized and

commonly used by the software development community

[10].

UMLTM uses a number of views and diagrams to describe

software systems. The problem is how to relate these to

the notation used in FTA. As the first step, we looked at

all the different UMLTM diagrams and identified those we

believe best match the SFTA. During this process, we

identified the activity, sequence and state diagrams, as the

first candidates for the application of SFTA.

Communicating and validating critical system details

becomes challenging, to say the least. This is because

most end users are not familiar with OO design artifacts

such as graphs and diagrams; however, the majority of

customers in the aerospace industry are familiar with

hardware, they are generally comfortable with logic

diagrams, which is the fundamental concept behind fault

trees. Even in those rare instances where customers are

unfamiliar with the concepts behind logic diagrams, it is

relatively easy to achieve a comfort level with a handful

of logic gates in a sequence diagram. These findings

suggest that SFTA should be used not only as a

verification technique for the software design, but also as

a communication vehicle with customers.

Our work also indicates that customers, after reviewing a

fault tree, easily detect the occurrences of missing design

components. By pointing out these missing components,

they are actually completing the fault tree, thereby

improving quality of the design as well as the ultimate

system.

Initially we applied SFTA to the activity diagram [11].

While we learned that it is possible to apply SFTA to the

activity diagram, we also learned that special care is

needed in order to handle any loop in an activity diagram.

There is some ongoing research in this area [12], which

appears promising; however, much work is still needed in

this area.

We then attempted to apply SFTA to the sequence

diagram, at which point we came across additional

findings. We learned that while SFTA may serve as a

technique for verification of design, it could also serve as

a vehicle for improved communication with customers

and other stakeholders. We have developed a partial

paradigm for transforming sequence diagrams into

software fault trees, which is discussed in more detail in

section 4 of this paper.

Ultimately, we applied SFTA to the state diagram. We

arrived at the same set of observations as in the case of

sequence diagrams. Figure 1 represents the state diagram

for a pay at the pump system, with its corresponding fault

tree diagram represented in Figure 2. As noted for

activity and sequence diagrams, special care must be

given when representing timing constraints and

occurrences of iteration.

4. Transformation Paradigm

One of the original objectives of this project was to

investigate the feasibility of automatically generating FT

for software design artifacts. However, after further

investigation, it became obvious that complete automatic

generation of the fault tree from a software design artifact,

is neither feasible, nor desirable. However, it is possible

to generate a minor (even less than the activity diagram)

part of the fault tree automatically. The main reason is

the fact that, if we are able to automatically transform

software design artifacts to fault tree, then the defects, or

the missing components, that are already in the design

will also be transformed, which as a result defeat the

purpose of having the fault tree analysis. In addition, as

we increase the role of automation in this transformation

process, we will decrease the analytical activity of

engineers involved in the process of fault tree analysis.

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

Therefore, rather than looking at the automation process

for transformation of the design artifact to its

corresponding fault tree, we started looking at generation

of some guidelines that an engineer may apply, when they

are interested in generating a fault tree for a design

artifact. The remainder of this section briefly describes

some of the guidelines that could be used, when one is

interested in generating a fault tree for a sequence

diagram.

Guidelines for transformation of sequence

diagram to fault tree

Our investigation revealed some limitations in translating

a sequence diagram into a fault tree. We categorize these

limitations to two categories, timing and iteration. The

first category addresses the representation of the timing

issues in the sequence diagram. Typically, there are two

major timing situations. In the first, one event must be

completed before a second can start. In the second case,

an event must start but need not complete before a second

is initiated. There are efforts in the research community

[13] assessing the timing problem, where a set of

augmented logic gates can be used to enforce the

appropriate sequencing. The second category addresses

the representation of the iteration and loops that are

present in the sequence diagram into the corresponding

fault tree. The following bullets describe how one could

address these problems.

Identify each object that affects the hazard, and

represent each one as either a basic or an intermediate

event. Each of these events feeds into an OR gate

that generates the hazard under investigation (Fig. 3-

I).

Typically, any message (e.g., create, show.) that is

affecting the hazardous situation is represented as an

input to the OR gate, which its output feeds to the

object that sent and received that message. It is

possible for the object to fail to send that message or

receive it; therefore, it should be represented as a

basic event to the sender and receiver object (Fig. 3-

II).

When an object is created by another object, the

created object is represented as a basic or an

intermediate event (Fig. 3-III).

The timing problem in the sequence diagram has

generated a challenge for the development of the

fault tree. Typically, there are two major timing

situations. In one case, event A has to be completed

before event B can start, and the second case is when

event A has to start, but it does not necessary have to

be finished before event B starts. Some research [13]

has examined the timing problem, where a set of

augmented logic gates can be used to enforce the

appropriate sequencing; however, these augmented

gates are not represented in anyone of the fault tree

tools. For the time being, we can handle the timing

problem in the following manner:

For the case where event A has to be completed

before event B, we can AND the outcome of

event A with the event B to enforce this timing

sequence (Fig. 3-III).

To handle sequencing of two events (objects)

concurrently active (e.g., it is required for the

first object to become active before the second

object becomes active). For example, object A

instantiates object B, and then both objects

perform concurrent activities. In order to

represent this timing sequence, we can represent

object A with two sub-objects (A1 and A2),

where sub-object A1 represents the activity that

is required to be completed up to the

instantiation of object B, and sub-object A2

represents object A’s activity starting with the

instantiation of object B. As a result, the

relationship between sub-object A1 and B is the

same as what is described in previous bullet. By

following this approach, we realize that we limit

the timing constraint between the sub-object A1

and B, and as a result, there is no timing

constraint between the sub-object A2 and B since

they are active concurrently.

If a message is sent to/from multiple objects, this can

be represented via transfer logic gate, which is shown

by a triangle (Fig. 3-IV).

As previously mentioned, representation of the

iteration by fault tree is a challenging task. Iteration

(i.e., multiple calls to self) affects the fault tree from

the quantitative point of view. There is no additional

gate needed to represent the iteration; however, it

affects the failure model. For example, if an object

has an effect on a specific hazardous state, it does not

matter if it is called once or many times; however, if

it is called multiple times, then its quantitative effect

increases. Therefore, using this approach, we would

need to represent the reliability model of the

component, when it is done once, and then

incorporate another reliability model when it is done

N times. For example, if call A has the failure

probability of 0.1%, and it is possible for Call A to be

repeated 50 times, then obviously, the probability of

the failure for 50 times is no longer 0.1 %.

These conclusions confirm the strength of SFTA for

design verification and effective communication with

stakeholders.

5. Conclusions

It is important to point out that the main goal of our

activities was the generation of the fault tree for a specific

design artifact. As discussed, FTA comprises two distinct

analyses – qualitative and quantitative. It is the former

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

that reveals the minimum cut set which identifying the

fewest number of conditions needed for the system to

reach a specific hazard.

Our work shows that it is possible not only to generate the

fault tree, but also to identify minimum cut sets; however,

a major challenge still remains regarding quantitative

analysis of the fault trees - specifically, the lack of

dependable reliability data for software components.

Researchers such as Musa [14] and Smidts [15] are

currently working on this issue; however, much more

work is needed in this area.

Diverse user communities could use SFTA for different

purposes:

Developers/Designers: Use SFTA as a tool to

improve the product under development. They can

also use it as a vehicle for improved communication

between themselves and the customer.

Quality Assurance: Use SFTA for the purpose of

validating the product.

Managers: Use the SFTA for risk analysis, decision

support, and identification of areas needing special

attention.

Testers: Use SFTA for the purpose of planning their

testing activities and focusing on areas needing

additional stress testing. Testers also may use the

fault tree for the purpose of the validation and

verification.

There are a number of advantages and disadvantages

related to the SFTA. These include:

Advantages

o Easy to learn and use

o Graphical Representation

o Communication vehicle with customer

Disadvantages

o Conversion is labor intensive

o Lack of software reliability data

o Timing and loops need special attention

o No dedicated commercial SFTA tool available.

References

[1] NUREG-0492, Fault Tree Handbook, U.S. Nuclear

Regulatory Commission, January, 1981.

[2] “Applying Integrated Safety Analysis Technique

(Software FMEA and FTA)”, Jet Propulsion Laboratory,

November 1998.

[3] Leveson, N. G. and P. R. Harvey, “Analyzing

Software Safety”, IEEE Transactions on Software

Engineering, Vol. SE-9, No. 5, September 1983, pp. 569-

579.

[4] Lutz, R. R., “Targeting Safety-Related Errors During

Software Requirements Analysis,” Journal of Systems
and Software, 1996, 34, 223-230.

[5] Dugan J.B., Sullivan, K. J., and D. Coppit,

“Developing a High-Quality Software Tool for Fault Tree

Analysis”, Transactions on Reliability, December 1999,

pp. 49-59.

[6] Leveson, Nancy G., Stephen S. Cha, Timothy J.

Shimeall, "Safety Verification of Ada Programs Using

Software Fault Trees." IEEE Software. pp 48-59.

[7] Helmer, G., Slagell, M., Honavar, V., Miller, L. and

Lutz, R., "A Software Fault Tree Approach to

Requirement Analysis of an Intrusion Detection System"
Symposium on Requirements Engineering for Information

Security, March 5-6, 2001.

[8] Francesmary Modugno, Nancy G. Leveson, Jon D.

Reese, Kurt Partridge and Sean D. Sandys, ``Integrated

Safety Analysis of Requirements Specifications'', IEEE
International Symposium on Requirements Engineering,

1997.

[9] Pai, G., J., and J. B. Dugan, “Automatic Synthesis of

Dynamic Fault Trees from UML System Models”, The

13th International Symposium on Software Reliability
Engineering, IEEE Computer Society, Annapolis, MD,

USA, November, 2002, pp. 243- 254.

[10] OMG Unified Modeling Language, Version 1.4,

September, 2001, http://www.omg.org/cgi-

bin/doc?formal/01-09-67

[11] Towhidnejad, M., Wallace, D., Gallo, A. ““Fault

Tree Analysis for Software Design”, 27th Annual

IEEE/NASA Software Engineering Workshop, December

2002.

[12] Giarambino, “How to Avoid the Generation of Loops

in the Construction of Fault Trees”, Proceedings of
Annual IEEE Reliability and Maintainability Symposium,

2002.

[13] Helmer, G., et al., “Software Fault Tree and Colored

Petri Net Based Specification, Design and

Implementation of Agent-Based Intrusion Detection

Systems”,

http://www.cs.iastate.edu/~honavar/Papers/CPN-IDS.pdf,

June 2002

[14] Musa, J., Software Reliability Engineering, McGraw-

Hill, New York, 1999.

[15] Smidts, C., Sova, D. “An Architectural Model for

Software Reliability Quantification: Sources of Data”,

Reliability Engineering and System Safety, 64, 279-290,

1999.

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

Not Valid

Card Inserted

Idle

Validate Selecting

Processing

Pumping

Printing

Active

Figure 1. State Diagram for Pay at the Pump

1.1.1

Card entered

IE

1.1.2.1

HW Failure

IE

1.1.2.2

Authorization Failure

IE

1.1.2

Validation Failed

1.1

card entered &
validation failed

1.2.1.1

Validation failed

1.2.1

Validation succeeded

1.2.2

Selection Failed

IE

1.2

Selection Failed

1.3.1.1

Selection failed

1.3.1

Selection succeeded

1.3.2

Processing failed

IE

1.3

Processing Failed

1.4.1.1

Processing failed

1.4.1

Processing succeeded

1.4.2.1

Out of gas

IE

1.4.2.2

Pump HW failure

IE

1.4.2

Pumping Failed

1.4

Pumping Failed

1

Failed to provide
proper gas

Figure 2. Fault Tree for Pay at the Pump

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

Create

Show

Show

Move Move

Show

Creat

Show

Show

Show
Move

Fig.3 Sequence Diagram Fault Tree

I

II

III

IV

Figures 3 I-IV. Sequence diagram transformation to software fault tree

A B C A

B

C

Move

Show

C

A B C

A

B

A B C GateShow A

Proceedings of the 28th Annual NASA Goddard Software Engineering Workshop (SEW’03)
0-7695-2064-2/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

