
1

ASSESSING AND IMPROVING SOFTWARE QUALITY IN
SAFETY CRITICAL SYSTEMS BY THE APPLICATION OF A

SOFTWARE TEST MATURITY MODEL

F.I. Duncan*, A.G. Smeaton †

*Director BitWise Ltd, UK papers@bitwisegroup.coms, †CTO BitWise Ltd, UK papers@bitwisegroup.com

Keywords: Software, quality, test, maturity models, safety.

Abstract
Drawing on wide experience over many years, BitWise has
evolved a SOFTWARE TEST MATURITY MODEL. This
is of particular value in the testing of safety critical software.
This brings significant benefits in terms of cost and effective
quality. This paper explains the Model and enables
development groups to assess their current capabilities and
plan any required improvements.

1 Introduction
Businesses developing safety critical software will reasonably
be expected to have a set of well defined processes. Some
processes will be supported by tools (commercial, open
source or bespoke) to improve efficiency and reduce risk of
human error. Continuous improvement is generally driven by
either actual failures in the processes (leading to piecemeal
additions to plug the gaps) or regulatory changes. Whatever
the drivers, tools and processes are often introduced without
regard for overall effectiveness.

Periodically, BitWise is asked by clients to assess their
current processes and tools and to recommend the best way to
achieve improvements. It is quite common to find a complex
mixture of processes, practices and tools but little or no
understanding of their overall effectiveness. It can also be
challenging to find a simple and consistent basis for assessing
current systems and formulating an improvement plan that
can be delivered in a phased manner.

BitWise has evolved a maturity model approach which has
proven to be very effective in addressing this challenge.

The novelty in this paper lies in the specific methods of
application and their relationship with wide real experience.
BitWise makes no claims of originality with the general
maturity model concept [1] or its application to software
testing [2].

2 Scope of model
The safety lifecycle from IEC61508 [3] is shown in Figure 1.
It shows the overall scope of the safety lifecycle. Phase 10 is

where the software development and test takes place so is of
particular relevance to this paper.

Post
Development
Phase

Development
Phase

De-Risking
Activity

Concept1

Overall Scope Definition2

Hazard and Risk Analysis3

Overall Safety Requirements4

Overall Safety Requirements
Allocation5

E/E/PE System Safety
Requirements Specification9

Overall Operation
and Maintenance

Planning
6

Overall Safety
Validation
Planning

7
Overall

Installation and
Commissioning

Planning
8

Overall Planning

E/E/PE
Safety Related Systems10

Realisation

Overall Installation and
Commisioning12

Overall Safety Validation13

Overall Operation,
Maintenance and Repair14

Decommissioning or Disposal 16

Overall Modification and
Retrofit15

Other Risk Reduction
Measures11

Specification and Realisation

Back to appropriate overall
safety lifecycle phase

Figure 1 Safety lifecycle from IEC61508

Phase 10 of the IEC61508 safety lifecycle breaks out into a
more detailed software lifecycle. This is summarised in
Figure 2.

System
Requirements

Module Design

System Design

Coding

Unit Test Design

Integration Test
Design

System Test
Design System Testing

Acceptance
Testing

Unit Testing

System
Architecture

Integration
Testing

Acceptance Test
Design

Figure 2 Software development lifecycle

The focus of this paper is on software testing. So the scope of
the BitWise model is focused on phase 10 of the safety
lifecycle i.e. the various phases of the V model shown in
Figure 2. Critically, although testing appears explicitly on the
right hand leg of the V model, testing is impacted by all

2

phases of the lifecycle. The Model ensures that each phase is
consistent with the level of testing required.

The Model could potentially be extended to other phases of
the safety lifecycle. However, this paper focuses on the
software development lifecycle.

2.1 Quality gates

Each phase in the software development lifecycle can and
should have a set of quality gates at its end. Additional
quality measures also need to be applied during the phase.
There are a number of mantras that are often applied in
selecting quality measures for each gate:
1. Issues should be caught at the earliest point. The cost of

fixing an issue grows exponentially in later phases.
2. Phase escape will happen so later phases need to be

robust.
3. System testing is often the last line of defence.

The Model adds an additional key point.
4. There needs to be a balance of measures across the

various phases. An imbalance can easily lead to major
overspend without significant benefit.

5. Testing needs to be considered at all phases of the
lifecycle.

Quality measures vary from phase to phase. There are many
techniques and tools that can be applied.

3 The Model
The Model is based on five levels of increasing test maturity.
These are introduced first before looking at what techniques
and tools apply to each level. The first two levels are very
basic and it is reasonable to expect any business developing
safety critical software to be at least at level three.

3.1 Maturity levels

There are five maturity levels in this model. These are
characterised as follows:

Level 1 - Initial

• A chaotic process. There are little or no written
processes

• Not distinguished from debugging and ill defined
• The tests are developed ad hoc after coding is

complete
• Usually lack a trained professional testing staff and

absence of testing tools
• The objective of testing is to show that the system

and the software work

Level 2 – Phase Definition

• Identify testing as a separate function from
debugging

• Testing becomes a defined phase following coding

• Processes documented/standardised to the point
where basic testing techniques and methods are in
place

• The objective of testing is to show that the system
and software meets specifications

Level 3 – Integration

• Integrate testing into the entire life cycle
• Establish a formal testing organisation
• Establishes formal testing technical trainings
• Controls and monitors the testing process
• Begins to consider using automated test tools
• The objective of testing is based on system

requirements
• Major milestone reached at this level: management

recognises testing as a professional activity

Level 4 – Management and Measurement

• Testing is a measured and quantified process
• Development products are now tested for quality

attributes such as Reliability, Usability, and
Maintainability

• Test cases are collected and recorded in a test
database for reuse and regression testing

• Defects found during testing are now logged, given a
severity level, and assigned a priority for correction

Level 5 – Optimisation/Defect Prevention and Quality
Control

• Testing is institutionalised within the organisation
• Testing process is well defined and managed
• Testing costs and effectiveness are monitored
• Automated tools are a primary part of the testing

process
• There is an established procedure for selecting and

evaluating testing tools

3.2 Test maturity model effects

As successively higher levels of the Software Test Maturity
Model are attained, the effectiveness and efficiency of the
quality measures will improve. The following effects are
typical of the improvements noted when adopting this Model.

Effects of operating at Level 3

• Fewer defects are found during testing activities.
o Institutionalised peer reviews and

inspections find defects early.
o More formalized engineering process focus

on quality requirements and design
documents.

• There is a significant reduction in the time spent
conducting system and user acceptance testing.

• Testing efficiency and effectiveness are known
(measured and analyzed), and used for future project
planning.

• Test results are used to predict project milestone
completions.

3

• Automated test systems are evaluated and considered
for implementation.

Effects of operating at level 4

• Fewer defects are found during later testing
activities.

• Most defects are found during peer reviews and early
testing activities.

• Test completion criteria can be based on quantitative
data from tests conducted.

• Automated testing support is built into product.

Effects of operating at level 5

• Fewer defects are found during testing activities.
Improved engineering activities prevent defects from
being built into the work products.

• Prototyping activities help eliminate potential
requirements and design flaws.

• Entire testing levels may be dropped, or combined
with others.

• Automated testing tools replace previously manual
processes.

• Testing efficiency and effectiveness are improved.

4 Model details
The Model is represented as a two dimensional matrix. One
dimension is the maturity level and the other is a list of
quality measures. The latter are organised in lifecycle phase
order.

Each quality measure can take on one of two forms. The first
form is where there are a number of different levels of
application each of which is assigned to a different maturity
level. The second is a simplified form where there is only
one level of application i.e. it is either applied or it is not. So
each cell in the matrix is either a simple yes/no or a more
detailed definition of the particular level of application.

There are many dependencies between different quality
measures. A large part of the Model development effort has
been in identifying these dependences and ensuring that the
level definitions do not have any dependency on something at
a higher level.

This paper does not provide the full detail of the matrix. The
matrix is augmented as new tools and techniques become
available. Indeed, the matrix will continue to evolve as
BitWise applies it in new situations.

A good example is effective Unit testing. These rely on
detailed interface specifications coming from the module
design phase of the lifecycle. So unless the design work is
mature enough, the project has to rely on integration testing
and largely bypass unit testing. Going a stage further, the
definition of components needs to be clear. So unless there is
a well define modular architecture with clear identification of

components, it is very difficult to identify component
interfaces.

5 Using the Model
The Model can be applied at two levels. Firstly it can be
applied to a development organisation to assess its overall test
maturity level. However, individual projects typically adopt
different quality plans. So this Model is even more useful to
assess and find improvements to the test strategy for an
individual project.

Using the Model is relatively straightforward. Some
independent assistance is generally required in assessing the
actual level of some processes, techniques and tools,
particularly where they are bespoke.

A copy of the matrix is marked up to show which level each
measure is currently at. Once this is complete, it is relatively
simple to form a view on the current maturity level.

In an ideal world, there should be a high level of consistency
i.e. every quality measure is at the same level. In practice,
there is normally a spread. Typically, there may be a cluster
around level 3 or sometimes level 4. However, there will be a
few below level 3 and these are clearly the top priority action
points. There are also some quality measures up at level 5,
often carrying considerable cost and adding little benefit.

The action plan is relatively easy to prioritise by focusing on
each level of maturity in turn. This can become more
complex when there is a mix of say level 3 and level 4
capability. There could be a substantial number of issues to
address to bring the business fully up to the higher level. A
further level of prioritisation still needs to be applied but that
has to be done on a case by case basis.

6 Conclusion
BitWise has applied this Model to its own processes. It has
used this to consolidate at level 4 and establish a plan to
progress to level 5. BitWise also applies the Model to each
project to ensure consistency of the quality plan.

The Model has also been applied to a number of client
processes and their key projects. It has proved very useful in
developing improvement plans and setting priorities.

The Model continues to evolve but has already proven to be a
very useful technique.

References
[1] Carnegie Mellon University, Capability Maturity Model for

Software, version 1,1, CMU/SEI-93-TR-024-ESC-TR-93-177
(1993)

[2] J D Hart, Software testing and the Capability Maturity Model,
Innovation Dynamics Consulting, (2000)

4

[3] International Electrotechnical Commission, Functional Safety
of electrical/electronic/programmable electronic safety related
systems, Parts 1 to 7.IEC ISO/IEC 61508 (2010)

