
ANALYSIS AND OPTIMIZATION OF MIXED-CRITICALITY
APPLICATIONS ON PARTITIONED DISTRIBUTED

ARCHITECTURES

D. Tămaş-Selicean, S. O. Marinescu and P. Pop
Technical University of Denmark, Department of Informatics, 2800 Kongens Lyngby, Denmark

dota@imm.dtu.dk

Abstract

In this paper we are interested in mixed-criticality applica-
tions implemented using distributed heterogenous architec-
tures, composed of processing elements (PEs) interconnected
using the TTEthernet protocol. At the PE-level, we use
partitioning, such that each application is allowed to run only
within predefined time slots, allocated on each processor. At
the communication-level, TTEthernet uses the concepts of
virtual links for the separation of mixed-criticality messages.
TTEthernet integrates three types of traffic: Time-Triggered
(TT) messages, transmitted based on schedule tables, Rate
Constrained (RC) messages, transmitted if there are no TT
messages, and Best Effort (BE) messages. We assume that
applications are scheduled using Static Cyclic Scheduling
(SCS) or Fixed-Priority Preemptive Scheduling (FPS). We
are interested in analysis and optimization methods and tools,
which decide the mapping of tasks to PEs, the sequence and
length of the time partitions on each PE and the schedule
tables of the SCS tasks and TT messages, such that the
applications are schedulable and the response times of FPS
tasks and RC messages is minimized. We have proposed a
Tabu Search-based meta-heuristic to solve this optimization
problem, which has been evaluated using several benchmarks.

1 Introduction
Safety is a property of a system that will not endanger human
life or the environment. Safety-Integrity Levels (SILs) capture
the required protection against failure when building a safety-
critical embedded system, and will dictate the development
processes and certification procedures that have to be fol-
lowed. The current trend is towards integrated architectures,
where applications of different safety criticality levels are
integrated into the same platform. Such mixed-criticality ap-
plications can be integrated onto the same architecture only if
there is enough spatial and temporal separation among them.

In this paper we address mixed-criticality hard real-time ap-
plications mapped on heterogeneous distributed architectures.
We consider that the computation-level temporal and spatial
separation mechanisms are provided by “Integrated Modular
Avionics” (IMA) [12] through the concept of partitions. Simi-
lar separation mechanisms are available in other industries [7],

[9]. With IMA, each application runs in a separate partition
on the processing elements (PEs) where the application is
mapped.

At the communication level, separation is provided by the
TTEthernet protocol [2] protocol, which uses the concept of
virtual links for the separation of mixed-criticality messages.
TTEthernet is a deterministic, synchronized and congestion-
free network based on the IEEE 802.3 Ethernet standard
and integrates three types of traffic. Time-Triggered (TT)
messages, Event-Triggered (ET) messages with bounded end-
to-end delay, also called Rate Constrained (RC) messages, and
Best-Effort (BE) messages, for which no timing guarantees
are given. The TT frames are transmitted based on static
schedule tables, and have the highest priority. RC messages
are transmitted if there are no TT messages, while BE traffic
has the lowest priority.

We assume that applications are scheduled using static-cyclic
scheduling (SCS) or fixed-priority scheduling (FPS). Applica-
tions scheduled with SCS transmit TT frames, while the ones
scheduled with FPS transmit the messages as RC frames. In
this paper, we propose a tool for the analysis and optimization
of mixed-criticality applications on partitioned architectures.
The tool takes as input the model of the application, consisting
of tasks and messages, the model of the system platform,
and produces that system configuration which guarantees the
separation of mixed-criticality applications and their schedu-
lability. The analysis calculates the worst-case response times
of FPS tasks and the worst-case transmission times of RC
messages, taking into account the particularities of IMA
and TTEthernet, respectively. The optimization decides the
mapping of tasks to the processing elements (PEs) of the
architectures, the sequence and length of the time-partitions
on each PE and the schedule tables of the SCS tasks and TT
messages, such that the applications are schedulable and, in
addition, the response times of FPS tasks and RC messages
is minimized.

Researchers have recently started to address the integration
of mixed-criticality tasks onto the same platform [4], [14].
In [14], we proposed an optimization approach to determine
the mapping of tasks to PEs, the time partitions on each PE

1

Fig. 1: Application model example

and the schedule tables, such that all applications are schedu-
lable and the development costs are minimized. In that work,
communications were ignored, and a simple unpartitioned
statically scheduled shared bus was used.

2 System Model

The set of all applications in the system is denoted with
Γ. We model an application as a directed, acyclic graph
Gi(Vi,Ei) ∈ Γ. Each node τ j ∈ Vi represents one task. The
mapping is denoted by the function M : Vi → N , where N
is the set of PEs in the architecture. For each task τi we
know the worst-case execution time (WCET) C

N j
i for each

PE N j where τi is considered for mapping. An edge e jk ∈ Ei
from τ j to τk indicates that the output of τ j is the input of
τk. Communication between tasks mapped to different PEs is
performed by message passing on the TTEthernet network.
Applications are scheduled using SCS or FPS. A deadline
DGi ≤ TGi , where TGi is the period of Gi, is imposed on each
graph Gi.

An example mixed-criticality system composed of three appli-
cations is presented in Fig. 1a. The WCETs of tasks are given
in Fig. 1b for two PEs, N1 and N2. An “x” in the table means
that the task is not considered for mapping on the respective
PE. The size of the messages is depicted on the graph edges.

2.1 Safety Integrity Levels

During the engineering of a safety-critical system, the haz-
ards are identified and their severity is analyzed, the risks
are assessed and the appropriate risk control measures are
introduced to reduce the risk to an acceptable level. A Safety-
Integrity Level (SIL) captures the required level of risk reduc-
tion. SILs are assigned to safety functions, from SIL 4 (most
critical) to SIL 0 (non-critical). Functions are decomposed
into tasks. We introduce the notation SIL : Vi → {SIL k},
where k ∈ {0..4}, to capture the SIL of a task. The tasks

Fig. 2: Partitioned architecture
of an application may have different SILs. The SILs for the
example in Fig. 1a are presented next to the tasks.

Tasks of different SILs have to be separated. Otherwise, for
example, a lower-criticality task could write in the code or
data area of a higher-criticality task, leading thus to a failure.
The same is true for mixed-criticality messages.

2.2 Separation at PE-level

We consider architectures composed of a set N of PEs
connected via TTEthernet. We denote the assignment of tasks
to partitions using the function φ : V → P , where V is the
set of tasks in the system and P is the set of partitions.
On a PE Ni, a partition Pj ∈ P is defined as the sequence
Pi j of k partition slices pk

i j, k ≥ 1. A partition slice pk
i j is a

predetermined time interval in which the tasks mapped to Ni
and allocated to the partition Pj are allowed to use Ni. All
the slices on a processor are grouped within a Major Frame
(MF), that is repeated periodically. The period TMF of the
major frame is given by the designer and is the same on each
PE. Several MFs are combined together in a system cycle that
is repeated periodically, with a period Tcycle.

Fig. 2 presents the partitions for 3 applications of different
SILs, A1, A2 and A3, implemented on an architecture of 2
PEs, N1 and N2, with TMF = 10 and Tcycle = 2×TMF = 20.

Fig. 3: TTEthernet cluster example

2

Fig. 4: Motivational example

2.3 Separation at Network-level

A TTEthernet network is composed of a set of End Systems
(ESes) interconnected by links and Network Switches (NSes).
An example is presented in Fig. 3, where we have 4 ESes,
ES1 to ES4, and 2 NSes, NS1 and NS2.

We model a TTEthernet network as an undirected graph
GN(VN ,EN), where VN = ES ∪N S is the set of end systems
(ES) and network switches (N S) and EN is the set of physical
links. For Fig. 3, VN = ES ∪N S = {ES1,ES2,ES3,ES4}∪
{NS1,NS2}, and the physical links EN are depicted with thick,
black, double arrows.

The space partitioning between messages of different criti-
cality transmitted over physical links and network switches
is achieved through the concept of virtual link. Virtual links
connect one sender to multiple receivers. Each virtual link
carries a single message.

We denote the set of virtual links in a cluster with V L . A
virtual link vli ∈V L is a directed tree, with the sender as the
root and the receivers as leafs. Each virtual link is composed
of a set of dataflow paths, one such dataflow path d pi for each
root-leaf connection. For example, in Fig. 3, vl1 = d p1∪d p2,
and d p1 connects ES1 to ES3, while d p2 connects ES1 to
ES4. A dataflow link li = [ν j,νk] ∈ L , where L is the set of
dataflow links, is a directed communication connection from
ν j to νk, where ν j and νk ∈ V can be ESes or NSes. Using
this notation, a dataflow path such as d p1 in Fig. 3 can be
denoted as [[ES1, NS1], [NS1, NS2], [NS2, ES3]].

We assume that the topology of virtual links and the traffic
classes for each frame are given by the designer, and we define
the sets F T T , F RC and F BE , respectively, with F = F T T ∪
F RC ∪F BE .

The size fi.size for each frame fi ∈F is given. In addition, for
the TT and RC frames we know their periods and deadlines,
fi.period and fi.deadline, respectively. We define the rate of
an RC frame fi as fi.rate = 1/ fi.period. Knowing the size

of a frame fi and the given speed of a dataflow link [ν j,νk],
we can determine the transmission duration C

[ν j ,νk]
i of fi on

[ν j,νk].

3 Problem Formulation

The problem we are addressing in this paper can be formulated
as follows: given a set Γ of applications, the criticality level
SIL(τi) of each task τi, an architecture consisting of a set N of
processing elements, the topology of the TTEthernet network
GN , the set of TT and RC frames F T T ∪F RC, the set of virtual
links, the size of the major frame TMF and the application
cycle Tcycle, we are interested to find an implementation Ψ

such that all applications meet their deadlines and the response
times of FPS tasks and RC messages are minimized. Deriving
an implementation Ψ means deciding on the mapping M of
tasks to PEs, the set P of partition slices on each processor,
including their order and size, the assignment φ of tasks
to partitions and the schedule S for all the tasks and the
schedules ST T for the TT frames.

3.1 Mapping and Partition Optimization

Let us illustrate the problem of optimizing the mapping
of tasks and partitioning of PEs using the mixed-criticality
applications A1, A2 and A3 from Fig. 1a, to be implemented
on two PEs, N1 and N2. We have set TMF to 15 time units
and Tcycle = 2×TMF = 30. In this example we use a simple
static bus.

Let us assume that we have determined the optimal mapping
of tasks, in terms of the cost function from Section 4, ignoring
the partitioning. Using this optimal mapping, we are interested
to obtain the partitions and the schedules, such that, the sep-
arations are enforced and the schedule lengths are minimized
with the goal of producing a schedulable implementation. This
partitioning is presented in Fig. 4a. In this case, although
application A3 is schedulable, task τ15 and the second instance

3

of task τ2 do not fit into the schedule, and thus applications
A1 and A2 are not schedulable.

In this paper we consider that the optimization of mapping and
partitioning is done at the same time, and not separately. By
deciding simultaneously the mapping and partitioning we have
a better chance of obtaining schedulable implementations.
Such a solution is depicted in Fig. 4b, where all applications
are schedulable. Compared to the solution in Fig. 4a, we have
changed the mapping of tasks τ13 and τ22 from N1 to N2 and
of task τ2 from N2 to N1, and we have resized the partition
slices and changed the schedule accordingly.

3.2 Optimization of TT Message Schedules

Let us illustrate the TT frame schedule synthesis problem
using the setup from Fig. 5, where we have a network
composed of three ESes, ES1 to ES3 and a network switch
NS1 (see Fig. 5a) and three frames, see the table in Fig. 5b.
The details of the virtual links and frames are in the table
and figure. The dataflow links have the same speed. For this
example we consider that the RC and TT traffic are integrated
using a “timely block” policy, i.e., an RC frame will be
delayed if it could block a scheduled TT frame.

We want to determine the TT schedules ST T such that all
the TT and RC frames are schedulable. The schedulability of
a TT frame fi is easy to determine: we just have to check
the schedules ST T . To determine the schedulability of an RC
frame f j we have to compute its worst-case end-to-end delay,
from the moment it is sent to the moment it is received. We
denote this worst-case delay with R f j . Fig. 5 presents two
possible solutions for synthesizing the TT schedules ST T . In
both cases, Fig. 5c and 5d, we show a Gantt chart, which
shows on a timeline from 0 to 600 µs what happens on the
three dataflow links, [ES1,NS1], [ES2,NS1] and [NS1,ES3].

Because we are interested in the schedulability of RC frames,
for the RC frame f1 we show in both cases (c) and (d) in Fig. 5
the worst-case scenario, i.e., the situation which has generated
the largest (worst-case) end-to-end delay. In Fig. 5c the TT
schedules are constructed such that the end-to-end delay of
TT frames is minimized, i.e., the TT frames arrive at their
destination as soon as possible. In this case, the worst-case
end-to-end delay of the RC frame f1, namely R f1 , is 470 µs,
which is greater than its deadline of 300 µs, hence f1 is not
schedulable. This worst-case for f1 happens for the first frame
instance f1,1, see Fig. 5c, when f1,1 happens to be sent by ES1
at 105 µs. In this case, as the network implements the timely
block integration algorithm, the frame cannot be forwarded by
NS1 to ES3 until there is a big enough time interval to transmit
the frame without disturbing the scheduled TT frames. We
denote these “blocked” time intervals with hatched boxes. The
first big enough interval starts only at time 500, right after f2,3
is received by ES3, which is too late.

(a) Example architecture model

period deadline Ci
(µs) (µs) (µs)

f1 300 300 75
f2 200 200 50
f3 300 300 50

(b) Example application model

(c) Initial TT schedule

(d) Optimized TT schedule

Fig. 5: Worst-case scenario for RC frame f1

However, if we instead schedule the TT frame f3 such that its
second instance f3,2 will be sent by ES2 to NS1 at 350 µs, the
worst case end-to-end delay for f1 is reduced to 275, hence f1
is schedulable. Such a solution is depicted in Fig. 5d, where
we also depict the worst-case scenario for f1.

This example shows that by considering the RC traffic when
scheduling the TT frames, the impact of the TT schedule on
the latency of the RC frames can be greatly reduced.

4 Mixed-Criticality System Optimization

The problem presented in the previous section is NP-complete,
hence we use a meta-heuristic called Tabu Search (TS) to
solve it. Starting from an initial solution, we iteratively run
(i) a TS meta-heuristic to optimize the task mapping and the
set of partition slices, while considering the schedules for TT
frames to be fixed, and (ii) a TS-based TT frames schedule
optimization algorithm considering the previously obtained
task mapping and task partition slices as fixed.

4.1 Tabu Search

TS [8] is a meta-heuristic optimization, which searches for
that solution which minimizes the cost function of an imple-

4

mentation Ψ:

Cost(Ψ) =

{
c1 = ∑Ai∈Γ max(0,Ri−Di) ifc1 > 0
c2 = ∑Ai∈Γ(Ri−Di) ifc1 = 0

(1)

Ri is the response time of the application, while Di is the
deadline of the application. If at least one application is not
schedulable, there exists one Ri greater than the deadline Di,
and therefore the term c1 will be positive. However if all the
applications are schedulable, this means that each Ri is smaller
than Di, and the term c1 = 0. In this case, we use c2 as the
cost function, since the applications are schedulable, we are
interested to minimize response time of the applications.

The worst-case response times for SCS tasks and TT messages
are determined based on the schedule tables, while those of
FPS tasks and RC messages are calculated using the analysis
from Section 4.2.

Tabu Search explores the design space by using design
transformations (or “moves”) applied to the current solution
in order to generate neighboring solutions. To escape local
minima, TS incorporates an adaptive memory (called “Tabu
list”), to prevent the search from revisiting previous solutions,
thus avoiding cycling.

At the PE level, we use one re-assignment move, which
changes the assignment of a task to another partition and
four types of moves applied to partition slices: resize, swap,
join and split. The re-assignment move re-assigns a task to
another, randomly chosen, partition. The partition can be on
another PE, thus, implicitly, the re-assignment move will also
re-map the task. The resize move, resizes the selected partition
slice. The swap move swaps the chosen partition slice with
another randomly chosen partition slice. The join move joins
two partition slices belonging to the same application, while
the split move splits a partition slice into two, and adds the
second slice to the end of the MF.

For the TT frames, we use four types of moves: advance,
advance predecessors, postpone and postpone successors. The
advance move will advance the scheduled send time of a TT
frame instance fi,x from a node ν j on a dataflow link [ν j,νk] to
an earlier moment in time. The advance predecessors applied
to a frame instance f

[ν j ,νk]
i,x , will advance the scheduled send

time for all its predecessors. Similarly the postpone move will
postpone the schedule send time of a TT frame instance from
a node, while postpone successors will postpone the send time
for all the successors of that frame instance.

4.2 Analysis of Mixed-Criticality Applications

To determine the schedulability of FPS tasks we use a
response-time analysis [5] to calculate the worst-case response
time Ri of every FPS task τi, which is compared to its deadline
Di. Audsley and Wellings [3] have proposed a schedulability

analysis for FPS tasks using temporal partitioning (IMA),
which, when analyzing a FPS task in a certain partition,
considers the other time-partitions as higher priority tasks.
This analysis assumes that the deadlines are smaller or equal
to the periods, that the tasks are independent, and that the start
times of partition slices within a major frame are periodic. In
this paper we use the analysis proposed by us in [10] for FPS
tasks.

The worst-case end-to-end delay R fi of an RC frame fi ∈F RC

sent on a virtual link vli = M (fi) is the sum of the worst-case
queueing delays Q

[ν j ,νk]
fi on each network node (ES or NS)

ν j ∈ V (which is the source of a dataflow link [ν j,νk] ∈ vli)
and the transmission duration C

[ν j ,νk]
fi for each dataflow link

[ν j,νk] ∈ vli the frame transits. For RC frames, we use the
analysis from [13].

5 Experimental Results

Regarding tasks, we were interested to evaluate the proposed
optimization strategy (TO) in terms of its ability to find
schedulable implementations. Thus, we have used 5 synthetic
benchmarks with 4 to 6 mixed-criticality applications mapped
on 2 to 6 PEs. Together with TO, Table I also presented the
results obtained using a Straightforward Solution for tasks
(SST). SST consists of a simple straight forward partitioning
scheme which allocated for each application A j a total time on
PE i proportional to the utilization of the tasks of A j mapped
on Ni. The partitions Pi j thus allocated have the same length
and they are distributed with a period equal to the smallest
period of a task from A j mapped to Ni. Column 2 in Table I
presents the number of tasks. The number of schedulable tasks
(out of the total) obtained by our proposed TO strategy is
presented in column 5, while column 4 presents the results
obtained using SST.

As we can see from “Set 1”, SST which does not perform
optimization, is not able to find schedulable implementations.
However, by applying our proposed TO approach, we are able
to optimize the time partitions such that all applications are
schedulable. We have measured the ability of TO to improve
over SST by using a percentage average increase in the degree
of schedulability over all applications, presented in the last
column. As we can see there is a dramatic increase over
all applications, when using TO. This means that we can
potentially implement the applications on a slower (cheaper)
architecture.

We have also used 2 real life benchmarks derived from
the Embedded Systems Synthesis Benchmarks Suite (E3S)
version 0.9 [6], see “Set 2”. We have used the telecom-
mocsyn and auto-indust-cowls benchmarks. The applications
are mapped on an architecture of 3 PEs. The results obtained
from these real-life benchmarks confirm the results of the
synthetic benchmarks.

5

Set Tasks PEs SST Sched.
Tasks

TO Sched.
Tasks

avg. %
increase in δ

1

20 2 10 All 832.88
26 3 13 All 27.36
40 4 6 All 88.41
50 5 10 All 73.57
62 6 26 All 278.72

2 24 3 5 All 113.95
25 3 All All 61.87

TABLE I: Experimental results for tasks

Set Test case ES NS Messages Frame ∆cost
instances [%]

1

11 13 4 80 12593 2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904 9.17
22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3 automotive 15 3 170 38305 50.88

TABLE II: Experimental results for messages

The results related to messages are presented in Table II. For
the synthetic benchmarks, we have used 6 network topologies,
and we have randomly generated the parameters for the
frames, taking into account the details of the TTEthernet
protocol. For all experiments, we have compared our opti-
mization strategy for messages (let us call it TM) with a
baseline solution, namely the Straightforward Solution for
messages (SSM), which builds the TT schedules with the goal
of minimizing the end-to-end response time of the TT frames
without considering the RC traffic. The comparison between
SSM and TM, ∆cost , is shown in the last column in the table
as a percentage improvement of TM over SSM.

In the sets of experiments labeled “Set 1” and “Set 2” in
Table II, we were interested to evaluate the quality of the
result obtained with TM as the size of the system increases.
Thus, we have used 7 synthetic benchmarks, with the number
of network nodes ranging between 16 and 55 nodes. The first
set of 4 benchmarks have a load of 50%, and the second set
of benchmark have a load of 70%. As we can see, TM is able
to signigicantly improve the cost function over SSM, even as
the size of the system increases. We used a time limit of 45
minutes for the first set and 90 minutes for the second set.

Finally, we used one real-life benchmark derived from [11],
based on the SAE automotive communication benchmark [1].
In this benchmark we have 18 network nodes (ESes and
NSes), and 83 frames (with the parameters) generated based
on the messages presented in [11]). Table II contained the
results for this benchmark – the last line labeled with “Set 3”.
The results obtained for the real-life benchmark confirms the
results of the synthetic benchmarks.

6 Conclusions

We have presented an approach to the analysis and opti-
mization of mixed-criticality applications on partitioned ar-
chitectures. Applications of different criticality levels can be
integrated onto the same architecture only if there is enough
spatial and temporal separation among them. We have consid-
ered IMA for the PE-level Separation and TTEthernet for the
communication-level. As the experimental evaluations shows,
only by optimizing the implementation of the applications,
taking into account the particularities of IMA and TTEthernet,
we are able to support the designer in obtaining schedulable
implementations.

Acknowledgements

This work has been funded by the Advanced Research
& Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project ‘RECOMP’, support code
01IS10001A, agreement no. 100202.

References

[1] SAE Technical Report J2056/1. Technical report, SAE International.
[2] AS6802: Time-Triggered Ethernet. SAE International, 2011.
[3] N. Audsley and A. Wellings. Analysing APEX applications. In Real-

Time Systems Symp., pages 39 –44, 1996.
[4] S. Baruah and G. Fohler. Certification-Cognizant Time-Triggered

Scheduling of Mixed-Criticality Systems. Proceedings of the Real-Time
Systems Symposium, pages 3–12, 2011.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers,
1997.

[6] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[7] R. Ernst. Certification of trusted mpsoc platforms. 10th International
Forum on Embedded MPSoC and Multicore, 2010.

[8] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[9] B. Leiner, M. Schlager, R. Obermaisser, and B. Huber. A Comparison
of Partitioning Operating Systems for Integrated Systems. Computer
Safety, Reliability, and Security, pages 342–355, 2007.

[10] S. O. Marinescu, D. Tămaş-Selicean, V. Acretoaie, and P. Pop. Timing
Analysis of Mixed-Criticality Hard Real-Time Applications Imple-
mented on Distributed Partitioned Architectures. 2012.

[11] U. Mohammad, N. Al-holou, and P. D. Development of an automo-
tive communication benchmark. Canadian Journal on Electrical and
Electronics Engineering, 1(5):99–115, 2010.

[12] J. Rushby. Partitioning for avionics architectures: Requirements, mech-
anisms, and assurance. NASA Contractor Report CR-1999-209347,
NASA Langley Research Center, June 1999.

[13] W. Steiner. Synthesis of Static Communication Schedules for Mixed-
Criticality Systems. In Proceedings of the International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing
Workshops, pages 11 –18, 2011.

[14] D. Tămaş-Selicean and P. Pop. Design Optimization of Mixed-
Criticality Real-Time Applications on Cost-Constrained Partitioned Ar-
chitectures. In Proceedings of the Real-Time Systems Symposium, pages
24–33, 2011.

6

