
1

EVIDENCE-BASED DEVELOPMENT – COUPLING
STRUCTURED ARGUMENTATION WITH REQUIREMENTS

DEVELOPMENT

A.J.J. Dick*

*Integrate Systems Engineering, UK

Keywords: progressive assurance, traceability, safety cases.

Abstract
This paper reports on an assurance process that is being
applied on a large nuclear defence project in the UK.
Christened Evidence-based Development (EbD), the approach
draws together requirements development and structured
argumentation into a unified assurance framework. Part of the
discipline of requirements management is to document which
design artefacts contribute to the satisfaction of which
requirements by tracing individual statements of requirement
through the layers of design. Evidence-based Development
recognises that the systematic collection of “decomposition
arguments” for each step in the requirements development,
along with supporting evidence provided by design validation
and verification activities, amounts to a structured argument
for the design. The theoretical advantages of this approach are
that assurance is coupled tightly to the design process, and
that assurance is applied uniformly to all aspects of the
design. However, it is too early in the life-cycle of the project
to make definite claims for the approach. This far, the major
barrier to the implementation of this approach has been the
education of engineers across multiple disciplines in how to
write the arguments entailed is each design step.

1 Introduction
Developers of complex systems are frequently required – by
statute, regulation, standards and customers – to provide
evidence that their products are fit for purpose. Even before a
product is built, developers may be required to supply design
justifications, compliance statements or safety cases for
review and sign-off as part of the development process. While
the system is being built and tested, it may be necessary to
gather and present further compliance evidence. And while in
operation, evidence for the correct functioning of the system
may be required. The effect is to accumulate a growing body
of evidence for the correctness, compliance and safety of a
system throughout its development life-cycle.

The concern with accumulating evidence is particularly
relevant to the challenges involved in validating high integrity
systems and hence achieving certification against standards
such as DO-178B for avionics or obtaining Premarket
Approval (PMA) for medical devices. To meet these

challenges, frameworks, processes and tools are required that
help coordinate and organise the collation, review and
publication of validation and certification evidence.

System safety is one area in which techniques, notations and
tools have been deployed for the construction of safety cases.
However, safety has to be balanced with other concerns –
such as delivering effective capability – and unless a
commensurate degree of rigour is applied to these other areas,
safety can have an undue influence on the nature of the
design.

Evidence-based Development (EbD) is an approach to
systems and software development that provides a uniform
framework for structured arguments across all pertinent
aspects: function, performance, safety, reliability, etc. It
couples the assurance case tightly to the design process,
starting with the way in which requirements are developed.

EbD is been implemented on a large UK defence project. The
major emphasis has been on getting the process in place with
appropriate tool support using IBM Rational DOORS, and
then training and mentoring the users.

2 Rich traceability
Much of the discipline of requirements management focuses
around traceability: the ability to trace requirements as they
are transformed from customer needs to design specifications
through the layers of design. Effective tracing depends on
requirements being expressed as concise, singular,
unambiguous statements appropriate to their level of
abstraction. (See, for example, the guidelines in ISO/IEC
29148 [1].)

Rich traceability [2, 3] introduces the notion of rationale for
the decomposition of a requirement that we call
“decomposition argument” in the paper. In the rich
traceability literature, this is usually called a “satisfaction
argument”; however, if one considers how one may argue that
a requirement is satisfied, one must take into account how the
requirement is tested as well as how it is decomposed. We
therefore reserve the term “satisfaction argument” for
something broader that decomposition. Note also that the
decomposition argument is different from the notion of
rationale for an individual requirement, which explains its

2

existence; the decomposition argument explains the
decomposition of a requirement into one of more others, and
justifies the design.

Figure 1 shows an example of a system requirement being
decomposed into a number of component requirements along
with the decomposition argument.

Figure 1: Example of rich traceability for the decomposition

relationship

The decomposition argument should address two key things:

• Sufficiency: Why is the set of child requirements
sufficient to satisfy the parent?

• Necessity: Why is each of the child requirements
necessary to satisfy the parent?

These two concerns give criteria for reviewing the
relationship between layers of requirements.

Decomposition is not the only traceability relationship that
exists as part of the discipline of requirements management.
Another is the relationship between requirements and V&V
information, which we call the “qualification” relationship.
The principle is to trace (planned) validation or verification
actions to the requirements that they are intended to establish.

The concept of rich traceability can be extended to the
qualification relationship. A “qualification argument” is
captured against each requirement that explains the selection
of V&V actions. Figure 2 shows an example.

Figure 2: Example of rich traceability for the qualification

relationship

Sufficiency and necessity also apply as criteria for writing a
qualification argument: Why is the set of V&V actions
sufficient to show the requirement has been met? and Why
are each of the actions necessary? (In the testing world,
sufficiency is often called adequacy.)

2 The Semantics of Traceability
Associated with each traced relationship, such as those shown
above, is an implicit claim. In the case of Figure 1, the claim
is that, if the functional requirements are satisfied, then so is
the user requirement. For Figure 2, the claim is that, if the
planned tests show positive results, then the requirement has
been met.

This observation allows us to connect rich traceability to the
concept of claim/evidence/argument [4, 5]. The systematic
collection of decomposition and qualification arguments
provides an overall structured argument for the satisfaction of
requirements, structured according to the way in which
requirements are decomposed, which in turn reflects the
design.

The structured argumentation consists of implicit claims,
explicit arguments, and evidence that comes from the
execution of V&V actions. Every V&V action is, in effect, a
request for evidence. The V&V actions include those that
occur very early in the life-cycle, such as design analysis,
those that occur repeated at various stages, such as hazard
analysis, right through to those that occur far later, such as
component tests, integrate tests, system tests and acceptance
tests.

Decomposition and qualification arguments, which are made
at the time of design, reflect the intent of the design, since
nothing has yet been built. The decomposition argument is
supported by V&V actions involving various kinds of design
analysis that also consider the intent of the design. Later in
the life-cycle, when components have been built and
integrated, the V&V actions that test them and the evidence
they generate, are concerned with the fulfilment of the design.
Thus the overall argument structure evolves over time from
considering intent to considering fulfilment.

4 Evidence-based Development
Evidence-based Development (EbD) is a process based on the
above principles. Rich traceability is applied through the
decomposition and qualification relationships at every level
of abstraction, with arguments being collected at each design
step. As development proceeds, so the structure of the overall
argument develops and evidence accumulates, providing – if
all goes well – increasing confidence in that the system is fit
purpose against all kinds of requirement.

Figure 3 presents an EbD framework based on an extension of
the V-model into a W-model. The purpose of the extra axis is
to make the test planning steps explicit in the development

3

process. The rounded boxes are activities, the rectangles
information, and the arrows traceability relationships.

Figure 3: The W-model in which test plans are made explicit

Figure 4 overlays the W-model with a trace of decomposition
and qualification relationships leading from a single top-level
requirement. The small rectangles are requirements and tests,
and the circles are decomposition and qualification
arguments. This structure represents the complete assurance
case for the one top-level requirement.

Figure 4: Example of rich traceability for the decomposition

relationship

Since EbD applies the same processes to every requirement,
assurance is established in a uniform and balanced way across
the range of different types of requirement.

5 Implementation
Here we describe the way in which EbD has been
implemented in a large defence project. The EbD process and
information is defined at two levels: a high-level model
defines the layers of requirements that are to be managed, and
the requirement areas in those layers. The low-level model
describes the statement-level relationships and processes that
apply within an area. Exactly the same low-level-model is
instantiated in every area in the high-level model.

Figure 5 shows the high-level model for the project in
question. The yellow boxes show requirement areas and the

red arrows show how the requirements are allocated from one
area to another. Lines draw across the model show
requirements layers. Transverse requirements include types of
requirement that cut across the product structure, such as
safety, availability and maintainability.

Figure 5: High-level model showing layers of requirements

Figure 6 shows the low-level model that is applied in every
requirements area. It portrays the two key relationships
(decomposition and qualification), along with four kinds
argument that are collected, described as follows:

1. Decomposition argument: rationale for why the
requirement is decomposed/allocated in the way that
it is. (An attribute of the requirement.)

2. Qualification argument: rationale for why the
particular V&V methods for this requirement have
been selected. (An attribute of the requirement.)

3. Qualification results argument: rationale for why the
test results show that the criteria for each V&V
method have been met. (An attribute of the V&V
method.)

4. Satisfaction summary: overall rationale for believing
that the requirement has been satisfied. (An attribute
of the requirement.)

Figure 6: Low-level model showing 4 kinds of argument

The area owners collect the arguments as they develop the
requirements, plan V&V actions against them and execute

4

those actions. The order in which the arguments are captured
is usually as shown. The last argument collected is the
satisfaction summary, which draws together all the arguments
and evidence into a single overall statement of satisfaction.

As mentioned before, the decomposition and qualification
arguments are concerned with the intent of the design,
whereas the qualification results and satisfaction arguments
are concerned with fulfilment of the design.

Evidence supporting the arguments lives in documents
outside of the requirements database. Some of these
documents may be produced by V&V actions that generate
evidence to support the decomposition and qualification
arguments stated against the requirement.

Tool support for the EbD process in provided through a
customised DOORS database.

6 Implementation Challenges
The application EbD to the development organisation
required a considerable change in culture. The 240 engineers
trained in the process and the supporting tools were not
accustomed to the discipline of writing concise, singular,
unambiguous requirement statements, let alone to the
discipline of systematic tracing with rationale. Therefore,
there was a great deal for the practitioners to take on board at
the same time.

The approach used to promote the culture change was to
extend class-room training into at-the-desk mentoring, thus
helping engineers through the steps of the process as they
faced day-to-day challenges.

What became quickly apparent was that writing arguments is
a very different discipline to writing requirement statements.
Particular challenges in writing decomposition arguments are:

• Not simply repeating the child requirement
statements.

• Not reproducing the whole design; just summarising
the pertinent details.

Guidelines for writing arguments are lacking in the project.
Another challenge has been confusion between the roles of 4
different types of argument collected.

Since the project is still in the design stages, not many of the
Results and Satisfaction arguments have been captured. It will
take years before the complete argument structure is in place,
and the quality and nature of the resulting assurance cases can
be fully assessed.

7 Lessons Learned
Some of the challenges mentioned above could be addressed
by applying a simplified approach to the collection of
arguments. We observe that the qualification argument was
often not independent of the decomposition argument, in that,
when deciding what V&V actions to place against a

requirement, you have to take into account how that
requirement is decomposed and what V&V actions are placed
against the children.

We also observe that decomposition and qualification
arguments sometimes evolve as understanding of the design
improves. Indeed, with the length of the overall programme,
we find we want to write the overall satisfaction argument
early to reflect current assessment of the requirement, and let
that argument evolve as more evidence becomes available
from the results of V&V actions.

These observations lead to the idea of having a single,
evolving argument against each requirement – the
satisfaction argument – that takes into account the concerns of
decomposition, qualification and associated evidence, and
simply reflects the current rationale for believing the
requirement will be, or has been, satisfied.

The multi-argument approach encourages the developers to
collect assurance information in a systematic was as the
development of the design proceeds, and provides an explicit
record of how the overall argument has developed through the
stages of development from design intent to design fulfilment.
In contrast, the single argument approach would record only
the latest state of the argument. Configuration management
could be used to trace the way the argument develops. It is
unclear at this stage whether this single argument approach
would produce the same quality of structured argument as the
multi-argument approach.

7 Conclusions
The aim has been to present a potentially interesting approach
to the systematic collection of assurance information tightly
coupled to the development of the design. It is too early to be
able to draw any firm conclusions about the nature and
quality of the assurance case thus produced.

References
[1] ISO/IEC, ISO/IEC 29148 FDIS Systems and Software

Engineering—Life Cycle Processes—Requirements
Engineering, 2011.

[2] "Rich Traceability", Jeremy Dick, Proc. 1st International

Workshop on Requirements Traceability, Edinburgh,
Sept 2002

[3] "Requirements Engineering", M. Elizabeth Hull, Ken

Jackson, A. Jeremy J. Dick, Springer-Verlag, London,
Sept 2002, ISBN 1-85233-577-7

[4] T.P. Kelly and R.A. Weaver, “The Goal Structuring

Notation—A Safety Argument Notation,” Proc.
Workshop Assurance Cases Dependable Systems and
Networks, 2004

5

[5] R E Bloomfield, P G Bishop, C C M Jones, P K D
Froome, ASCAD—Adelard Safety Case Development
Manual, Adelard 1998, ISBN 0 9533771 0 5.

	A.J.J. Dick*
	*Integrate Systems Engineering, UK
	Abstract
	1 Introduction
	System safety is one area in which techniques, notations and tools have been deployed for the construction of safety cases. However, safety has to be balanced with other concerns – such as delivering effective capability – and unless a commensurate d...
	2 Rich traceability
	2 The Semantics of Traceability
	4 Evidence-based Development
	5 Implementation
	6 Implementation Challenges
	7 Lessons Learned
	7 Conclusions
	References

