
International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

61

Software Failure Analysis at Architecture Level using FMEA

Shawulu Hunira Nggada

Department of Computer Science, University of Hull, HU6 7RX, United Kingdom

shnggada@googlemail.com, s.h.nggada@2007.hull.ac.uk

Abstract

The advancement and proliferation of information technology has made it possible for

specified functions of systems including safety-critical systems to be software driven.

Traditional failure analysis techniques existed before computers and are widely used in the

failure analysis of hardware. Typically, hardware failures are random while software failures

are systematic and this makes software failure analysis difficult to be addressed. However,

similar approaches used in hardware failure analysis can be applied in the failure analysis of

software at its architecture level. Such analysis informs design modifications in software and

likely hardware to mitigating design weaknesses. This paper investigates this approach by

employing the use of FMEA and emphasizes on the commencement of failure analysis at early

system design stage. Thus, weaknesses in the design can be identified early and necessary

interventions taken. The FMEA investigates failure of each entity of the architecture relative

to a defined system top event.

Keywords: Software engineering, failure analysis, use case, software architecture

1. Introduction

Advancement in computing has made it possible for hand held devices, household

equipments, automobiles, nuclear power plants, aircrafts, spacecrafts, etc to have embeds of

programmable devices. In other words, these systems are computer controlled through

software (computer programs). The level of computer control will vary from one system to

another depending on the scale of computer control required and, or size of the system. The

scale of computer control required and the size of the system both add to the design

complexity of the system. In some of these systems, a failure in the software will have impact

on the system’s reliability (e.g. mobile phones and digital cameras) while in some systems it

has severe impact on their safety (e.g. automobile and aircrafts). This also suggests that in

general, a failure can have a negative impact on at least one of three dependability attributes

(reliability, availability and safety) of the system in question.

Systems like aircrafts, nuclear power plants, etc that cause hazards for people and the

environment are termed as safety-critical systems [1]. Although it is logical to invest more in

the failure analysis of safety-critical systems, in general an in-depth failure analysis of any

given system will reduce manufacturing cost that may be incurred at the following

development phases; design, implementation and post-implementation (e.g. customer support

and maintenance – repair and replacement). It is therefore of significant importance that

systems are analyzed for potential failure from the design stage to completion. The

commencement of failure analysis right from the infancy or early design stage will help

ensure that identified weaknesses in the design are mitigated. The analysis of failure should

normally be reviewed following mitigation. This way, potential hazards which might have

previously been overlooked are likely to be identified.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

62

According to Haapanen and Helminen [2], the failure modes of the constituent components

of mechanical and electrical systems are normally well understood. This is because the

reasons for failures are known and their sequences may be studied; some of these reasons are

wear, aging and unanticipated stress. However, this does not suggest that the failure analysis

of such systems is always easy, but in essence is straightforward. In contrast, the failure

modes of software for software-based systems are generally unknown.

Software engineering does not only advocate for the development of software that meet

user requirement but also one which is dependable as is the case for safety-critical systems.

This paper investigates the failure analysis of software at its architecture level by employing a

traditional failure analysis technique used for mechanical, electrical and electronic systems. In

section 2 a review on system failure analysis via traditional technique such as failure modes

and effects analysis (FMEA) is discussed. It also contains investigation on how FMEA could

be applied in software systems. Section 3 investigates the architecture of software, a model on

which this work attempts to apply FMEA. It also establishes and proposes a failure analysis

model for software architecture. Section 4 presents the case study on which the software

failure analysis is performed – brake by wire system. The analysis is contained in section 5

and conclusion is drawn in section 6.

2. Systems Failure

There is currently no study in literature which suggests that systems can be designed and

operate 100% failure free. Certain failures occur due to design flaws and oversight in hazards

identification. The identification of system and component failure modes and their causes is

subject to the judgement of the system engineers involved in their failure analyses. In

addition, as the size or the volume of operation of a system increases its design complexity

increases and so does the difficulty in identifying design weaknesses (flaws and hazards).

Having ascribed the occurrences of certain failures to design flaws and oversight in hazards

identification, some failures occur due to human factor. However according to Leveson [3],

all human behavior is influenced by the context of the system being interacted with, and

operators of such system are often at the mercy of the design of the automation they use.

Hence, many occurrences of systems failure could be as a result of poor design.

Although the focus of this paper is on software failure analysis using FMEA, first the use

of traditional FMEA is explained using a simple hardware example.

2.1. Failure Modes and Effects Analysis (FMEA)

FMEA is a systematic procedure for the analysis of a system to identify the potential

failure modes, their causes and effects on system performance [4]. A typical system has one

or more potential failure modes. Anticipating these failure modes which is central to the

analysis needs to be carried out extensively in order to prepare a list of maximum potential

failure modes [5]. The causes of these modes could be seen at component levels which

propagate through the system and eventually leading to system failure. To illustrate failure

analysis using FMEA where similar approach is employed in analyzing software failure in

section 5, Figure 1 is here considered. Figure 1 is a simple light system which in this case is

sufficient for the required illustration.

Figure 1 consists of a battery which powers the lamp to glow when the switch is closed.

Port B-Port1 of the battery is connected to the switch through Line 1, and the switch to port

L-Port1 of the lamp through Line 2. Port L-Port2 of the lamp is connected to B-Port2 of the

battery through Line 3. Assuming the objective of the design of the simple light system in

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

63

Figure 1 is to provide a certain intensity level of glow then its failure mode can exist in

several forms such as no glow, low glow, high glow, intermittent glow, etc. One system

failure mode “no glow” is here considered where the components are analyzed relative to this

failure mode. The FMEA analysis is presented in Table 1.

Figure 1. Simple Light System

Table 1 – Basic FMEA Analysis of Figure 1

Table 1 shows the failure mode being considered for the system and its components. It also

shows for each component the potential causes that lead to the failure mode. Finally it shows

the effects of these potential causes on the system. Among other attributes, a more detailed

FMEA analysis will include preventive or mitigating measures for the potential causes. A

modification of the system design will be based on the mitigating measures and when they are

included in the modification, FMEA is reapplied. This way, FMEA is an iterative process that

is updated as the design evolves [4]. Failure analysis in other fields of engineering using

FMEA is well established. This is however not true in software engineering. In order to

address this, the manner in which software can fail is discussed next.

2.2. Failure in Software

The manner in which software fails differs from that of hardware. Sequel to the fact that

hardware (e.g. in mechanical, electrical and electronics) failure analysis has existed for long,

engineers are accustomed to the failure behaviour of these systems than to software.

Additionally unlike hardware failure, software failure occurs due to systematic faults and in

which case it may be difficult to apply statistical analysis. To understand the analysis of

software failure, it is useful to first look at the definition of three system anomalies; fault,

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

64

error and failure. The definitions of these anomalies are clearly stated in [1] and are here used.

A fault is a weakness or defect in a system while an error is a deviation from the required

function of a system. A failure occurs when a system fails to perform its required function.

These anomalies are not only confined to system level but also to component and subroutine

levels which will eventually affect the system's normal operation. To further clarify these

definitions, a simple example is here considered. Assuming the code (in C++) below is a

function that is intended to return the complete result (including fraction part) of the division

of two integers i.e. if param1 = 3 and param2 = 2 then the result of the division

param1/param2 should give 1.5 and not 1.

double twoIntDivision(int param1, int param2)

{

 return param1/param2;

}

As one would expect, the above function will always return an integer quotient of the

division because the integer division would require a typecast that is same as the function

return type. Thus, this could be a design weakness and therefore it is a fault lurking in the

system. A call to the function with arguments whose division does not evaluate into a whole

number will result into an error; a deviation from the required function. If the evaluation of

this function is used somewhere in the system, for instance in a financial calculation, this

could lead to a system failure; e.g. financial loss. It is also clear that the existence of a fault

will lead to an error when a demand in function is requested from the code segment

containing the fault. The error in-turn causes a system failure. In general, software is

implemented based on its design. Hence, a software failure is the product of a design flaw

(fault or weakness). It is therefore imperative that the design of the software is analyzed for

potential failures right from the infancy stage of the design. This paper addresses the analysis

at the earliest possible architecture level of the software and thus software architecture is

discussed next.

3. Software Architecture

Software architecture refers to a structured conceptual representation of a software system.

Such representation includes different entities, nature of data used and the interactions among

these entities. One goal of software design is to derive an architectural rendering of a system

which serves as a framework from which more detailed design activities are conducted [6].

This implies that an earliest level of software architecture should define the top hierarchical or

modular components of the system that are sufficient to represent the system. The details of

each modular component could then be addressed in further design. Also according to

Pressman [6] the software architecture is not the operational software but a representation that

enables a software engineer to (i) analyze the effectiveness of the design in meeting its stated

requirements, (ii) consider architectural alternatives at a stage when making design changes is

still relatively easy, and (iii) reducing the risks associated with the construction of the

software.

The involvement of a user of the system right from the conceptual view of the system will

help in reducing later adjustments to the design of the system. Hence two levels of

architectural designs can be enumerated; a user and developer level. At the user level, the

design is in the highest possible architectural representation of the system which can easily be

communicated to the user. This way the user can easily point out some design oversights. The

developer level involves a detailed technical representation of each of the modular entities

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

65

found at the user level. Hence the user level provides an insight into the technicalities

required for the system. Example of user level architecture is use case diagram while that of

developer level is class diagram, state diagram, sequence diagram, interaction diagram, etc.

In practice, the choice and number of architectures for a software project is problem specific

and may also rely on developer intuition or experience. Failure analysis should be performed

at all levels of software architecture being considered for a given project. For instance the

topmost level (i.e. level 1) could be use case diagram, followed by class diagram (i.e. level

2), etc as intuitively identified by the software engineer concerned. A failure analysis model

for software architecture is established, proposed and presented in Figure 3.

Figure 3. Failure Analysis Model for Software Architecture

Descriptions of arrows used in Figure 3

A: Perform failure analysis for the current architecture

B: Modify and evaluate system architecture in according with failure analysis

C: Proceed to the next architecture level

At each architecture level of design, failure analysis is performed and where design

weaknesses or flaws are indentified the system is evaluated for quality/design

objectives taking into account the proffered mitigations (interventions). If j is the j-th

architecture level, then the software design proceeds to architecture level j+1 once

failure analysis has been performed and the system architecture has also been modified

and evaluated at level j. This paper focuses on the failure analysis of a software system

at the user level architecture and the brake by wire system is here considered as a case

study to demonstrate the applicability of FMEA on the user level architecture.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

66

4. Case Study – Brake by Wire System

The brake by wire (BBW) system in the context of automotive systems refers to the

concept where mechanical or hydraulic system is replaced by electric/electronic systems [7].

The electric/electronic systems are computer controlled and hence are made up of embedded

software. Embed of software offers the possibility to introduce functions that were either

originally impossible or costly with mechanical or hydraulic system components. It also

reduces size and weight. However, with the brake by wire system still being new, a

mechanical/hydraulic system may be used in conjunction with the brake by wire system. This

can be used as a backup to strengthen safety measures. Two types of brake by wire systems

exist, the wet brake by wire and the dry brake by wire system [8]. The former is a

combination of the electronic brake system and the hydraulic brake system as a backup while

the latter represents systems consisting of electronic brake system where no master cylinder

or hydraulic lines are needed and therefore there is no mechanical backup. Sequel to the focus

of this paper on software failure analysis, the dry brake by wire system is used and

subsequent references to brake by wire will imply the dry brake by wire system. The

challenge of computer controlled systems is that they introduce new modes of failure that is

unfamiliar in hardware failure analysis. To demonstrate the software failure analysis of the

BBW, BBW is first introduced and then its user level software design is presented from

where the analysis is conducted.

The brake by wire system considered in this paper is similar to the one described in

Wilwert et al [9]. The BBW is designed to increase the quality of braking by reducing the

stopping distance. The simple form of the BBW is as shown in Figure 3 and is described as

follows. The BBW consists of a central controlling unit known as vehicle control unit (VCU)

and one brake control unit (BCU) per wheel. The VCU reads as input the braking pressure

applied on the brake pedal. It then processes this pressure to send signal to each BCU about

the amount of braking pressure to be applied on the respective wheels. Each BCU further

processes this signal taking into account wheel conditions in order to establish the needed

amount of braking pressure. One of environmental advantages or friendliness of the BBW is

that no braking fluid is necessary [8, 9].

Figure 3. Simple Brake by Wire System

Where: FL-Wheel refers to front left wheel

 FR-Wheel refers to front right wheel

 RL-Wheel refers to rear left wheel

 RR-Wheel refers to rear right wheel

 FL-BCU refers to front left wheel brake control unit

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

67

 FR-BCU refers to front right wheel brake control unit

 RL-BCU refers to rear left wheel brake control unit

 RR-BCU refers to rear right wheel brake control unit

 Data (or signal) channel

5. Analysis and Results

To analyse the BBW system, a use case diagram (i.e. level 1 architecture) for the system

needs to be drawn. This is presented in Figure 4. It consists of an actor (which is a driver) and

15 use cases. The prefixes FL, FR, RL and RR which appear in some of the use cases infer

front left, front right, rear left and rear right. Each of the entities (actor and use cases) of the

use case diagram will be analyzed for software failure. To proceed with the analysis, a system

failure mode needs to be defined. This paper defines a system failure mode referred to as

braking failure. It should be noted that this is different from brake failure in that the term

brake failure may refer to the inability of the brake system to deliver its function on demand.

However, the manner in which the demand is requested may as well count. To this effect

braking failure would mean that one of the following occurs when the brake is applied, (i)

vehicle stops too early, (ii) vehicle stops too late, and (iii) the brake system fails to deliver its

function – implying brake failure as explained earlier. It can be observed that the FL-Wheel,

FR-Wheel, RL-Wheel and RR-Wheel are specialized form of the Wheel use case. Though all

are wheels one cannot ascertain or trust the user that all the wheels will completely be of

same specification. For instance the user may use different tyres, tyre aging may also vary,

etc. For similar reason the BCU consist of specialized BCUs since all operate on their

respective wheels. In accordance with the new ISO 26262 standard for automotive safety, the

analysis could be performed at the software architecture design phase of the “product

development at software level” [10]. The analysis is thus presented in Table 2.

Figure 4. Use Case Diagram of Brake by Wire System

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

68

Table 2 – Software FMEA of BBW

System Failure Mode: Braking Failure

Entity Potential Cause System Effect Mitigation Remark

Driver Brake not

applied – i.e.

omission of

input

No retardation Provision for a

function that can

detect an object

that is in line of

motion will be

helpful. The

detection should

be relative to the

speed of the

vehicle. The

detection can be

done by a smart

sensor. A warning

function should

be called to alert

the driver

This is an

example of a

scenario where

certain safety

measures are

beyond system

control, and the

required

intervention is in

the hands of the

user whom the

system has no

control over [11].

For instance the

driver decides

whether or not to

apply brake

Brake

Pressure

Low pressure

input

Late

retardation

Late retardation

may result into

accident. Similar

to the above, the

possibility of

including a smart

sensor that can

spot object in the

line of motion and

compensate

required pressure

to retard the

vehicle

appropriately will

be helpful

This is a case

where software

failure analysis

informs the

possibility to

modifying and

evaluating the

hardware design

according to the

design objectives.

Software and

hardware failure

analysis team

should therefore

communicate

their results of

analysis to one

another. The

software

implementation

will therefore

need a function

that can detect

low pressure,

speed of vehicle,

object distance,

and another to

generate the

required brake

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

69

pressure. Hence

this is a clear fact

that analysis at

the use case level

will help inform

the next design

level such as class

diagram

High pressure

input

Early

retardation

Early retardation

may as well lead

to accident, for

instance a moving

vehicle behind

may brake late

and run into the

vehicle in its

front. A rear

smart sensor will

be helpful to

detecting the

distance of the

object behind

This is similar to

the above,

however a

function to detect

the high pressure

is required. Safety

design measures

then begins to be

more complicated

as in both low and

high pressure

values the

detection of

object behind and

in front of the

current vehicle is

helpful to be used

as an input to

compensate

required pressure

Omission of

input value

No retardation Any function

developed to

apply the brake

on wheels should

check and ensure

that the brake

pressure is not

null or zero. The

provision for

emergency

braking may be

considered. When

a null or zero

value is detected

the emergency

braking function

would be evoked.

The provision of

emergency or

backup brake

system is the case

in the wet brake

by wire system.

VCU Invalid (out of

range) input

High or slow

retardation

The range of the

brake pressure

value should be

This will entail

the creation of a

function that

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

70

checked before

outputting to the

BCU. When the

value is invalid

and on detecting

an object in the

line of motion, a

configured

braking is

applied. In the

absence of a

detected object,

an emergency

brake should be

activated

checks the

validity of brake

pressure that

arrives at the

VCU. The invalid

input could be

triggered by

external

interference

Omission of

input

No retardation When the brake

pressure to the

VCU is either null

or zero then the

mitigation is same

as above

Omission of input

may occur when a

function in the

VCU is called

without a brake

pressure data.

This could also be

triggered as a

result of external

interference

BCU Invalid input

High or slow

retardation

Same as for the

VCU

The output of the

VCU becomes the

input of the BCU.

If the output of

the VCU is

mitigated as

above, one could

say that there is

no need to

implement checks

for the BCU’s

input. However, it

cannot be

guaranteed that

the value will

arrive at the BCU

in a valid form. It

is therefore

essential that the

BCU implements

its own function

to validating the

input.

Omission of

input

No retardation Also same as for

the VCU

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

71

FL-BCU Reuse(BCU)

Reuse(BCU) Reuse(BCU) As mentioned

earlier these are

specialized form

of the BCU. The

Reuse() is here

used to refer to

adopting the

failure modes and

mitigations for the

use case

appearing in the

parenthesis - “()”.

FR-BCU Reuse(BCU)

Reuse(BCU) Reuse(BCU)

RL-BCU Reuse(BCU)

Reuse(BCU) Reuse(BCU)

RR-BCU Reuse(BCU) Reuse(BCU) Reuse(BCU)

Wheel Non specified

size

Unequal

application of

brake on all

wheels, hence

the effect is

poor

retardation

Before generating

the right amount

of brake pressure

by the BCU, it is

thus necessary

that the BCU

inquires of the

properties of the

wheel concerned.

Such properties

could be size,

pressure, wear,

etc.

This will entail

having a function

that obtains such

properties and

used in

determining the

right brake

pressure to apply

on the wheel

concerned

Worn out tyre

Incorrect tyre

pressure

FL- Wheel Reuse(Wheel)

Reuse(Wheel) Reuse(Wheel) Being specialized

forms of the

Wheel, all these

use cases adopt

the failure modes

and mitigations of

the Wheel

FR- Wheel Reuse(Wheel)

Reuse(Wheel) Reuse(Wheel)

RL- Wheel Reuse(Wheel)

Reuse(Wheel) Reuse(Wheel)

RR- Wheel Reuse(Wheel)

Reuse(Wheel) Reuse(Wheel)

Retardation Number of

wheels that

received brake

request are less

than 4 or none at

all

Poor

retardation

Count of wheels

that receive brake

request should be

made and this

should equal 4.

Any less, then

communication to

the VCU should

be made to re-

issue a configured

braking to

compensate the

deficiency

Such counter

should be re-

initialized after

completion of

each brake to

avoid overflow

i.e. for a vehicle

with 4 wheels, the

count should not

exceed 4

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

72

Reduce

Speed

Failure in the

brake actuator

on wheels

Poor or no

retardation

A provision for a

function that can

read the health of

the brake

actuators for each

wheel will be

beneficial. When

the health is poor,

the driver may be

alerted for

maintenance.

This may involve

the use of a sensor

and a function

that can read the

sensory data.

Stop Failure in the

brake actuator

on wheels

Poor or no

retardation

Same as above Same as above

As mentioned earlier, the outlined mitigating measures could be used to further evaluate

the use case design i.e. to see whether extra use case(s) is or are needed to improve the

system. More interestingly, the development of the next level of architecture such as class

diagram can incorporate the mitigating measures. This could be in the form of class attributes

and methods (member functions) that will implement the prevention of the defined failure

mode. The demonstration of this is however out of the scope of this paper and is left for

further work.

The analysis in Table 2 has shown that hardware design modifications could be informed

by the result of software failure analysis, for instance the introduction of sensors. The analysis

has also shown that functions required to prevent failure can be identified at the user level

architecture. In a further design, these identified functions could be included in the class

diagram of the system.

In a typical system development environment, teams of engineers may be given different

failure modes to work on where firstly each engineer within a team will work independently.

Secondly a collective review and collation in each team is performed and thirdly the work of

all teams is reviewed.

6. Conclusions

Typically, failure modes and effects analysis (FMEA) is used in addressing the failures and

mitigating interventions for hardware systems. It is unclear how FMEA could be used to

analyze software systems. This can be attributed to the difference in the way software and

hardware fail and also since FMEA was developed to analyzing hardware failure. This paper

has investigated the possibility of using FMEA in the failure analysis of software systems by

considering as a case study the brake by wire (BBW) system which is a recent design

consideration in the automotive industry. In both software and hardware systems, failure

analysis should begin from the infancy stage of design through to completion. Therefore this

paper demonstrated the use of FMEA in analyzing software system at the top level software

architecture - use case diagram. The paper then establishes and proposes a failure analysis

model for software architecture. Also, the use case diagram of the BBW was drawn from

where the FMEA analysis of the BBW was performed. The analysis shows that the use of

FMEA to analyzing software systems is possible and that results of the analysis such as

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

73

mitigating interventions would reveal further design considerations to improve dependability

of software systems.

References

[1] N. Storey, Safety-Critical Computer Systems, Addison Wesley Longman , London (1996)

[2] P. Haapanen, and A. Helminen, “Failure mode and Effects Analysis of Software-based Automation Systems”,

STUK-YTO-TR 190, Helsinki, 2002, Available: http://www.fmeainfocentre.com/handbooks/

softwarefmea.pdf , Accessed: (2011) July 3.

[3] N. Leveson, “A New Accident Model for Engineering Safer Systems”, Safety Science (2004) Vol. 42, No. 4,

pp. 237-270

[4] G. Cassanelli, G. Mura, F. Fantini, M. Vanzi, and B. Plano, "Failure Analysis-assisted FMEA",

Microelectronics and Reliability, Vol. 46, Issues 9-11 (2006) pp. 1795-1799

[5] V. Ebrahimipour, K. Rezaie, and S. Shokravi, "An Ontology Approach to Support FMEA Studies", Expert

Systems with Applications, Vol. 37, Issue 1 (2010) pp. 671-677

[6] R.S. Pressman, Software Engineering: A Practitioner's Approach, 5th Ed, McGraw-Hill Series in Computer

Science, New York (2001)

[7] P. Sinha, “Architectural Design and Reliability Analysis of a Fail-Operational Brake-by-Wire System from

ISO 26262 Perspectives”, Reliability Engineering & System Safety, Vol. 96, Issue 10 (2011) pp. 1349-1359

[8] H.T. Dorissen, K. Dürkopp, "Mechatronics and Drive-by-Wire Systems Advanced Non-contacting Position

Sensors", Control Engineering Practice, Vol. 11, Issue 2 (2003) pp. 191-197

[9] C. Wilwert, N. Navet, Y.-Q. Song, and F. Simonot-Lion, “Design of automotive X-by-Wire systems,” in The

Industrial Communication Technology Handbook, R. Zurawski, Ed. Boca Raton, FL: CRC (2004)

[10] IDRA, ISO 26262 The merging Automotive Safety Standard [online], Available:

http://www.siliconindia.com/events/siliconindia_events/Softec_Conf_Pune/Shrikant.pdf, Accessed: (2011)

October 21, SiliconIndia Website.

[11] N.G. Leveson, System Safety Engineering: Back to the Future, Aeronautics and Astronautics, Massachusetts

Institute of Technology (2002)

Author

Shawulu Hunira Nggada obtained a B. Tech (Hons) in Computer

Science from Abubakar Tafawa Balewa University, Nigeria and MSc

in Software Engineering from the University of Bradford, UK. He is

currently a PhD student at the University of Hull, UK and working

on multi-objective optimisation of system maintenance. He is also a

Charted IT Professional with the British Computer Society. Some of

his research interests are system dependability, software

engineering, green computing and programming languages.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 1, January, 2012

74

