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SUMMARY AND CONCLUSIONS 
 

A design analysis on system software can be very 
beneficial towards obtaining a highly reliable system.  For a 
system to be reliable, it is important to know how the system 
operates with and without failures to create compensating 
provisions that could increase overall reliability.  Software 
does not “fail” like hardware where there is an object that can 
be examined, analyzed and improved upon.  Software failures 
are abstract and consist of logic errors or program paths not 
intended by the system designers at a specific moment of time.  
Software based systems have been known to produce these 
anomalous, unexpected outputs at undesirable times not due to 
any hardware failures. These unexpected anomalies can be 
classified as Software Sneak Conditions.  To provide full 
coverage in the analyses approach, a Software Failure Modes 
and Effects Analysis (SW FMEA) is also performed to 
examine system effects if functions of the software did not 
operate as intended because of a software failure.  

This paper will introduce the Integrated System Analysis 
(ISA) method of performing a Software Sneak Analysis. The 
ISA process and tools that capture and model the software 
functionally and are then used to perform the SW FMEA.  The 
approach discussed using the ISA tools, Software Sneak 
Analysis and a SW FMEA have been performed and the 
results of one analysis is presented.  

 
1.0    INTRODUCTION 

 
Our approach allows for an in-depth analysis of the system 

before, during and after its’ manufacture.  The baseline 
information available are the manufacturing data for the 
system.  The data items that are generally available are 
schematics, parts-lists, assembly drawings etc., for the 
electronics hardware and “text-file” code listings for the 
software. In all of this list of available information for 
manufacturing the design, none of the it assists in 
understanding the “as-written” software executing within the 
“as-built” hardware.  To uncover any anomalies possibly 
written into the code that may degrade reliability, knowledge 
of every function that it performs, whether intended or not 
intended, is necessary.  How the code operates without 
failures is covered by the Software Sneak Analysis.  How the 
software operates in situations where hardware failures 
produce unavailable input data or events are covered by the 
SW FMEA.  These two analyses can be synergistically 

combined using the ISA methodology and its’ associated 
graphical diagrams discussed in the paper. 

 
2.0  SOFTWARE SNEAK ANALYSIS AND THE 

ISA METHODOLOGY 
 

Software Sneak Analysis has been used in the reliability, 
safety and design verification areas of engineering.  The intent 
of a Software Sneak Analysis is to uncover any unexpected 
conditions produced by the software.  Software Sneak 
Analysis can detect a wide-range of software anomalies even 
though the method for performing the analysis is not 
standardized. The ISA methodology can be this standard for 
Software Sneak Analysis and any other analysis where the 
functions of the system must be examined.  Another important 
note, ISA does allow seamless integration with system 
hardware so integrated analyses are possible without 
developing different tools and approach. 

 
2.1 The History of Software Sneak Analysis 
Software Sneak Analysis was developed in the early 1980s 

by the Boeing Company hardware Sneak Analysis group to 
investigate software logic problems in systems that contained 
simple software controls.  Hardware Sneak Analysis was 
initially developed to discover any unintended functions that a 
system may produce, and/or whether the function is inhibited 
when expected or executed when not expected.  The Boeing 
Sneak Analysis group initially analyzed hardware systems that 
contained logic functions created using relays and diodes, then 
later logic with discrete transistors.  Sneak Conditions 
manifested themselves as unexpected current paths that caused 
the inadvertent behavior.  Electronics technology advanced to 
logic gates and eventually to microprocessors ICs. To discover 
any Sneak Conditions in these and modern systems, Sneak 
Analysis had to be extended beyond just unintended current 
paths into the functions of embedded software.  Thus, the 
basic approach of hardware Sneak Analysis using functional, 
topological diagrams in which clues are applied was extended 
to software code.  Later, it was discovered that the functional 
representations of the system hardware and software used to 
perform a Sneak Analysis were useful for any analysis that 
required knowledge of how the system operates.  Therefore, 
the Sneak Analysis tools, called Network Trees, Network 
Forests (for hardware and integrated analyses) and specifically 
for software, a Program Operation Diagram (POD) were 
combined into what is now called ISA or Integrated System 
Analysis. 
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2.2  The ISA Process and Tool Building 
The ISA tool-building process consists of two phases, 

partitioning the source code and Network Tree/POD 
construction.   

 
2.2.1  Partitioning the Source Code 
In partitioning, the software code is separated by function.  

Initially, partitions are placed at each module since it is 
assumed that each module performs a specific function. 
However, new partitions can be added during clue application 
once discovering that a module contains more than one 
function.  All the executable software (minus the comments) is 
partitioned and assigned a Network Tree number that includes 
data files, data tables, declarations, library functions and 
“include” files.  Once all the code is partitioned, the Network 
Trees and POD are constructed.  

 
2.2.2  Network Tree and POD Construction 
The next phase is to construct the tools used by ISA and 

Software Sneak Analysis which are Network Trees and a 
POD.  These diagrams are usually created by a drawing 
(CAD) application on the PC of choice.  A software plotting 
routine is being written to accelerate this process, however, for 
the analysis discussed in this paper, the Network Trees were 
drawn manually.   

 The software code for each partition is depicted 
functionally where order of execution flows top to bottom, 
conditionals are represented as branches, and loops depicted 
with lines showing the loop’s starting and end point.  If a 
function or macro is called by the Network Tree using a label 
or function call, a cross-reference to the calling Network Tree 
is placed next to the instruction.  Most software         
languages use these basic elements for logic flow and special 
symbols can be created for syntax that does not conform to 
these properties.  However, there has not been a language that 
cannot be represented in Network Tree flow symbols and all 
major high-level languages such as C, C++, Ada, and Pascal 
have been analyzed and depicted using Network Trees.  Any 
assembly language can also be depicted once the mnemonics 
are classified as either straight line, conditional branching or a 
loop.  Figure 1 shows an example of a Software Network Tree 
from a C language source file with the basic graphical 
elements for program flow depicted. 

While the Network Trees are constructed, variable/label 
cross-reference information is collected from each module 
with the specialized language interpreter application. The 
application extracts all variable names, labels and whether the 
variable and label is being defined or referenced .  This 
information is later concatenated into a global cross-reference 
report once all the Network Trees are constructed.  The report 
lists all the variables/labels represented on an individual 
Network Tree referenced to all other Network Trees where the 
variable/label also appears, followed by a “D” or “R” suffix.   
The “D” or Defined means the variable is assigned a new 
value either by calculation or a direct reassignment.  For a 
label, the “D” is the defining macro Network Tree number or 

module where the actual software exists. The “R” or 
Referenced for a variable indicates that the variable is used in 
other calculations or conditionals, but not reassigned a new 
value within that Network Tree. Referenced labels are the 
routines that call the label’s code during execution.  The cross-
reference report generated from the variable/label information 
are valuable in Clue Application for tracing a variable through 
the software and following code execution created by 
branches or calls to different routines.   

Occasionally, the cross-reference report is resorted within 
the Clue Application phase when encountering look-up and 
jump tables missed during partitioning.  Furthermore, special 
care concerning variable visibility is necessary with object 
oriented languages like Ada and C++. At times, the raw 
variable cross-reference files generated by the specialized 
interpreter during partitioning are hand-edited in a text editor 
to assure proper cross-referencing. Figure 2 shows an example 
cross-reference report. 

The POD is last diagram constructed.  It is similar to a call-
graph and shows the Network Tree hierarchy and the order in 
which Network Trees are called within the hierarchy.  Each 
box on the POD represents a Network Tree (software module 
at the initial partitioning time) stacked in levels where the 
highest level is the first module called during normal run-time 
execution.  Lines are used to connect the boxes that are called 
from the adjoining levels.  The boxes are also arranged left to 
right by the order of when they are called within their level.  
Below each box are more boxes, connected with lines 
containing the Network Tree numbers of the modules that are 
called by the parent module, again arranged in calling 
sequence left to right.  The POD continues in this pyramid 
fashion until all software modules or Network Trees have a 
place in the hierarchy.  Some modules like diagnostic routines, 
Interrupt Service Routines (ISRs), include or data files and 
initialization code do not get called from the run-time 
executive but are executed on-demand or at power-up.  The 
POD represents these modules off to one side with a note 
describing how they are called and any hierarchy these 
routines may have with respect to each other. The POD assists 
in both clue application and management of the analysis, a 
topic that is covered in the Clue Application section of this 
paper.  An example POD is shown in Figure 3 

A Quality Assurance (QA) process is performed to verify 
that all the software code is represented and properly depicted 
on the Network Trees.  The QA process is similar to a drawing 
standard’s QA system and maintained consistency/accuracy 
among all the products. 

 
3.0  SOFTWARE SNEAK ANALYSIS AND THE CLUE 

APPLICATION PHASE 
 

Software Sneak Analysis does not rely on simulation, an 
intermediate language or input-output matrices that attempt to 
model the software. However, it uses the ISA tools that are 
actual software code depicted functionally as Network Trees, 
a set of guidelines to properly analyze the Network Trees, and 
a Clue List of special items to look for that may cause Sneak 
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Figure 1: Typical Software Network Tree 
 

Conditions.   
All the Network Trees are required before clue 

application can begin and used as worksheets for the 
analysis.  Each analyst will place notes on each Network 
Tree conforming to a set of annotation and analysis 
guidelines which assures that any possible issue concerning 
the Network Tree’s data flow, function and purpose within 
the program’s structure have been examined for Sneak 
Conditions. The POD in its’ management role acts as a 
road-map for the analysis, allowing the lead of the analysis 
group to collect the modules or Network Trees by system 
function and assign an entire system function to an analyst.  
The analyst starts at the lowest level of the POD and 
analyzes each Network Tree, moving up a level until 

reaching the highest calling routine then to the right and up 
until all the Network Trees are complete. Other interactions 
between variables and labels on other Network Trees are 
also considered using the POD for execution sequence and 
the sorted variable/label cross-reference reports for 
recognition of where variables are being redefined or 
referenced.  Any Sneak Conditions uncovered are reported 
with other issues logged on the Network Tree and a global 
issues list, shared by all the analysts. Many of these issues 
initially are questions on basic operations of the software 
and are resolved by the analyst as they continue analysis of 
their function.  However, larger issues require interaction 
with different analysts and their respective function and are 
discussed/resolved between the analysts.  If the issue  
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Figure 2: Typical Variable Cross-Reference Report, Network Tree Sort Shown 

 
 
 

  
Figure 3: Program Operation Diagram 
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remains unresolved, it is added to the global issues list and 
resolved later in the Integration phase of Clue Application.  
The detailed Network Tree analysis is performed using the 
cross-reference report and annotation of the Network Trees 
using the guideline presented in section 3.2. 

 
3.1 Initial Cross-Reference Report Analysis 
The variable/label cross-reference report is used initially 

during Clue Application of a Network Tree to discover 
variables/labels that are defined but not referenced or 
referenced and never defined. Undefined labels can lead to 
code branches that are not executable.  Undefined variables 
are occasionally hardware registers that are defined by a 
hardware event in which there is no issue.  Other undefined 
labels or variables are real problems like dead code left within 
the source code for diagnostic purposes and not removed, or 
functions that were disabled and never tested. Review of this 
report also familiarizes the analyst with the Network Tree’s 
function and interactions with the other Network Trees in the 
application.  

 
3.2 Network Tree Annotation Guidelines 
Each Network Tree has a starting point where it is called 

from a higher level routine and an ending point where it 
returns to the calling  (or another) routine.  Most Network 
Trees have straight-line statements, conditional branches and 
loop statements. Every one of these symbols requires a 
different set of questions to be asked with possibly further 
investigation.   The analyst answers these questions as notes 
on the Network Trees to log their findings/steps.  Other 
analysts, the QA, and lead engineer will also review these 
notes to assure a complete analysis.  The following are the 
guidelines for note annotation of a software Network Tree:  
1.  Calling module and how the Network Tree gets 

executed 
2. Basic operations of each straight line instruction (or 

group of instructions), how it affects the overall 
system possibly elsewhere in the system 

3. How each variable is being changed on this tree, 
why, when, and how it effects other modules that 
reference this variable 

4. Each branch path, the conditions on how the branch 
can be executed, and the effects of this branch’s 
execution in the overall system 

5. Loops, how the program gets into the loop and out of 
it.  The overall effects on the system of the loop. Is 
there a way to get stuck in the loop? 

6. Any critical timing issues with other software or 
hardware 

7. Where the Network Tree returns after execution and 
any unexpected return points 

8. Any anomalies discovered by reviewing the Project 
Clue List 

9. Any reportable discrepancies with a detailed 
description 

10. Basic functional description of the Network Tree 

11. All hardware interfaces (if any), their effects on the 
logic flow and function 

Generally, the analyst will use numbered flag notes or 
some style of pointer for this annotation.  The notes can be 
typed on a separate layer electronically in the drawing 
application or hand written on a paper copy of the Network 
Tree for a small project with few analysts.   

 
3.3 The Software Sneak Analysis Clue List 
Step number eight in the Network Tree annotation 

guidelines requires the analyst to review the Project Clue List 
for any further anomalies.  The Project Clue List is a 
compilation of two clue lists, the software general clues and 
specific clues formulated for this particular analysis.  General 
clues apply to all software where the project specific clues 
apply to the particular software language, host processor or 
other issues with the design of the system.  Examples of 
general clues are:  

1 How does the language/compiler handle mixed-mode 
arithmetic?  Will the truncated results of a mixed-mode 
expression effect other routines that reference the variable?  

2. If an array is accessed via a pointer or directly, can the 
array’s index attempt to access data outside the array 
boundaries? Can the pointer be zero or null?  

3. If a hardware read of a discrete event is occurring on the 
Network Tree, is the input debounced?  If not debounced, is it 
read again within the same pass somewhere else in the real-
time loop?   

Project specific clues are generally discovered within the 
language manuals, compiler/linker manuals, the host 
processor’s hardware data sheets, etc and the system 
requirements.  Many of these clues are based on software 
operations that control the hardware.  These operations should 
be examined against the hardware data sheet of the 
microprocessor to assure that the hardware has the correct data 
bits and the proper timing or if there are instances where the 
hardware should not be accessed.  Any warnings or special bit 
operations cited in the compiler/linker manuals or the 
processor’s data sheet should also be added to the project clue 
list.  These clues, especially ones describing proper operation 
of the hardware, are most likely to produce Sneak Conditions 
because hardware/software interface issues are the least 
looked at by the designers (from my experience).   

Interface issues are generally resolved by the project’s 
integration/test team and not by the designers who have 
detailed knowledge of the interfaces.  Examples of some 
project specific clues are:  

1. When using the C or C++ language, assure that 
hardware variables intended to be checked multiple times for 
an event within the same routine are declared “volatile”  

2. When exiting an Interrupt Service Routine (ISR), have 
all the hardware flags, etc. required to reset the hardware for 
future interrupts properly set when exiting the ISR?  Are there 
any exit paths around the reset of these flags?   

3.  Are all variables visible to each other in the arrays? 
Some arrays may not be visible to other software modules due 
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to the memory model that the software is compiled and linked 
under.  

If the conditions described in these clues exist, it is an 
indication that an anomaly or issue may exist.  These issues 
can eventually cause an unexpected event, or Sneak Condition 
to occur after investigating the effects of the anomaly on the 
entire application. 

 
3.4  The Clue Application Integration Phase 
The final step in clue application is the Integration phase 

that is performed after detailed analysis and annotation of all 
the Network Trees is complete. In this important step, the lead 
engineer and QA consider system anomalies uncovered in the 
detailed analysis to assure that they are not or lead to a Sneak 
Condition. All the issues within the global issues list are 
resolved with the analysts.  The Integration phase usually 
uncovers the more elaborate Sneak Conditions that interact at 
a system level and require system knowledge to verify. 

Again, a Quality Assurance (QA) process is performed to 
verify that all the software code was analyzed properly and 
that the notes were useful on the Network Trees.  The QA also 
acts as an analyst to uncover issues across many Network 
Trees and provided a consistent examination of the software. 

3.5 Software Sneak Analysis General Findings 
Software Sneak Analysis has been shown to discover 

endless loops in software, undefined variables, array boundary 
violations via corrupted indexes, unused code, unreachable 
branches in the code, variable limit violations, software that 
does not function with the system hardware, interrupt 
collisions, timing issues with the hardware, mixed mode 
arithmetic errors, contradictory software functions, incorrect 
display and diagnostics messages, errors in measurement and 
computation, and requirements violations.  Software Sneak 
Analysis can uncover anomalies not detectable by Static 
Dynamic or any other software code analyses.  Though the 
static and dynamic analyses are automated and the anomalies 
are initially detected by a computer, these analyses only search 
for specific code and data patterns while some anomalies may 
lie outside these predetermined patterns.  They also require an 
Intermediate Language or IL to be used to process the 
software.  The IL translation process can hide or generate 
anomalous conditions that create nuisance reports.  The ISA 
methodology and Software Sneak Analysis has the ability to 
go beyond these data and code pattern recognition schemes 
and detect functional anomalies.  The ISA tools can also 
integrate system hardware for an analysis of the interfaces and 
external hardware components. 

Some may object to the manual efforts required to perform 
ISA and a software Sneak Analysis, however, the automated 
tools require manual intervention also.  For every anomaly 
report generated by the Static or Dynamic analysis 
application, an experienced analyst must disposition the 
detected issue possibly re-introducing human error.  In my 
experience, many static code analysts that I have interviewed 
mentioned that 2-3% of the issues detected are real, where all 
the others ended up being anomalies created by code 
organization or programming style.  ISA has added QA 

processes at major points to maintain consistency, accuracy 
and to limit the human error possibility in a manual analysis.    

A major advantage of using ISA for a Software Sneak 
Analysis is that the annotated Network Trees are usable for 
any other functional analyses of the system.  Any future 
software upgrades are easier to evaluate and changes to the 
hardware can be assessed with the software.  This advantage 
leads us to our next topic, the SW FMEA. 

 
4.0  SOFTWARE FMEA 

 
A Software Failure Modes and Effects Analysis (SW 

FMEA) can discover many problems such as poor 
redundancy, catastrophic system effects due to malfunctioning 
code or erroneous inputs, insufficient fault detection and 
isolation, etc.  The SW FMWA can also assist in devising 
compensating provisions for control computer failures.   

The technique for performing a software FMEA is similar 
to the hardware FMEA. Each component is failed, as in the 
case of software either a specific variable or module, while an 
assessment of the local and global impacts to the system as it 
functions normally are considered.  Each component (module 
or variable) is assessed one failure at a time and the impacts 
rated on a numerical severity scale.  All the failures and 
associated effects are described and collected on SW FMEA 
worksheets, generally one worksheet per module or variable.  
The numerical severity classifications are tallied and 
catastrophic failures are considered for redesign or some other 
compensating provision to avert the issue.   

To assess the impacts on the software, the annotated 
Network Trees from the Software Sneak Analysis are used to 
assist in understanding the software functions to the 
instruction level.  Thus, the Software Sneak Analysis must 
first be performed.  Two methods exist for performing a SW 
FMEA, the module failure method and variable failure 
method. 
 

4.1 Module Failure Method 
Failing the software on a module level provides the most 

coverage for the SW FMEA.  Each module is failed, i.e., it is 
not processing inputs and outputs, and the impacts on the 
software are assessed using the Network Trees for system 
knowledge.  Many module failures cause the software to not 
do nothing, such as failing the “main” routine in a C program 
or system timers.   However, some of the specialized modules 
in the application that process I/O data and make decisions 
that control hardware are benefited by this analysis.  The 
major shortcoming to the module failure method is that most 
failures produce binary results, either some function totally 
operates or not.  Also, this method assumes the code designers 
created a modular design with one function per module. 
 

4.2 Variable Failure Method 
Performing a SW FMEA on the variable level provides the 

most detailed results on software failures provided that the 
right variables are chosen.  Again, the insight and knowledge 
gained from the Software Sneak Analysis is necessary to 
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choose the variables and assess the impacts when failed.  The 
failure modes of the variable are also a consideration.  If the 
variable is a flag with two states, the failure modes are limited 
to either “1” or “0”.  However, if the variables that are failed 
are byte or word length, then the combination that causes the 
most destructive impacts is required.  

The variable failure method can be tedious and limited if 
too many variables are chosen.  Time could be wasted 
examining variables that could really only fail if a portion of 
memory where the variable is located fails to a specific bit 
pattern.  Therefore, the best variables to fail are based on a 
software function that maps directly to the hardware.  
Variables that represent inputs measured from sensors or 
discrete inputs connected to a hardware events are the most 
useful because these variables can simulate a software failure 
if the associated hardware fails.  After choosing the variables 
to fail, the annotated Network Trees from the Software Sneak 
Analysis accelerate the assessment of the failure’s impacts. 

 
5.0 RESULTS FROM A REAL ANALYSIS USING 
THE ISA TOOLS FOR A SOFTWARE SNEAK 
ANALYSIS AND A SW FMEA  

 
This approach was performed on a micro-controller system 

used in an automotive application.  The software application 
was written in C and contained approximately 6500 lines of 
executable code.  The system hardware was analyzed using 
the ISA tools and integrated with the Software Network Trees.  
Integrated Fault Trees were also constructed using several top-
level events considered critical to the designers. 
 

5.1 Software Sneak Analysis Findings 
The Software Sneak Analysis resulted in 11 Sneak 

Conditions, 4 of which were entirely software and the 
remaining 7, hardware and software.  Out of all of these Sneak 
Conditions, 9 resulted in actual software changes to remove 
the Sneak Condition.  Two of the Sneak conditions produced 
very undesirable results.  One condition caused by improper 
coding within an ISR caused the processor to lock-up, reboot 
and erase any diagnostic codes that may have been set.  All 
hardware outputs were uncontrolled during the reboot period. 
Another Sneak Condition occurred when a hardware switch 
was read directly into the software in two places, 4 mS apart 
within the same pass of the executive routine.  As the switch is 
closed, the electrical signal from the switch contacts are 
bouncing  that could cause the first read to detect a “1” and the 
second read 4 mS later to detect a “0”, creating a contradictory 
software state.  This state caused a branch of code to be 
executed within the improper software mode resulting in 
erasure all the diagnostic trouble codes detected from power-
up.   

Other findings are uncovered from the software Sneak 

Analysis are classified as Design Concerns.  These issues are 
usually violations of good design practice or Sneak Conditions 
that could not be proven.  The analysis resulted in 15 Design 
Concerns with 9 being software related.  Six of these concerns 
resulted in software code changes.  One of the major Design 
Concerns actually explained to the developers a problem they 
were having with code upgrades.  Some of the developers 
were accessing the hardware through predefined data 
structures while others were directly writing a bit pattern to 
the hardware port.  When using the structure, the bits were 
inverted from the direct port write which confused the 
developers. The analysis showed how the structure is inverted 
in memory from the hardware due to a MSB, LSB swap in the 
compiler.  This assisted the developers in future upgrades.  
 

 
5.2 SW FMEA Findings 

The SW FMEA was performed on the module level 
because of time and budget constraints.  The code received 
was not modular enough for any real benefits from a SW 
FMEA thus the results were limited.  The SW FMEA did 
reveal that many functions were placed in the “main” routine 
which violates modular design practices and causes software 
maintenance issues.  Some redundancy issues concerning a 
software mode control function were also addressed.  The 
mode could be switched inadvertently with a single hardware 
failure.  However, no code changes resulted from the SW 
FMEA 
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