
1-4244-2509-9/09/$20.00 ©2009 IEEE

Applying Software Failure Modes and Effects Analysis to Interfaces

Nathaniel W. Ozarin, The Omnicon Group Inc.

Key Words: Interfaces, FMEA, Software FMEA

SUMMARY & CONCLUSIONS

Software failure modes and effects analysis (SFMEA) is
sometimes applied to new mission-critical and safety-critical
system development. This kind of analysis, like its older
cousin Hardware FMEA (HFMEA), tries to determine all
possible types of failure for each component, one by one, and
attempts to predict system-level effects for each failure.
While software variables and classes don’t fail in the sense
that hardware fails, variables do sometimes assume
unexpected values [1] and class methods don’t always perform
as expected.

Every software system includes software and hardware
interfaces. In large system developments, different groups of
people usually develop different parts of the software, with
developers depending on interface requirement specifications
(IRSs) to guide their design. Unfortunately, IRSs are
sometimes like brick walls that separate developers. Since
software designers are naturally most concerned with their
own designs rather than those on the other side of the wall,
there is tremendous potential for unidentified failures across
the interface.

Applying an SFMEA to both sides of the wall is an
essential first step for understanding consequences of failures,
but an analysis that fails to rigorously analyze the interface
can lead to conclusions that are both incomplete and incorrect.
Fortunately, SFMEA techniques can be expanded to include
considerations that apply to any kind of interface. The idea is
to apply a step-by-step analysis sequence to determine what
could go wrong at an interface and the subsequent effects on
the system software. SFMEA that includes thorough interface
analyses provides a more complete picture of system
robustness.

1 INTRODUCTION

SFMEA, like HFMEA, seeks to determine system-level
effects when any single component fails in certain ways. In an
SFMEA, the lowest level component is a variable, and a
higher level component is typically a module or a class. The
relationship between these two software items might
correspond roughly to that between a resistor and a circuit
board in the hardware world. We don’t normally think of
software as something that suddenly and unexpected fails after
extensive testing and field trials in the sense that hardware
component characteristics change over time or fail completely.
Yet, software variables can and often do assume unexpected
values whose system effects, like those in hardware, can range

from benign to catastrophic.
SFMEA, unlike HFMEA, is not a reliability analysis and

does not include failure rates because software components
simply don’t have them. Rather, an SFMEA looks for
possibilities, not probabilities. The possibilities are based on
the assumption that variables – considered one by one, like
components in HFMEA – can assume any value at any time.

Interfaces between software modules present a new set of
potential problems, such as a failure due to unexpected time
delays among sets of incoming data, or a failure due to a bent
connector pin jammed between two other pins that damages
data flow of three signals simultaneously. However,
understanding interface problems can also result in some very
important and meaningful conclusions for improving system
robustness. For example, two related interface signals might
both be updated at 1-second intervals, but with intervals set by
asynchronous clocks. An interface analysis may conclude that
the resulting race condition could cause an occasional loss of
data. With this conclusion, it is possible to change the design
to eliminate the race condition. Traditional SFMEA, on the
other hand, would simply hypothesize that the effected data
has assumed an unexpected value of any magnitude at any
time, which is an essential, but far less useful conclusion.
Since both conclusions are needed, interface analysis becomes
an important supplement to traditional SFMEA.

Moreover, traditional analysis does not require
identification of a failure cause because there are so many
ways a variable can assume an unexpected value. (Traditional
SFMEA sometimes can list a failure cause – for example, “bad
A/D converter,” but relatively few software failures can be
attributed to specific causes.) Interface analysis, on the other
hand, always identifies the failure cause.

2 A CLOSER LOOK AT SOFTWARE INTERFACE RISKS

There are many kinds of software interfaces, some of
which involve hardware. A complex nonstandard interface
might require several pages in an IRS, and a relatively simple
interface such as a software queue that passes data between
software modules may be defined within the executable code
itself (for example, where the code packs data to be sent into a
class known by both sides of the queue). Yet virtually all
interfaces involve development risks because (1) they are
defined and implemented by humans [2], and (2) the
development and final operating environments aren’t the
same. Even where common, off-the-shelf interface hardware
and associated software drivers perform operations based on

international standards, system software problems can still
occur because higher-level considerations effect operations. A
simple example is a bus controller that seems to work
perfectly when parts of system are tested, but very
occasionally runs out of real time when it must handle all of
the system’s bus traffic, resulting in lost data at rare and
unpredictable times. A less common but real example is a
commercial MIL-STD-1553 driver that occasionally caused a
received data message to appear twice due to a bug in the
manufacturer’s software. If you are fortunate, these problems
become known during integration and test, but it is well
known that some problems don’t show up until the system has
been deployed, sometimes with catastrophic consequences.

Causes of software interface problems can be split into
two categories: (1) defective interface definitions, and (2)
unexpected operational performance. The distinction is
important because each has its own set of potential effects, and
a SMFEA that includes a thorough investigation of interfaces
must look for different things in each. For example, an
interface specification that fails to define a valid range for a
data item can result in one kind of system failure, whereas
delays in data reception may cause a different kind of failure.

Not surprisingly, human experience with interface
problems is essential for performing an interface analysis.
Your experience – including what you’ve read and heard
about – tells you what to look for. The following sections
present examples, based on the author’s experience, of what to
look for in the two categories of causes of software interface
problems.

3 DEFECTIVE INTERFACE DEFINITIONS

 There are many kinds of potential problems with interface
definitions. Figure 1 is an example of a software interface
design document for one message word at the bit level.

 First, measurement units or measurement zero points may
be confusing or ambiguous. Some examples: (1) Aircraft
altitude is often measured and conveyed in units of 100 feet,
but the unit of measurement is still feet. (2) Rotation may be
specified in radians, but rotation may range from –π to +π
rather than from 0 to 2π. (3) Units of measurement may be

assumed, with one team assuming meters and another
assuming centimeters, or feet. (4) Different schemes may be
used to represent negative quantities, such as 2s complement,
a sign bit with a positive mantissa, or a fixed offset (as “excess
128”). (5) Time can be measured from different starting
points – time 0 could be last midnight (typical in navigation
equipment), the start of the current year (typical in financial
projects), or some other event. A related risk: If a time
measurement is used in more than one subproject, are
requirements for simultaneity specified? (6) Parameter values
typically change over time. There will be a problem if one
team assumes that a received parameter value is updated twice
a second, but the team supplying the parameter updates it just
once a second.
 Second, interface specifications may contain potentially
confusing verbal descriptions. For example, in a system
where parameters are to be echoed back after reception to
confirm system integrity, the interface document specifies that
a parameter at the interface “shall be ignored” in certain
conditions. One team may reasonably assume that “ignored”
means don’t look at it and don’t return it, but another team
may reasonably assume that “ignore” means don’t act upon it
but echo it back anyway.
 Third, separate design teams sometimes assume that the
other teams will provide established “good practices” in their
designs such as checking invalid parameter values that are
passed across interfaces. This is sometimes a source of major
rework at integration time. For example, one team may
assume that all parameters it receives are checked for validity
by the software that provides them. If that assumption is even
partially incorrect, the result is an unreliable design that could
be catastrophic some day despite extensive system tests. The
opposite sometimes happens: both teams provide data
checking, a redundant and usually wasteful effort that can add
unnecessary complexity to a development. A related item is
the definition of “invalid” for a particular parameter. Is a
parameter with continuous values invalid if its value is outside
a specified range, or is it also invalid if it shows an unrealistic
rate of change within its specified range? Suppose the
parameter is time. Is its value invalid if it fails to increment, if
it jumps, if it overflows, or if it goes backwards?
 There are many other sources of risk in interface
definitions. Examples: (1) Bit order (is bit 00 the MSB or the
LSB?). (2) Bit packing (bit endian vs. little endian machine
assignments. (3) Use of different enumerations with the same
name by different teams that exchange data – for example, in
an enum called Color, red might have a value of 3 in one
team’s code but 5 in another team’s code. Or, one team’s
enum might have included yellow, but the other team’s enum
doesn’t. (4) Use of parameter names with apparently
unambiguous meanings that two teams confidently interpret
differently. (5) Contradictions in a document or contradictions
across two or more documents. A requirement should appear
exactly once and it should be referenced from all other places,
but that is seldom followed in practice. It is common for two
development teams that exchange data to have two different
interpretations of a requirement. The interface SFMEA can
help identify these errors.

 System Status Message Word 2

Name Bit Notes
Health 15 0=Fail, 1=Pass
Mode 14 Note A
 13
 12
Self Test 11 0=Off, 1=On
Time of Validity 10
 09
 …
 00 LSB=0.0078125

 Note A
 000 = off
 001 = standby
 [etc.]

Figure 1 – Example of Software IDD Specification

4 UNEXPECTED OPERATIONAL PERFORMANCE

There are a number of typical problems with interface
operations that sometimes don’t become obvious until late in
the development. This is particularly true for large or complex
systems where many different data exchanges occur and data
in some messages affects processing of data in other
messages.
• Data sometimes arrives late due to asynchronism between

sides of an interface.
• Data sometimes stops arriving due to withholding on the

sending side, an overflowing queue, physical damage, or
other reasons.

• Data is sometimes out of range or changes more quickly
than expected due to problems with sensors or inability to
process data as quickly as it arrives.

• Data is sometimes repeated or lost due to race conditions.
• Data is accepted and processed when it should be ignored

due to system circumstances.
• Data values are occasionally out of range when such

behavior should be expected – due to noise or sensor
behavior – but the receiving software rejects all data as
bad rather than just the occasional bad values.

• Groups of data arrive out of sequence due to processor
overloading or prioritization of data handling.

• Incorrect message lengths, sometimes due to incorrect
message construction.

• Failure to correctly return data as status to sender,
sometimes due to different formats between received data
and the returned status data.

• Failure to take advantage of redundant data for integrity
checking, or misapplying such checks that sometimes lead
to false error detection.

• Interface hardware failures of innumerable sorts, ranging
from failed circuit boards (which may have their own
software problems) to broken or shorted wires. If an
entire connector has been inadvertently left unmated, or
an entire circuit board died or was missing, what is the
effect on system software?

5 WHAT TO LOOK FOR AND IMPLICATIONS

 When examining interface-related software as part of an
SFMEA, understanding the kinds of problems in sections 4
and 5 is a good guide to what to look for. For example, if you
know that out-of-sequence data sometimes happens in the real
world and you can establish that this kind of failure (1) is
possible and (2) has consequences in the system under
consideration, then you might look for sequence numbers
appended to the data and interface software that checks them.
Remember that an FMEA looks for only one failure at a time,
so if a failure occurs that could result in out-of-sequence data,
then the checking software is assumed to be operating without
failure correctly. What the checking software does with this
information is another matter – you obviously must examine
how the checking software works and subsequent system
behavior when it detects the failure.
 Software developers apply many standard techniques for
detection of data failures, many of which can be applied to
interfaces [3]. These are beyond the scope of this paper but

should be understood by SFMEA analysts when examining
interfaces.
 What makes interface an SFMEA different from a
traditional SFMEA – and one of its key values – is the fact
that a “single point failure” in an interface can result in
multiple failures at the software variable level. For example, a
dropped message at an interface may result in loss of a lot of
data that in turn affects lot of variables concurrently, whereas
a traditional SFMEA may consider just one variable “failure”
at a time.

6 UNDERSTANDING INTERFACE DESIGNS

Analysts faced with SFMEA across an interface between two
or more pieces of software must understand (1) the nature or
structure of the interface and (2) what the interface software
does to prevent unexpected events or unexpected data values
from causing an unacceptable system failure. The following
paragraphs describe some common interfaces (see Figure 2).

a. Serial bus message. This interface is usually applicable
to physically remote parts of the system. The interface passes
serial data messages whose format and protocol are generally
defined by a standard, such as Ethernet or MIL-STD-1553.
The standards define criteria for correct data exchanges and
handling of “bad” data. Such standard interfaces offer
established means that help assure data integrity. Data is
generally transmitted via commercial hardware.

b. Shared memory. This interface is applicable to isolated
software functions on circuit boards that physically reside on
the same hardware bus. High-reliability systems typically
assign different blocks of memory to different software
functions. The operating system normally checks for sharing
violations automatically. However, system designers can
designate a block of memory that is available to two or more
software modules for the purpose of fast data exchange. This
technique requires careful system design.

c. Queue message. This interface is applicable to systems
like those that can use shared memory. The technique
involves slower data exchanges but usually with less risk
because the protocol is well defined, the operating system
moves the data for you, and it typically reports delivery errors
(which can be ignored at one’s risk). One piece of software
can send one or more blocks of data in rapid succession to
another without concern about whether the recipients are busy.
The sender typically specifies the data start location, the size
of the data block, and a queue number. A recipient who has
been designated to receive data on that queue number receives
the data block when it has time to check whether any
incoming data is available.
 d. API (Application Programmer Interface). This
interface is applicable to independent pieces of software
executed by the same processor. Here, one developer
produces a module or class that performs specific functions or
services for client software typically developed by another
person who may be located in a different part of the world.
The client calls the API like a function call, usually passing
some parameters as input data. Output data is sometimes
returned in the opposite direction. This kind of interface is
usually simple to set up and use, but there can be risk if the
client doesn’t fully understand the nature of the inputs and

outputs, the limitations of the called service, and its timing.

e. Memory-mapped hardware interface. This interface is
applicable where hardware sensors or controls are accessible
to software as memory addresses. An SFMEA doesn’t
consider hardware failures but it does analyze the effects of
bad data from hardware sensors on the software that processes
it, as well as bad data from software that operates hardware
controls. This kind of interface can be very straightforward
but the analysis may become more complex if the interfacing
software involves activities such as statistical processing,
crosscheck validations among different signals, and critical
timing.

f. Interrupt and ISR (Interrupt Service Routines). This
interface is applicable to hardware devices that cause the
software to stop what it’s doing and jump to a specific task
(the ISR) associated with the device that caused the interrupt.
Upon completion of the ISR, software execution should return
to the previous task. An inherent danger is that the previous
task, upon resumption, may combine intermediate results it
had computed prior to the interruption with results computed
after the interruption. This can produce catastrophic results.
Use of interrupts often becomes complex because systems
typically have many interrupts assigned with different
priorities – meaning that some interrupts will interrupt the
activities of others asynchronously and unpredictably –
making this kind of interface very risky and very hard to
analyze exhaustively. A number of excellent papers have
been written on the subject [4] and analysts who perform an
SFMEA should read and understand them.

Figure 3 summarizes typical activities of these common
software interfaces. Not all activities will apply to any one
interface, but the SFMEA must address them as part of the
overall analysis.

7 SFMEA AT INTERFACES, STEP BY STEP

How should an SFMEA address failure modes at
interfaces, particularly for interfaces between software
modules from independent groups of developers? First, for
the SFMEA to be effective, it must cross the interface by
considering each side of the interface as though it were part of
a single module. To do so, you must obtain required
information from each development team. Next, you must
look for failure possibilities that are not normally considered
in a hardware FMEA, which typically looks at each
component, one at a time, and considers the ways it might fail
and the system consequences of each. If the goal of an
SFMEA is to look at all possibilities of software failure, then
it must examine interface interactions across the interfaces. A
general process for each particular interface follows (Note:
SFMEA process must be tailored to each individual system
under analysis). The steps suggested here will overlap (see
Table 1).

Step 1 is to identify the interfaces that should be in the
SFMEA. This is not a trivial task. First, as with any SFMEA,
only critical parts of a software system should be subject to the
analysis because the effort can involve considerable time and
expense. Unfortunately, identifying critical software and
associated interfaces is difficult because items that are
apparently noncritical can sometimes affect critical items. A
sobering but easily understood example from the hardware

Bus
Controller

 I/F Software
Module 2

 I/F
Software
Module 1

a. Serial Bus Message Interface

Serial
Data Bus

Other
Devices

b. Shared Memory Interface

 I/F Software
Module 2

 I/F
Software
Module 1

Block of
Shared

Memory

Sys
Bus

Sys
Bus

c. Queue Message Interface

 I/F Software
Module 2

 I/F
Software
Module 1

Operating
System

Op
Sys
Call

Op
Sys
Call

d. Application Program Interface (API)

 I/F Software
Module 2

 Software
Module 1

Function Call
Return Info

e. Memory Mapped Hardware Interface

Hardware
Sensors and

Controls

Wires HW to
Sys Bus

I/F
 I/F

Software
Module 1

Sys
Bus

f. Interrupt and ISR Interface

Hardware
Wires Interrupt

Hardware
I/F

 I/F
Interrupt
Service
Routine

Sys
Bus

Figure 2 – Common Types of Software Interfaces

world is Swissair Flight 111, on which a short circuit in the
entertainment system – not normally considered safety critical
– caused loss of the aircraft. The safest approach is to have
the analysis team and the development team jointly determine
which parts of a system are safety-critical or mission-critical.

Step 2 is to examine each interface design to determine

whether all possibilities of data failure – as applicable to the
particular interface under analysis – are even detected. Each
kind off failure listed in Section 4, and many others, can be
detected and handled by common software techniques, but
software designers don’t always think of (or understand) all
reasonable possibilities of failure. Since no one can foresee all
thing that can go wrong, the analysis team should jointly
develop an applicable list of failure modes for each kind of
interface being considered. The lists are living documents and
will be revised as the analysis proceeds. If certain failure
modes are not apparently detected, the analysis team should
alert the development team well before the final report is
prepared. If you think the software developers might have
missed something, pick up the phone!

Step 3 is to examine the handling technique used for each
kind of applicable failure in this interface, and determine the
consequences. Loss of one data value (or message or data
block) may be perfectly benign, but an ongoing loss will
probably affect system performance. (Note that adequate
redundancy may also make the consequence of such failures
“no effect.”) Partial loss of data or late data usually causes
some system consequences and the SFMEA must determine
what they are. Unexpected repeat of data messages (as seen
by the author, due to problems with commercial driver
software for a MIL-STD-1553 interface) may be very
unlikely, but the analysis should address the possibility to
determine system consequences. If the analysis is at the class
or module level, then the analysis team must depend on
information provided by the development team. As noted
above, the analysis will be no more accurate than the
information provided by the developers.

Step 4 is to examine relationships between this interface
and other interfaces, particularly timing relationships. A
module that expects data from two interfaces may fail if the
data exchanges are not correctly synchronized or if one
provides data that is older than the other. Sometimes data is
sent across two or more different interfaces to provide
redundancy. (This is commonly done in critical aircraft
systems.) Assuming that only one failure at a time occurs,
how does receiving software determine a failure and what
does it do with that information? Conversely, and perhaps
more importantly, what happens if the receiving software fails
and unexpectedly declares an error with good data? A well-
designed system with redundant interfaces might also have
redundant software modules to provide greater robustness, but
not all do.

Step 5 is to examine the interface definitions established

for this interface in the interface documentation. The idea
here is look for possible misunderstandings in definitions such
as measurement units, update rates, situations where data may

Interface Hardware Initialization
• Communication I.C. control registers
• Board-level message info

Interface Software
Initialization
• Sockets
• Default data values
• Default control states

Output Data Processing
• Retrieval or reception

from producer
• Validation
• Coding
• Packing
• Transmission
• Checking for errors

I/F
SW

I/F
HW

Software
Module
with I/F

Hardware

Data
and/or

Control

I/F
SW

Software
Module
without

I/F
Hardware

Data
and/or

Control

Input Data Processing
• Checking for reception

errors
• Reception
• Unpacking
• Decoding
• Validation
• Storage/passing to user

Figure 3 -- Typical Software Interface Activities

Step Subject Description

1 Identification of
Critical Interfaces

Identify interfaces relevant to
safety-critical and mission-
critical software.

2
Identification of
Failure Modes for
Each Interface

Develop lists of failure modes
applicable to each interface
under analysis.

3
Determine Software
Error Handling
Techniques

Determine whether and how
software detects and handles
errors.

4
Determine
Relationships Among
Interfaces

Examine dependencies among
data conveyed by separate
interfaces.

5
Examine Interface
Document
Requirements

Look for errors, ambiguities,
inadequate details, and
contradictions that can
mislead designers.

6 Generating the
Report

Develop a worksheet to
summarize findings in a
meaningful way.

Table 1 – Summary of the Software FMEA Process

be irrelevant or ignored, and other possibilities such as those
listed in Section 3. Apparent problems with the interface
documents are another reason to pick up the phone. All
documentation problems should be fixed well before the final
SFMEA report. If the analyst is not satisfied with an
explanation, or believes that an explanation is incorrect, then
the given explanation (and the explainer’s name and date)
should be included in the final report in the “basis of analysis”
section.

Step 6 is to record findings on the worksheet and generate
the final report. A typical hardware FMEA worksheet is a
table of components, and a typical software FMEA worksheet
is a table of variables, methods, or classes. An SFMEA across
a software interface will include entries for components such
as messages, input/output data associated with hardware, and
APIs. Each of these components typically has several failure
modes (for example, “invalid data value(s),” “lateness,” and
“loss of synchronism”).

8 AVOIDING DESCRIPTIVE OVERKILL

Human analysts who produce any kind of FMEA can
easily supply far more detailed failure result descriptions than
necessary for others to understand the system consequences.
This is particularly true for an interface SFMEA, when a
single failure can produce a great number of variables with
unexpected values. For example, an interface problem
causing lost or unreliable control data to a transmitter could
cause many problems when considered individually, but an
adequate description may simply be “inability to control
transmitter” or “transmitter operates autonomously.” If either
description includes the possibility that the transmitter could
radiate, then the failure might be considered a critical failure
as well.

An excellent approach for controlling the details of failure
effect descriptions, and limiting the number of them, is to
maintain all such descriptions in a table or in a database.
There are a number of advantages to this approach.
• Starting with an initial table of system effect descriptions,

analysts can see the desired level of detail and style.
• Descriptions can be categorized and arranged to make it

easier to find the one that’s needed at the moment, or to
ascertain that a new description must be added.

• Putting descriptions in the same place prevents different
people from inventing different ways to describe the same
thing.

• A senior analyst can review new descriptive text as it is
being supplied to assure that the level of detail is no
greater than necessary.

There is merit using the phrase “same as …” because it limits
the number of consequences that systems engineers must
review, and also because it may mean that an error in a certain
type of failure description may need to be corrected in only

one place.

9 WIRING CONSIDERATONS

An SFMEA involving an interface with copper paths
should consider software consequences of short (and open)
circuits because a typical HFMEA doesn’t. In this situation,
the SFMEA should take advantage of a bent pin analysis for
the interface, if a bent pin analysis exists [5]. (The bent pin
analysis should include open wires as failure modes.) The
SFMEA should also consider how a single failure mode of any
electronic component such as a multiplexer or gate array
might affect multiple software variables. A separate
worksheet line should address each such hardware failure
mode, the affected software components, and system
consequences. The general idea, of course, is to consider all
possibilities of failure without viewing a hardware/software
boundary as point at which a particular analysis stops.

REFERENCES

1. N. Ozarin, M. Siracusa, “A Process for Failure Modes and
Effects Analysis of Computer Software,” Proc. Ann.
Reliability & Maintainability Symp, (Jan.) 2003.

2. N. Ozarin, “Lessons Learned on Five Large-Scale System
Developments,” Proc. of the IEEE International Systems
Conference, (Apr.) 2007.

3. G. J. Holzmann, “Conquering Complexity,” Computer,
(Dec.) 2007

4. S. M. Beatty, “Improving Software Safety: Finding the
Defects that Testing and Inspection Miss,” Proc. of the
22nd International System Safety Conference, 2004

5. N. Ozarin, “What’s Wrong with Bent Pin Analysis, and
What to Do About It,” Proc. Ann. Reliability &
Maintainability Symposium, (Jan.) 2008

BIOGRAPHY

Nathaniel W. Ozarin
The Omnicon Group Inc.
40 Arkay Drive
Hauppauge, New York 11788 USA

e-mail: ozarin@ieee.org

Nat Ozarin is a senior engineering consultant at The Omnicon
Group Inc. (www.omnicongroup.com), a company
specializing in reliability and safety analysis for the military,
medical, industrial, and transportation industries. His
background includes hardware engineering, software
engineering, systems engineering, programming, and
reliability engineering. He received a BSEE from Lehigh
University, an MSEE from Polytechnic University of New
York, and an MBA from Long Island University. He is an
IEEE member.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

