

A Software Reliability Methodology Using Software Sneak
Analysis, SW FMEA and the Integrated System Analysis Approach
John H. Craig, Vertex Technologies, Inc, Houston
Key Words: Software Reliability, Software Sneak Analysis, Software Failure Mode and Effects Analysis, Network Trees,
Program Operation Diagram, Integrated System Analysis, Software Analysis

SUMMARY AND CONCLUSIONS

A design analysis on system software can be very
beneficial towards obtaining a highly reliable system. For a
system to be reliable, it is important to know how the system
operates with and without failures to create compensating
provisions that could increase overall reliability. Software
does not “fail” like hardware where there is an object that can
be examined, analyzed and improved upon. Software failures
are abstract and consist of logic errors or program paths not
intended by the system designers at a specific moment of time.
Software based systems have been known to produce these
anomalous, unexpected outputs at undesirable times not due to
any hardware failures. These unexpected anomalies can be
classified as Software Sneak Conditions. To provide full
coverage in the analyses approach, a Software Failure Modes
and Effects Analysis (SW FMEA) is also performed to
examine system effects if functions of the software did not
operate as intended because of a software failure.

This paper will introduce the Integrated System Analysis
(ISA) method of performing a Software Sneak Analysis. The
ISA process and tools that capture and model the software
functionally and are then used to perform the SW FMEA. The
approach discussed using the ISA tools, Software Sneak
Analysis and a SW FMEA have been performed and the
results of one analysis is presented.

1.0 INTRODUCTION

Our approach allows for an in-depth analysis of the system

before, during and after its’ manufacture. The baseline
information available are the manufacturing data for the
system. The data items that are generally available are
schematics, parts-lists, assembly drawings etc., for the
electronics hardware and “text-file” code listings for the
software. In all of this list of available information for
manufacturing the design, none of the it assists in
understanding the “as-written” software executing within the
“as-built” hardware. To uncover any anomalies possibly
written into the code that may degrade reliability, knowledge
of every function that it performs, whether intended or not
intended, is necessary. How the code operates without
failures is covered by the Software Sneak Analysis. How the
software operates in situations where hardware failures
produce unavailable input data or events are covered by the
SW FMEA. These two analyses can be synergistically

combined using the ISA methodology and its’ associated
graphical diagrams discussed in the paper.

2.0 SOFTWARE SNEAK ANALYSIS AND THE

ISA METHODOLOGY

Software Sneak Analysis has been used in the reliability,
safety and design verification areas of engineering. The intent
of a Software Sneak Analysis is to uncover any unexpected
conditions produced by the software. Software Sneak
Analysis can detect a wide-range of software anomalies even
though the method for performing the analysis is not
standardized. The ISA methodology can be this standard for
Software Sneak Analysis and any other analysis where the
functions of the system must be examined. Another important
note, ISA does allow seamless integration with system
hardware so integrated analyses are possible without
developing different tools and approach.

2.1 The History of Software Sneak Analysis
Software Sneak Analysis was developed in the early 1980s

by the Boeing Company hardware Sneak Analysis group to
investigate software logic problems in systems that contained
simple software controls. Hardware Sneak Analysis was
initially developed to discover any unintended functions that a
system may produce, and/or whether the function is inhibited
when expected or executed when not expected. The Boeing
Sneak Analysis group initially analyzed hardware systems that
contained logic functions created using relays and diodes, then
later logic with discrete transistors. Sneak Conditions
manifested themselves as unexpected current paths that caused
the inadvertent behavior. Electronics technology advanced to
logic gates and eventually to microprocessors ICs. To discover
any Sneak Conditions in these and modern systems, Sneak
Analysis had to be extended beyond just unintended current
paths into the functions of embedded software. Thus, the
basic approach of hardware Sneak Analysis using functional,
topological diagrams in which clues are applied was extended
to software code. Later, it was discovered that the functional
representations of the system hardware and software used to
perform a Sneak Analysis were useful for any analysis that
required knowledge of how the system operates. Therefore,
the Sneak Analysis tools, called Network Trees, Network
Forests (for hardware and integrated analyses) and specifically
for software, a Program Operation Diagram (POD) were
combined into what is now called ISA or Integrated System
Analysis.

2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 12 2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium
0-7803-7717-6/03/$17.00 © 2003 IEEE

2.2 The ISA Process and Tool Building
The ISA tool-building process consists of two phases,

partitioning the source code and Network Tree/POD
construction.

2.2.1 Partitioning the Source Code
In partitioning, the software code is separated by function.

Initially, partitions are placed at each module since it is
assumed that each module performs a specific function.
However, new partitions can be added during clue application
once discovering that a module contains more than one
function. All the executable software (minus the comments) is
partitioned and assigned a Network Tree number that includes
data files, data tables, declarations, library functions and
“include” files. Once all the code is partitioned, the Network
Trees and POD are constructed.

2.2.2 Network Tree and POD Construction
The next phase is to construct the tools used by ISA and

Software Sneak Analysis which are Network Trees and a
POD. These diagrams are usually created by a drawing
(CAD) application on the PC of choice. A software plotting
routine is being written to accelerate this process, however, for
the analysis discussed in this paper, the Network Trees were
drawn manually.

 The software code for each partition is depicted
functionally where order of execution flows top to bottom,
conditionals are represented as branches, and loops depicted
with lines showing the loop’s starting and end point. If a
function or macro is called by the Network Tree using a label
or function call, a cross-reference to the calling Network Tree
is placed next to the instruction. Most software
languages use these basic elements for logic flow and special
symbols can be created for syntax that does not conform to
these properties. However, there has not been a language that
cannot be represented in Network Tree flow symbols and all
major high-level languages such as C, C++, Ada, and Pascal
have been analyzed and depicted using Network Trees. Any
assembly language can also be depicted once the mnemonics
are classified as either straight line, conditional branching or a
loop. Figure 1 shows an example of a Software Network Tree
from a C language source file with the basic graphical
elements for program flow depicted.

While the Network Trees are constructed, variable/label
cross-reference information is collected from each module
with the specialized language interpreter application. The
application extracts all variable names, labels and whether the
variable and label is being defined or referenced . This
information is later concatenated into a global cross-reference
report once all the Network Trees are constructed. The report
lists all the variables/labels represented on an individual
Network Tree referenced to all other Network Trees where the
variable/label also appears, followed by a “D” or “R” suffix.
The “D” or Defined means the variable is assigned a new
value either by calculation or a direct reassignment. For a
label, the “D” is the defining macro Network Tree number or

module where the actual software exists. The “R” or
Referenced for a variable indicates that the variable is used in
other calculations or conditionals, but not reassigned a new
value within that Network Tree. Referenced labels are the
routines that call the label’s code during execution. The cross-
reference report generated from the variable/label information
are valuable in Clue Application for tracing a variable through
the software and following code execution created by
branches or calls to different routines.

Occasionally, the cross-reference report is resorted within
the Clue Application phase when encountering look-up and
jump tables missed during partitioning. Furthermore, special
care concerning variable visibility is necessary with object
oriented languages like Ada and C++. At times, the raw
variable cross-reference files generated by the specialized
interpreter during partitioning are hand-edited in a text editor
to assure proper cross-referencing. Figure 2 shows an example
cross-reference report.

The POD is last diagram constructed. It is similar to a call-
graph and shows the Network Tree hierarchy and the order in
which Network Trees are called within the hierarchy. Each
box on the POD represents a Network Tree (software module
at the initial partitioning time) stacked in levels where the
highest level is the first module called during normal run-time
execution. Lines are used to connect the boxes that are called
from the adjoining levels. The boxes are also arranged left to
right by the order of when they are called within their level.
Below each box are more boxes, connected with lines
containing the Network Tree numbers of the modules that are
called by the parent module, again arranged in calling
sequence left to right. The POD continues in this pyramid
fashion until all software modules or Network Trees have a
place in the hierarchy. Some modules like diagnostic routines,
Interrupt Service Routines (ISRs), include or data files and
initialization code do not get called from the run-time
executive but are executed on-demand or at power-up. The
POD represents these modules off to one side with a note
describing how they are called and any hierarchy these
routines may have with respect to each other. The POD assists
in both clue application and management of the analysis, a
topic that is covered in the Clue Application section of this
paper. An example POD is shown in Figure 3

A Quality Assurance (QA) process is performed to verify
that all the software code is represented and properly depicted
on the Network Trees. The QA process is similar to a drawing
standard’s QA system and maintained consistency/accuracy
among all the products.

3.0 SOFTWARE SNEAK ANALYSIS AND THE CLUE

APPLICATION PHASE

Software Sneak Analysis does not rely on simulation, an
intermediate language or input-output matrices that attempt to
model the software. However, it uses the ISA tools that are
actual software code depicted functionally as Network Trees,
a set of guidelines to properly analyze the Network Trees, and
a Clue List of special items to look for that may cause Sneak

132003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

Figure 1: Typical Software Network Tree

Conditions.
All the Network Trees are required before clue

application can begin and used as worksheets for the
analysis. Each analyst will place notes on each Network
Tree conforming to a set of annotation and analysis
guidelines which assures that any possible issue concerning
the Network Tree’s data flow, function and purpose within
the program’s structure have been examined for Sneak
Conditions. The POD in its’ management role acts as a
road-map for the analysis, allowing the lead of the analysis
group to collect the modules or Network Trees by system
function and assign an entire system function to an analyst.
The analyst starts at the lowest level of the POD and
analyzes each Network Tree, moving up a level until

reaching the highest calling routine then to the right and up
until all the Network Trees are complete. Other interactions
between variables and labels on other Network Trees are
also considered using the POD for execution sequence and
the sorted variable/label cross-reference reports for
recognition of where variables are being redefined or
referenced. Any Sneak Conditions uncovered are reported
with other issues logged on the Network Tree and a global
issues list, shared by all the analysts. Many of these issues
initially are questions on basic operations of the software
and are resolved by the analyst as they continue analysis of
their function. However, larger issues require interaction
with different analysts and their respective function and are
discussed/resolved between the analysts. If the issue

X:12

X:12

glb_mode=4
mtr_ctl=mtr_ctl+1
mtr_ctl_flg=ON

void mtr_cntl (void)
{

if(mtr_ctl>3)

<=3 >3

if (mtr_ctl <-3)

<-3>=-3

{

{

}

}

}

{

rate_tmr --
mtr_pos_flag=FALSE

glb_mode=0

rate_tmr=rate_tmr+2

mtr_latch=ON
mtr_latch=OFF

glb_mode=5

}

for (i=0; i<ARRAYSIZE, i++)

MTRRATE(i)=RATETABLE(i)+rate_tmr

last_rate= RATETABLE(i-1)

mtr_pos_flag=TRUE

rate_tmr=RATEINIT

mtr_cntl_flag=OFF

MTRPOS(i)= MTRRATE(i)+last_rate

glb_mode=1

M
ot

or
 R

at
e

Co
nt

ro
l

R
A

M
S

20
03

1
of

 1
14

Network Tree
Number

Network Tree
Title

Cross-reference to
calling routine

in-line statements

NT
C

C
A

NT
C

QA

CA
 Q

ASI
GN

AT
UR

ES
D

AT
E

IC
A

Q
A

IC
A

Re
v.

NE
T

W
O

R
K

T
R

EE
 N

O
.

SH
E

E
T

PR
O

JE
C

T
TI

TL
E

AB

8
7

6
5

4
3

2
1

8
7

6
5

4
3

2
1

CD

Ve
rte

x
Te

ch
no

lo
gi

es
, I

nc
.

H
ou

st
on

, T
X

w
w

w
.

v
e

rt
e
x

t
e

c
h

n
o

lo
g
i

e
s

.
n

e
t

ABCD
Conditional
statement and
branches

Loop statement

Cross-reference to
the routine the NT
returns to

Conditions for
this branch

 2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 14

Figure 2: Typical Variable Cross-Reference Report, Network Tree Sort Shown

Figure 3: Program Operation Diagram

Mnemonic name Module Name
Mnemonic

Type XrefsNT#
D=defined R=referencedL=Label V=Variable

last_rate

MTRRATE

ARRAYSIZE

mtr_pos_flag

TRUE

MTRPOS

i

rate_tmr

mtr_latch

mtr_ctl

mtr_cntl

FALSE MTR_CNTL

14 V

10R

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

MTR_CNTL

14

14

14

14

14

14

14

14

14

14

14

V

V

V

L

V

V

V

V

V

V

V

10R, 10D,19D

4R,6R,7R,10R,18D

6D,6R,11D,11R,12D,12R

10R, 12D,12R

1R, 5R,6R,17R

8D,8R,10D,10R,11D,11R

9D,9R,13D,13R,15D,15R,18D

5R,9D,9R,13D,13R,15D,15R,18D

3R,3D,6D,9D,9R,10D,10R,10D,18D

2D,2R,16D,16R

4R,6R,7R,10R,18D

NTC

CA

NTC QA

CA QA

SIGNATURES DATE

ICA QA

ICA

Rev.

NETWORK TREE NO.SHEET
PROJECTTITLE

A

B

8 7 6 5 4 3 2 1

8 7 6 5 4 3 2 1

C

D

Vertex Technologies, Inc.
Houston, TX

www.vertextechnologies.net

POD1Program Operation Diagram 1 of 1RAMS2003

BOOT_LDR
NT5

HW_INIT
NT6

SW_INIT
NT7

NMI
NT4

MTR_LMT
NT3

TIMER RATE_READ
NT2NT16

MAIN

NT1

SWITCHES
NT8

READ_PRT

NT11

DEBOUNCE

NT10

GET_POS
NT9

RD_AD
NT13

INTPLTE
NT15

MTR_CMD
NT12

MTR_CNTL
NT14

WRITE_PRT

NT17

INTERRUPT SERVICE ROUTINES
INITIALIZATION

NT18 NT19
GLOBAL DATA

INCLUDE FILES

152003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

remains unresolved, it is added to the global issues list and
resolved later in the Integration phase of Clue Application.
The detailed Network Tree analysis is performed using the
cross-reference report and annotation of the Network Trees
using the guideline presented in section 3.2.

3.1 Initial Cross-Reference Report Analysis
The variable/label cross-reference report is used initially

during Clue Application of a Network Tree to discover
variables/labels that are defined but not referenced or
referenced and never defined. Undefined labels can lead to
code branches that are not executable. Undefined variables
are occasionally hardware registers that are defined by a
hardware event in which there is no issue. Other undefined
labels or variables are real problems like dead code left within
the source code for diagnostic purposes and not removed, or
functions that were disabled and never tested. Review of this
report also familiarizes the analyst with the Network Tree’s
function and interactions with the other Network Trees in the
application.

3.2 Network Tree Annotation Guidelines
Each Network Tree has a starting point where it is called

from a higher level routine and an ending point where it
returns to the calling (or another) routine. Most Network
Trees have straight-line statements, conditional branches and
loop statements. Every one of these symbols requires a
different set of questions to be asked with possibly further
investigation. The analyst answers these questions as notes
on the Network Trees to log their findings/steps. Other
analysts, the QA, and lead engineer will also review these
notes to assure a complete analysis. The following are the
guidelines for note annotation of a software Network Tree:
1. Calling module and how the Network Tree gets

executed
2. Basic operations of each straight line instruction (or

group of instructions), how it affects the overall
system possibly elsewhere in the system

3. How each variable is being changed on this tree,
why, when, and how it effects other modules that
reference this variable

4. Each branch path, the conditions on how the branch
can be executed, and the effects of this branch’s
execution in the overall system

5. Loops, how the program gets into the loop and out of
it. The overall effects on the system of the loop. Is
there a way to get stuck in the loop?

6. Any critical timing issues with other software or
hardware

7. Where the Network Tree returns after execution and
any unexpected return points

8. Any anomalies discovered by reviewing the Project
Clue List

9. Any reportable discrepancies with a detailed
description

10. Basic functional description of the Network Tree

11. All hardware interfaces (if any), their effects on the
logic flow and function

Generally, the analyst will use numbered flag notes or
some style of pointer for this annotation. The notes can be
typed on a separate layer electronically in the drawing
application or hand written on a paper copy of the Network
Tree for a small project with few analysts.

3.3 The Software Sneak Analysis Clue List
Step number eight in the Network Tree annotation

guidelines requires the analyst to review the Project Clue List
for any further anomalies. The Project Clue List is a
compilation of two clue lists, the software general clues and
specific clues formulated for this particular analysis. General
clues apply to all software where the project specific clues
apply to the particular software language, host processor or
other issues with the design of the system. Examples of
general clues are:

1 How does the language/compiler handle mixed-mode
arithmetic? Will the truncated results of a mixed-mode
expression effect other routines that reference the variable?

2. If an array is accessed via a pointer or directly, can the
array’s index attempt to access data outside the array
boundaries? Can the pointer be zero or null?

3. If a hardware read of a discrete event is occurring on the
Network Tree, is the input debounced? If not debounced, is it
read again within the same pass somewhere else in the real-
time loop?

Project specific clues are generally discovered within the
language manuals, compiler/linker manuals, the host
processor’s hardware data sheets, etc and the system
requirements. Many of these clues are based on software
operations that control the hardware. These operations should
be examined against the hardware data sheet of the
microprocessor to assure that the hardware has the correct data
bits and the proper timing or if there are instances where the
hardware should not be accessed. Any warnings or special bit
operations cited in the compiler/linker manuals or the
processor’s data sheet should also be added to the project clue
list. These clues, especially ones describing proper operation
of the hardware, are most likely to produce Sneak Conditions
because hardware/software interface issues are the least
looked at by the designers (from my experience).

Interface issues are generally resolved by the project’s
integration/test team and not by the designers who have
detailed knowledge of the interfaces. Examples of some
project specific clues are:

1. When using the C or C++ language, assure that
hardware variables intended to be checked multiple times for
an event within the same routine are declared “volatile”

2. When exiting an Interrupt Service Routine (ISR), have
all the hardware flags, etc. required to reset the hardware for
future interrupts properly set when exiting the ISR? Are there
any exit paths around the reset of these flags?

3. Are all variables visible to each other in the arrays?
Some arrays may not be visible to other software modules due

16
 2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

to the memory model that the software is compiled and linked
under.

If the conditions described in these clues exist, it is an
indication that an anomaly or issue may exist. These issues
can eventually cause an unexpected event, or Sneak Condition
to occur after investigating the effects of the anomaly on the
entire application.

3.4 The Clue Application Integration Phase
The final step in clue application is the Integration phase

that is performed after detailed analysis and annotation of all
the Network Trees is complete. In this important step, the lead
engineer and QA consider system anomalies uncovered in the
detailed analysis to assure that they are not or lead to a Sneak
Condition. All the issues within the global issues list are
resolved with the analysts. The Integration phase usually
uncovers the more elaborate Sneak Conditions that interact at
a system level and require system knowledge to verify.

Again, a Quality Assurance (QA) process is performed to
verify that all the software code was analyzed properly and
that the notes were useful on the Network Trees. The QA also
acts as an analyst to uncover issues across many Network
Trees and provided a consistent examination of the software.

3.5 Software Sneak Analysis General Findings
Software Sneak Analysis has been shown to discover

endless loops in software, undefined variables, array boundary
violations via corrupted indexes, unused code, unreachable
branches in the code, variable limit violations, software that
does not function with the system hardware, interrupt
collisions, timing issues with the hardware, mixed mode
arithmetic errors, contradictory software functions, incorrect
display and diagnostics messages, errors in measurement and
computation, and requirements violations. Software Sneak
Analysis can uncover anomalies not detectable by Static
Dynamic or any other software code analyses. Though the
static and dynamic analyses are automated and the anomalies
are initially detected by a computer, these analyses only search
for specific code and data patterns while some anomalies may
lie outside these predetermined patterns. They also require an
Intermediate Language or IL to be used to process the
software. The IL translation process can hide or generate
anomalous conditions that create nuisance reports. The ISA
methodology and Software Sneak Analysis has the ability to
go beyond these data and code pattern recognition schemes
and detect functional anomalies. The ISA tools can also
integrate system hardware for an analysis of the interfaces and
external hardware components.

Some may object to the manual efforts required to perform
ISA and a software Sneak Analysis, however, the automated
tools require manual intervention also. For every anomaly
report generated by the Static or Dynamic analysis
application, an experienced analyst must disposition the
detected issue possibly re-introducing human error. In my
experience, many static code analysts that I have interviewed
mentioned that 2-3% of the issues detected are real, where all
the others ended up being anomalies created by code
organization or programming style. ISA has added QA

processes at major points to maintain consistency, accuracy
and to limit the human error possibility in a manual analysis.

A major advantage of using ISA for a Software Sneak
Analysis is that the annotated Network Trees are usable for
any other functional analyses of the system. Any future
software upgrades are easier to evaluate and changes to the
hardware can be assessed with the software. This advantage
leads us to our next topic, the SW FMEA.

4.0 SOFTWARE FMEA

A Software Failure Modes and Effects Analysis (SW

FMEA) can discover many problems such as poor
redundancy, catastrophic system effects due to malfunctioning
code or erroneous inputs, insufficient fault detection and
isolation, etc. The SW FMWA can also assist in devising
compensating provisions for control computer failures.

The technique for performing a software FMEA is similar
to the hardware FMEA. Each component is failed, as in the
case of software either a specific variable or module, while an
assessment of the local and global impacts to the system as it
functions normally are considered. Each component (module
or variable) is assessed one failure at a time and the impacts
rated on a numerical severity scale. All the failures and
associated effects are described and collected on SW FMEA
worksheets, generally one worksheet per module or variable.
The numerical severity classifications are tallied and
catastrophic failures are considered for redesign or some other
compensating provision to avert the issue.

To assess the impacts on the software, the annotated
Network Trees from the Software Sneak Analysis are used to
assist in understanding the software functions to the
instruction level. Thus, the Software Sneak Analysis must
first be performed. Two methods exist for performing a SW
FMEA, the module failure method and variable failure
method.

4.1 Module Failure Method
Failing the software on a module level provides the most

coverage for the SW FMEA. Each module is failed, i.e., it is
not processing inputs and outputs, and the impacts on the
software are assessed using the Network Trees for system
knowledge. Many module failures cause the software to not
do nothing, such as failing the “main” routine in a C program
or system timers. However, some of the specialized modules
in the application that process I/O data and make decisions
that control hardware are benefited by this analysis. The
major shortcoming to the module failure method is that most
failures produce binary results, either some function totally
operates or not. Also, this method assumes the code designers
created a modular design with one function per module.

4.2 Variable Failure Method
Performing a SW FMEA on the variable level provides the

most detailed results on software failures provided that the
right variables are chosen. Again, the insight and knowledge
gained from the Software Sneak Analysis is necessary to

172003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

choose the variables and assess the impacts when failed. The
failure modes of the variable are also a consideration. If the
variable is a flag with two states, the failure modes are limited
to either “1” or “0”. However, if the variables that are failed
are byte or word length, then the combination that causes the
most destructive impacts is required.

The variable failure method can be tedious and limited if
too many variables are chosen. Time could be wasted
examining variables that could really only fail if a portion of
memory where the variable is located fails to a specific bit
pattern. Therefore, the best variables to fail are based on a
software function that maps directly to the hardware.
Variables that represent inputs measured from sensors or
discrete inputs connected to a hardware events are the most
useful because these variables can simulate a software failure
if the associated hardware fails. After choosing the variables
to fail, the annotated Network Trees from the Software Sneak
Analysis accelerate the assessment of the failure’s impacts.

5.0 RESULTS FROM A REAL ANALYSIS USING
THE ISA TOOLS FOR A SOFTWARE SNEAK
ANALYSIS AND A SW FMEA

This approach was performed on a micro-controller system

used in an automotive application. The software application
was written in C and contained approximately 6500 lines of
executable code. The system hardware was analyzed using
the ISA tools and integrated with the Software Network Trees.
Integrated Fault Trees were also constructed using several top-
level events considered critical to the designers.

5.1 Software Sneak Analysis Findings
The Software Sneak Analysis resulted in 11 Sneak

Conditions, 4 of which were entirely software and the
remaining 7, hardware and software. Out of all of these Sneak
Conditions, 9 resulted in actual software changes to remove
the Sneak Condition. Two of the Sneak conditions produced
very undesirable results. One condition caused by improper
coding within an ISR caused the processor to lock-up, reboot
and erase any diagnostic codes that may have been set. All
hardware outputs were uncontrolled during the reboot period.
Another Sneak Condition occurred when a hardware switch
was read directly into the software in two places, 4 mS apart
within the same pass of the executive routine. As the switch is
closed, the electrical signal from the switch contacts are
bouncing that could cause the first read to detect a “1” and the
second read 4 mS later to detect a “0”, creating a contradictory
software state. This state caused a branch of code to be
executed within the improper software mode resulting in
erasure all the diagnostic trouble codes detected from power-
up.

Other findings are uncovered from the software Sneak

Analysis are classified as Design Concerns. These issues are
usually violations of good design practice or Sneak Conditions
that could not be proven. The analysis resulted in 15 Design
Concerns with 9 being software related. Six of these concerns
resulted in software code changes. One of the major Design
Concerns actually explained to the developers a problem they
were having with code upgrades. Some of the developers
were accessing the hardware through predefined data
structures while others were directly writing a bit pattern to
the hardware port. When using the structure, the bits were
inverted from the direct port write which confused the
developers. The analysis showed how the structure is inverted
in memory from the hardware due to a MSB, LSB swap in the
compiler. This assisted the developers in future upgrades.

5.2 SW FMEA Findings

The SW FMEA was performed on the module level
because of time and budget constraints. The code received
was not modular enough for any real benefits from a SW
FMEA thus the results were limited. The SW FMEA did
reveal that many functions were placed in the “main” routine
which violates modular design practices and causes software
maintenance issues. Some redundancy issues concerning a
software mode control function were also addressed. The
mode could be switched inadvertently with a single hardware
failure. However, no code changes resulted from the SW
FMEA

BIOGRAPHY

John H. Craig
Vertex Technologies, Inc.
Address: P.O. Box 591522
 Houston TX, 77259
www.vertextechnologies.net
Email: jhcraig@vertextechnologies.net

John Craig has been Vice President of Vertex Technologies,
Inc. since 1996. He has over 20 years experience performing
many design analyses such as Integrated Sneak Analysis,
FMEA, Integrated Fault Trees, Requirements Traceability and
other custom techniques when in search of an observed system
problem. Mr. Craig has broad experience in the development
of both hardware and software for embedded micro-
controllers and industrial control systems with two patents in
this field. He also has extensive experience repairing
electronic systems providing a unique insight into the “Design
for Reliability” paradigm. He holds a Bachelor of Science
degree in Electrical Engineering from the University of
Houston

18
 2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

