
Compositional Reachability AnalysisUsing Process AlgebraWei Jen YehMichal YoungSoftware Engineering Research CenterDepartment of Computer SciencesPurdue UniversityWest Lafayette, IN 47907AbstractState explosion is the primary obstacle to practical ap-plication of reachability analysis techniques for concur-rent systems. State explosion can be substantially con-trolled by using process algebra to achieve composi-tional (divide{and{conquer) analysis. A prototype toolincorporating process algebra is described. The promiseand problems of the approach are illustrated by apply-ing the tool to an example that incorporates the alter-nating bit protocol as a module.1 IntroductionAmong techniques for analyzing the synchronizationstructure of concurrent systems, enumeration of reach-able states in a �nite-state model (reachability analysis)is attractive because it is simple and relatively straight-forward to automate, and can be used in conjunc-tion with model-checking procedures (e.g., [CES86]) tocheck for application-speci�c as well as general proper-ties. Reachability analysis has been used successfullyin limited domains like simple communication protocols[Sun81]. Application to real systems has been stymiedby combinatorial explosion. This paper describes an ap-proach to controlling the state explosion, and so to mak-ing reachability analysis techniques practical for analy-sis of real concurrent systems.A compositional analysis technique allows one to an-alyze individual portions of a large system and hier-archically compose partial analysis results. Conven-tional reachability analysis techniques are not compo-sitional. Process algebras and process calculi [Mil80,This work was supported in part by the industrial sponsors ofthe Software Engineering Research Center, and by the NationalScience Foundation under grant 9010135-CCR.

Hen88, BHR84, BK84, Hoa85] are compositional byvirtue of commutative and associative laws. Algebraicstructure can be used to devise a compositional reacha-bility analysis technique. This approach overcomes thestate explosion to the extent that one can e�ectively usea congruence relation 1 to simplify partial products ateach stage in the analysis.Outline. The paper is structured as follows. Section 2briey reviews reachability analysis and then processalgebra. Section 3 illustrates the general approach tocompositional reachability analysis with a small exam-ple. A prototype tool for investigating this approachis described, and in Section 4 it is demonstrated byapplication to the alternating bit protocol. The alter-nating bit protocol is then incorporated as a modulein the original example to further illustrate the gen-eral approach and to demonstrate that state explosionis avoided. Modeling issues and the solutions we haveadopted are discussed. Section 5 discusses related workand open problems, and Section 6 concludes.2 Background2.1 Reachability analysisThe term \reachability analysis" is used to describe con-struction of a state-transition model of a system frommodels of individual processes. The composite state-transition model is often called a \reachability graph."These models highlight synchronization structure andabstract away other details of execution. Reachabilityanalysis has been applied to Petri nets, and CSP-likestate machine models, among others [Apt83, Tay83b,Pet81, MR87]. A primary use of reachability analy-sis is veri�cation of properties of the synchronizationstructure of software, e.g., freedom from deadlock, free-dom from starvation, and freedom from dangerous par-1Strictly speaking, a congruence is not necessary for compo-sitional analysis. It is su�cient to have an equivalence relationsuch that p � q implies p k r � q k r. It need not be the case thatp+ r � q + r, for instance.1



allelism. Reachability analysis techniques can also becombined with temporal logic model checking tech-niques [CES86] to check application-speci�c properties.With respect to these properties, reachability analysisprovides the same level of assurance as formal veri�ca-tion.The primary obstacle to practical application ofreachability analysis for detecting faults in the synchro-nization structure of concurrent programs is combina-torial growth in the size of the reachability graph. Thesize of the reachability graph grows as the product of thesizes of individual processes. Moreover, basic complex-ity results [Lad79, Tay83a, Smo84] imply that there isno universally applicable short-cut. A secondary prob-lem is accuracy, since the details suppressed in buildinga �nite-state model may be essential to the correctnessof software. Omitting these details often has the ef-fect of producing spurious error reports, while includingmore detail exacerbates the state explosion problem.Compositionality. Conventional reachability analy-sis techniques are not compositional or incremental. Areachability graph represents a complete, closed system,and is built in a single step. This contributes to the stateexplosion problem and renders the analysis unusable forlarge systems. A compositional reachability analysistechnique must support a divide{and{conquer strategywherein reachability graph representations of subsys-tems can be independently derived and then hierarchi-cally combined to form representations of successivelylarger parts of a complete system. A compositional ap-proach would also be incremental, since changes to onesubsystem would not invalidate the reachability graphrepresentation of another.The most critical advantage of compositionality is asa lever to overcome the state explosion problem. Ifthe reachability graph representation of a subsystem istransformed into an equivalent but simpler graph, thestate explosion problem can be controlled. We mustadmit that this only partly solves the state explosionproblem, since the complexity bounds mentioned aboveimply that we will not reduce the size signi�cantly inthe worst case. Nonetheless we believe that this is canbe an e�ective approach for well-designed systems.2.2 Process algebraProcess algebra is a widely used framework for describ-ing and reasoning about concurrent systems. A va-riety of process algebras and calculi have been pro-posed, among the best known being Milner's CCS[Mil80, Mil89], Hoare's TCSP [BHR84, Hoa85], andBergstra and Klop's ACP [BK84]. Among the better-known attempts to apply process algebra in practiceare the communication protocol speci�cation languagesLOTOS [Bri86] and ECCS [CSF89]. Process algebras

are growing in popularity due to their relative ease ofmanipulation and rich abstraction capabilities.A process algebra consists of a set of action (or event)symbols, a set of operators, and a set of axioms describ-ing properties of the operators. Individual processescan be represented as algebraic expressions involvingsequencing and choice among actions, and systems ofprocesses can be described by expressions involving aparallel composition operator. Axioms asserting equiv-alence among expressions allow one to simplify complexexpressions and also to show that an expression describ-ing an implementation corresponds to an expression de-scribing a speci�cation. In particular, it is possible toshow that an expression involving parallel compositionof processes corresponds to another expression describ-ing non-deterministic sequential behavior.An expression in process algebra can be modeled asa process graph, a rooted directed graph with edgeslabeled by event names. Parallel composition of pro-cess expressions is modeled by a function taking graphsto graphs, and equivalence among process expressions(equality in the algebra) is modeled by an equivalencerelation on graphs. Although a reachability analysissystem works entirely in the domain of graphs, we caninterpret those graphs as models of algebraic expressionsprovided each graph manipulation models a legal oper-ation on the corresponding algebraic expression. Thisis what we will mean when we say that a reachabilityanalysis employs algebraic structure.ACP{�. Bergstra and Klop's Algebra of Communi-cating Processes (ACP) [BK84] is a simple and gen-eral representation for �nite-state asynchronous sys-tems with two-party rendezvous. Baeten and Glabeek'sACP{� [BvG87] is a variation on ACP that further sim-pli�es the process composition operation and makes hid-ing internal details of a subsystem particularly conve-nient. These considerations led us to choose ACP{�as an appropriate process algebra for investigation ofcompositional reachability analysis. Space permits onlya super�cial description of ACP{� here; the interestedreader should refer to [BvG87] and [BK84].In ACP{�, a description of a single process is formedby connecting event symbols together with the sequenc-ing operator `;' and the choice operator `+'. Processesinteract in rendezvous fashion by matching events. Weadopt the notational convention that an uncomple-mented symbol a represents sending a message (or anentry call in Ada), while its complement �a representsreceipt of a message (or an Ada accept). There is onlyone choice operator; internal choice is modeled by mak-ing a commitment with a silent step �, e.g. �;x + �;y.In ACP{� the parallel composition operation `k' isde�ned in terms of two simpler operations, left{merge2
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the status of either of two printers. This service maybe implemented locally, or it may be implemented bycommunication over unreliable lines to a remote server(Figure 1). We may wish to specify that, from the per-spective of a client, behaviors of the remote and localservices di�er only in speed.The remote version of the service may be composedof many processes, perhaps more than can be accommo-dated by a monolithic reachability analysis. Our goal isto suppress details of subsystems when composing. Forinstance, communication in one direction between localstub and remote server may be implemented by a pairof processes following some well-de�ned protocol. If wecan show that their composite behavior is equivalent toa simpler process (e.g., a bounded bu�er), this simplerprocess can be substituted for the original tasks in thenext stage of analysis. Other subsystems would be ag-gregated and then simpli�ed in a comparable manner.Finally, a representation of the remote service would beproduced by composing a few subsystems, and the resultwould be shown to be equivalent to the local version.At no point must we contend with the complexity ofa complete system, so in principle there is no bound onthe size of the system that can be e�ciently analyzed.(In practice, we depend on clean modular decompositionand clever speci�ers to produce subsystems that can bedescribed by interfaces much simpler than their internalworkings.) To achieve this level of divide-and-conquer,we require that our reachability graphs have algebraicstructure.3
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Figure 2: State graph of a; b k �a;�b using (i) conven-tional reachability graph construction and (ii) algebraicproduct operationAlgebraic structure in reachability analysis.Smallmodi�cations to a conventional reachability graphconstruction su�ce to imbue it with algebraic structure.To respect the associative law, it is necessary to considernot only actions taken by the (sub-)system being ana-lyzed, but also the potential for cooperation with exter-nal processes. Consider the trivial system a; b k �a;�b.A conventional reachability analysis will explore onlythe joint actions [a] and [b]. An associative compo-sition operation produces a more complex expression(and graph) capturing the potential for a third processto interact with these. Figure 2 illustrates.This simple example shows that algebraic structurehas a cost; we may generate larger process graphs thanwould be generated by a straightforward reachabilitygraph construction. While producing larger graphs mayseem a step in the wrong direction for overcoming thestate explosion problem, it is the price we must pay forcompositionality. Moreover, with a bit of extra book-keeping, restriction (scope wall) and hiding operationscan minimize the extra growth. Figure 3 gives the sizesof process graphs encountered during analysis of the lineprinter status example of Figure 1.

3.2 A prototype analysis toolWe have constructed a prototype tool to evaluate andre�ne a divide-and-conquer strategy for reachabilityanalysis. This exercise is part of a larger e�ort to con-struct a toolkit (the Concurrency Analysis Tool Suite,or CATS) for analyzing concurrent software, and to em-bed that toolkit in a software development environment[YTFB89]. Initially CATS will be con�gured for anal-ysis of concurrent Ada programs automatically trans-lated into the task interaction graph model devised byLong and Clarke [LC89]. The prototype described hereis designed for rapid evaluation and modi�cation, ratherthan direct incorporation in CATS. The lessons learnedin this e�ort will be used to redesign parts of CATS totake advantage of the algebraic approach.Our prototype consists of an Ada-like program de-sign language, PAL, and a processor for that language.PAL includes the main Ada tasking constructs, and inparticular includes task entry calls with and without theselect/or delay construction, and accept statementswith and without select. Guarded accept alternativesand task initiation and termination are notably absentin the current version. No attempt has been made toincorporate Ada features that are not directly involvedin tasking. In particular, PAL has no packages or pro-cedures.The PAL processor consists of three programs. Twoof these translate PAL code into a set of process graphs(one graph for each task) along with scope informationand analysis directives. The analysis back end buildsup a process graph representation of the whole system.The back end simpli�es partial products using axiomsof ACP-�, and can also test �-bisimilarity of processgraphs. The PAL processor performs these tasks au-tomatically or under user control. The current imple-mentation supports all PAL features described in thefollowing sections.4 ApplicationCompositional reachability analysis using process alge-bra is illustrated in this section by application to an ex-ample. First an application of the PAL processor to thefamiliar alternating-bit protocol is described, and thenincorporation of that protocol in a larger system. Thesizes of process graphs constructed at each step showthat (at least for this somewhat contrived example) anexhaustive analysis can be completed without state ex-plosion. The example is described �rst at a high level,with detailed discussion of modeling issues and their re-lation to features of PAL held till the �nal subsection.4



4.1 Alternating bit protocolThe main features of the Ada-like PAL language andits processor are illustrated by application to the alter-nating bit protocol [BSW69]. The example was chosenprimarily for its familiarity; the alternating bit protocolis a standard example for protocol speci�cation and ver-i�cation systems. Among the many treatments of thisprotocol in the literature, the reader may be interestedin comparing [CES86, SMS82, ACW90, LM87].We write two descriptions of the alternating bit pro-tocol and direct the PAL processor to demonstrate theirequivalence. A black box view of external behaviorserves as a speci�cation for a white box view of its in-ternal workings. The black box view is equivalent to asingle-cell bu�er:generic task ABPMSG: constant;task Client istype MSG Packet is (MSG);entry Result (x: MSG Packet) has no body;end Client;is type MSG Packet is (MSG);var m: MSG Packet;entry Input(x: MSG Packet);beginloopaccept Input(m);Client.Result(m);end loop;end ABP;The meaning of this and the following PAL sourcecode should be clear to readers with some knowledgeof Ada, despite the liberties we have taken with syn-tax (e.g., Ada has no generic tasks). The purposes ofthe more peculiar features are discussed below in Sec-tion 4.3.In the white box view, we model the alternating bitprotocol by a pair of tasks,2 Sender and Receiver. Itis usual to model the communicationmedium by a thirdtask, and indeed we could have done so, but in PAL itis more natural and convenient to account for droppedand scrambled messages by non-deterministic choices inthe Sender and Receiver tasks themselves.generic task ABPMSG: constant;task Client istype MSG Packet is (MSG);entry Result (x: MSG Packet) has no body;end Client;is UNKNOWN: constant;2The communications protocol literature uses the term \task"in the sense of service speci�cation; we use \task" in the sense ofan Ada task, i.e., a process.

ACK, NAK: constant;ZERO, ONE: constant;type Packet is (UNKNOWN, ACK, NAK, MSG);type AB is (ZERO, ONE);subtype ACK Packet is Packet range ACK..NAK;subtype MSG Packet is Packet range MSG..MSG;entry Input renames Sender.Input;task Sender isvar m: MSG Packet;var a: ACK Packet;var bit: AB;entry Input(x: MSG Packet);entry Ack(x: ACK Packet; bit: AB);beginloop�� Phase ZEROaccept Input(m);loopselectReceiver.InPort(m, ZERO);selectaccept Ack(a, bit);if <<packet not scrambled>> thencase a iswhen ACK =>case bit iswhen ZERO => exit;when others => null;end case;when others => null;end case;elsenull;end if;or delay 10;end select;or delay 10;end select;end loop;�� Phase ONE is similar ...end loop;end Sender;task Receiver isvar m: MSG Packet;var bit: AB;entry InPort(x: MSG Packet; bit: AB);beginloop�� Phase ZEROloopaccept InPort(m, bit);if <<packet not scrambled>> thencase bit iswhen ZERO =>Client.Result(m);selectSender.Ack(ACK, ZERO);or delay 10;5



end select;exit;when ONE =>selectSender.Ack(ACK, ONE);or delay 10;end select;end case;elsecase bit iswhen ZERO =>selectSender.Ack(NAK, ZERO);or delay 10;end select;when ONE =>selectSender.Ack(NAK, ONE);or delay 10;end select;end case;end if;end loop;�� Phase ONE is similar ...end loop;end Receiver;beginnull;end ABP;The PAL translator represents the Sender andReceiver tasks by graphs of 14 and 17 nodes,respectively.3 The composition of these graphs initiallyproduces a new process graph of 17� 14 = 238 nodes.Scope structure of the PAL code presents the �rstopportunity for simpli�cation. Entries InPort and Ackare accessible only within task ABP. The PAL trans-lator recognizes this and directs the analysis back endto remove unjoined actions involving these entries (arestriction operation in the algebra). The graph is im-mediately reduced from 238 to 67 nodes, and additionalautomatic simpli�cations using identities in the algebrareduce it to 10 nodes.At this point we instruct the analysis back end toverify the graph by comparing it to the graph rep-resentation of the speci�cation (the black box view).The PAL processor demonstrates equivalent synchro-nization structure by �nding a bisimulation betweenthem. (Veri�cation of value transmission is describedin Section 4.3.) Having completed analysis of the mod-ule, we may substitute the speci�cation graph (2 nodes)for the 10 node process graph.3We will characterize the sizes of process graphs by countingnodes. The number of edges is typically 2{4 times as large.

4.2 Building on: Remote printer statusserviceConsider again the remote printer status service de-scribed in Section 3.1. Having veri�ed that our modelof the alternating bit protocol acts as a reliable chan-nel, we can use it as a component in this larger system.In this manner we can build a complete process graphrepresentation for the remote service and demonstratethat it is bisimilar to the local service.We repeat the composition and simpli�cation stepsas for the alternating bit protocol, working bottom-upthrough a hierarchy of modules. The veri�cation step(bisimulation) is repeated when speci�cations are avail-able (and often enough to prevent uncontrolled growthof the state space). For the remote printer status ex-ample, we provided speci�cations only for the commu-nication channels and for the system as a whole. Wealso inserted scope walls at two additional points to aidthe PAL processor in reducing process graphs. Figure 3shows the hierarchy of modules and the number of nodesin each of the process graphs produced (Scope1 andScope2 being the arti�cially introduced scope walls).The important thing to notice is that the size of thegraphs does not always increase as we move up the tree.4.3 Problems and solutionsOur description of the analysis of the alternating bitprotocol glossed over several di�cult issues, as well asseveral features of PAL with which we address those is-sues. In particular, we must look more closely at howPAL represents data values and data-dependent deci-sions.Internal and external choice. Reachability analy-sis is impractical when data values are modeled in com-plete detail, so schemes for deriving �nite-state mod-els from real programs (e.g., the reduced ow graphsof Taylor [Tay83b] and the task interaction graphs ofLong and Clarke [LC89]) generally ignore data valuesand model data-dependent decisions as internal non-determinism (arbitrary choice). Translation rules forthe core PAL language take the same approach: the if<<packet not scrambled>> statement in the exampleis translated as internal choice and the Ada select istranslated as external choice.Value transmission. Even if we limit our analysis tosynchronization structure, a model that ignores all datavalues may be inadequate. The Sender and Receivertasks illustrate two situations in which some informa-tion about data values must be maintained. We mustdistinguish between the ONE and ZERO bits to accuratelymodel coordination of the two tasks, and we must main-tain some representation of messages to show that they6
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Figure 3: Hierarchy of modules in the remote line printer status example. Numbers indicate the number of nodesin the process graph representation of a module. Scope1 and Scope2 are scope walls that correspond to no naturalmodule; they aid the PAL processor in simplifying graphs. Dotted lines indicate multiple instantiations of identicaltasks.are faithfully transmitted.Value transmission can be modeled by introducing anew event name for each possible value. For instance, ifthere are two possible values of m, then we could replaceaccept Input(m);Client.Result(m);by selectaccept Input_m1;Client.Result_m1;or accept Input_m2;Client.Result_m2;end select;Of course, a user should not be expected to perform sucha transformation at the source level, but this is essen-tially how the PAL processor forms the process graphrepresentation of a task that transmits values of enu-merated types.It is usually desirable to delay the transformation de-scribed above as far as possible. The PAL description ofthe alternating bit protocol is parameterized by a typeMSG, which can be replaced by any set of values. Pa-rameterization shields lower level modules from detailsof their clients and allows them to be independently ver-i�ed. In our example the protocol is instantiated twice,

once for transmission of printer names from client toserver, and once for transmission of printer status fromserver to client. Replacement of MSG by its possible val-ues expands hl channel and lh channel only slightly,from the �nal 2 nodes of ABP to 3, but a larger set ofvalues would cause a correspondingly larger expansionfactor.The veri�cation described in Section 4.1 involveddemonstrating a bisimulation between the implementa-tion of the alternating bit protocol and its speci�cationbefore expanding type MSG into a set of possible mes-sages. In this form only the synchronization structureis veri�ed. To show that the sequence of messages re-ceived is the same as the sequence transmitted, we couldinstantiate the speci�cation task and each task in theimplementation with the actual set of messages before�nding a bisimulation.Better, we can use the property of data independenceintroduced by Wolper [Wol86] to verify correct datatransfer for arbitrary sets of possible messages. We needonly verify the protocol with three distinct values to en-sure correct data transfer with arbitrary sets of values.This veri�cation was performed separately from the ex-ercise described above; the number of nodes producedwas initially 1710, reduced to 197 by restriction, andthen to 26 by identities. The bisimulation demonstratedbetween this graph and a similarly instantiated speci�-cation (4 nodes) fully justi�es using the initial 2 node7



representation in the original analysis.Control variables. Values used for internal controlpresent a slightly di�erent problem. Ignoring them re-sults in an excessively pessimistic analysis. The caseconstruct in PAL is used to branch on speci�c valuesof an internal control variable. The data independenceproperty does not apply to a variable used in a caseconstruct. It is not meaningful to parameterize a taskby a variable used in this manner, since its behaviordepends on the exact value of the variable. In fact,the case construct has no representation in the algebraand is never directly represented in a process graph; thePAL translator unfolds the process graph structure toeliminate it.Convenience features. The remaining PAL con-structs that do not correspond to Ada constructs wereadded for convenience and e�ciency, particularly giventhe fact that the same language is being used to expressspeci�cations and to describe implementations. Param-eterization of tasks by other tasks (e.g., the Client taskparameter to ABP) is found in other algebraic systems,and is also roughly similar to generic instantiation inAda. The has no body clause instructs the translatorthat rendezvous on a particular entry can be representedby a single handshake rather than a begin/end pair. Ifthis clause were not attached to the Result entry of theClient task parameter to ABP, the process graph wouldhave 3 nodes instead of 2.5 Discussion5.1 Related workReachability analysis techniques of various kinds havebeen around at least since the 1960's, and attempts tocontrol state explosion are nearly as old. The most com-mon approach in practice is to generate only a sample ofthe complete state space of a model, which amounts toa kind of testing. Here we mention only a few closely re-lated strands of research regarding process algebra andcompositionality.LOTOS and ECCS. LOTOS [Bri86] and ECCS[CSF89] are extended versions of Milner's CCS [Mil80].Both were developed for speci�cation and veri�cation ofcommunication protocols, but are similar in broad out-line to the PAL system described here. ECCS is similarto LOTOS and is provided with a complete algebraicaxiom system. LOTOS is used primarily as a speci-�cation and prototyping language, while the veri�ca-tion methodologies associated with ECCS are primarilymanual proof and simpli�cation.

LOTOS and ECCS are semantically rich speci�cationlanguages. PAL is closer to a programming language(Ada), not only in surface syntax but in the way issueslike scoping are handled. LOTOS and ECCS provideexplicit hiding operations, whereas PAL implicitly hidesinternal details at scope walls. This is appropriate be-cause the purpose of PAL is to investigate strategies forreachability analysis of real programs.ConcurrencyWorkbench. The Concurrency Work-bench [CPS91, CPS90] supports a variety of manipu-lations of process graphs, including both bisimulationchecking and more satisfactory (but more expensive)preorder checking. Although the Workbench does notdirectly address issues of modular veri�cation of largesystems (for instance, it too requires explicit hiding op-erations), it does provide a broad and well-integratedset of veri�cation capabilities. One can envision replac-ing most graph manipulations in the PAL processor byinterfaces to the Workbench or a similar analysis engine.Petri net models. Mandrioli et al. [MZGT85] de-scribed a translation from Ada tasking programs toPetri nets as a way of giving a precise semantics toAda tasking, and Shatz et al. [SMBT90] have used asimilar translation to take advantage of existing Petrinet analysis tools. The theory and particularly thetools associated with Petri nets are more mature thanprocess algebras, but conventional Petri net reachabil-ity analysis is not compositional (construction of thereachability graph of a net is not a commutative andassociative operation). Recently �rst steps have beentaken toward providing Petri nets with algebraic struc-ture [MM90, Win87].SPANNER. SPANNER [ACW90] is a reachabilityanalysis tool for cooperating processes based on selec-tion/resolution (S/R) model. In contrast to the two-party rendezvous in PAL, multi-party cooperation inthe S/R model makes it relatively easy to instrumenta model with \monitor" processes. Monitor processescan carry fairness assumptions and fairness obligationsin the form of states that must appear in�nitely oftenin each fair history. While the S/R model has some al-gebraic structure (composition of processes is modeledas a tensor product), the analysis described in [ACW90]does not exploit it to control state explosion.PAL uses an algebraic identity of ACP-� to expressa simple fairness assumption, but this is less exiblethan the approach described in [ACW90]. In principle itshould be possible to adapt the methods of SPANNER,but this has not been attempted yet.Compositionalmodel checking. Clarke, Long, andMcMillan have given very general rules for showing that8



reducing one state transition model to another (as bya bisimulation) preserves properties expressed in a pro-gram logic [CLM89]. This framework is particularly at-tractive if one wishes to specify a system by a combina-tion of process algebra (perhaps disguised as a program,as in PAL) and temporal logic.Symbolic model checking. In many cases a sym-bolic representation of a transition relation is far morecompact than an explicit enumeration of nodes andedges in a process graph. Burch et al. [BCM+90] haveused binary decision diagrams (BDD) to combine sym-bolic representations of �nite-state processes with for-mulas in the �-calculus, which in turn can representformulas of propositional temporal logic. The symbolicform of model checking is in principle subject to thesame complexity bounds as conventional reachabilityanalysis, and the practical complexity is very sensitiveto the choice of BDD encoding, but symbolic modelsof digital hardware systems with over 1020 states havebeen constructed and checked. The symbolic approachretards state explosion but does not entirely avoid it;beyond some limit even very clever symbolic encodingswill require a divide and conquer approach.Real-time issues. Our analysis approach ignores realtime issues. All delays are modeled using the inter-nal � action, which means rates of progress are treatedas being entirely unpredictable. In the PAL constructor delay N , the value of N is ignored. Liu and Shya-masundar [LS90] have recently described a reachabilityanalysis technique that does explicitly take time intoaccount. Their model is essentially synchronous; bothactual execution and waiting are considered as eventsthat take measurable time. The additional state explo-sion that would be expected by adding time to the modelis controlled somewhat by adopting an unrealistic \max-imum parallelism" model, in which each process has itsown processor.5.2 Future work and open problemsA chief limitation of PAL is that it does not support in-duction over the number of (identical) processes. Bisim-ulation is too �ne an equivalence relation for inductionin practical cases such as arrays of tasks or a boundedbu�er of arbitrary size. Failure equivalence [BHR84] (ortesting equivalence [Hen88]) is better suited to supportinductive reasoning, but expensive to test [KS90] andpoorly suited for reasoning about fairness. Since thereis a natural hierarchy of equivalence relations for pro-cess algebras [Bro83], a possible direction for extendingPAL is to support multiple equivalences with di�erentgranularity.The PAL processor currently models value transmis-sion by replacing values with unique actions. This is ac-

ceptable for small value domains and for verifying mod-ules with the data independence property characteristicof communication protocols, but it is impractical formore general classes of programs. In future we intendto investigate modeling value transmission directly inthe underlying algebra.The PAL processor currently maintains dual descrip-tions of a program to be analyzed (one serving as spec-i�cation for the other), but our experience reveals aneed for better management of the correspondence be-tween speci�cation hierarchy and implementation hier-archy. We at �rst naively believed that the two hierar-chies could mirror each other, but it is now clear that amore sophisticated correspondence and better supportfor planning an analysis strategy is required.We intend to modify a toolkit for analyzing concur-rent programs to use the compositional analysis ap-proach described here. This will raise some additionalproblems, among them maintaining a clear associationbetween the results of analysis and the original sourcecode through several passes of rewriting. Additionallywe must give more thought to suitable speci�cation for-malisms. Currently our CATS tools [YTFB89] supporttemporal logic model checking, whereas the algebraicapproach suggests using a single formalism for speci�-cation, design, and implementation.6 ConclusionState explosion is the primary obstacle to practical ap-plication of reachability analysis for detecting faultsin the synchronization structure of concurrent pro-grams. Conventional reachability analysis techniquesare global, but compositionality can be achieved by im-posing algebraic structure on the reachability graph con-struction. The additional cost of representing unjoinedactions in process graphs is more than repaid by oppor-tunities for applying reductions.We have illustrated the compositional, divide-and-conquer approach by application to an example incorpo-rating the alternating bit protocol as a module. Exhaus-tive analysis (verifying equivalence to a simpler speci�-cation) was accomplished without cumulative growth inthe state space.Although work remains to bring reachability analy-sis techniques to a state of practical utility, the stateexplosion problem need not be an absolute barrier toexhaustive analysis of realistic software systems.
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