
1

A Holistic Approach to Trustworthy Software

Ian Bryant, SSDRI, UK (ian.bryant@ssdri.org.uk)

Keywords: Safety, Reliability, Availability, Resilience,
Security

Abstract
Efforts in improving the overall quality of information and
communications technology (ICT) systems have historically
tended to cluster into a series of stovepipes, with the two
major axes tending to be around Safety and Security. This
paper summarises the ongoing UK public-private initiative to
produce a consensus framework for trustworthy software
which can be applied to all domains.

1 Introduction
Software forms a fundamental part of any information and
communications technology (ICT) system, and of many other
environments, such as Industrial Control Systems (ICS),
which would not necessarily consider themselves to be part of
the ICT arena.

The predictable and correct operation of software is therefore
a fundamental need for many communities, yet few of these
deployment environments have any intrinsic understanding of
the need for trustworthy software, nor do they enshrine the
types of good practice that will inherently produce
trustworthy software.

2 Scope
A challenge to the production of trustworthy software arises
from its pervasive nature and consequent difficulties in
delineation.

2.1 Software Context

There is an implicit assumption that software is a bounded
entity, typically sitting between a physical layer provided by
hardware and a conceptual layer provided by the human(s)
with which it interfaces. But this approach is overly
simplistic, as illustrated by Figure 1.

Supply

Chain

Physical
Artefacts

Analogue
Electronics Digital Logic Firmware

WetWare

System
Services Applications Control

Networks

Software
Hardware Structured Data

Figure 1

This shows that the software context is blurred in a number of
areas, in particular:

• At the boundary with software, with firmware being
software implemented in hardware, and much digital
logic being hardware designed using software such as
VHDL (VHSIC hardware description language),

• At the boundary with “Wetware” (the human operator),
with the ever growing number of autonomic systems
taking on the control function(s) that have often been
assumed to be performed solely by the operator

• In the case of structured data, such as XML, which can
alter the behaviour of recipient systems

• In the case of network protocols, which can be regarded
as rewriteable definitions, and are in that sense akin to
software

2.2 Lifecycle Context

The question of improving software is hardly new, with
seminal work being done on foundation of the discipline of
Software Engineering over 40 years ago [1].

Yet most discussions on the topic tend to have their context
situated by the terminology used, which typically is centred
around “Software Development” [2].

Yet the lifecyle of software, and the systems with which it is
associated, extends from cradle to grave, as illustrated by
various consensus models such as those from ISO/IEC on
Software life cycle processes [3] and System life cycle
processes [4].

Such lifecycles provide varying degrees of granularity and
often differing terminology for the stages to be considered,
but at the highest level it is important that understanding of
the requirements for trustworthy software be embedded in the
differing communities of interest in software and associated
systems :

• Those who Specify software and/or Systems

• Those who Realise software and/or Systems, which
includes the major sub-communities of Design,
Development, Test, and Commissioning

• Those who Use software and/or Systems

2.3 Requirements Context

The requirements for trustworthy software may arise in two
major and distinct way, both as a Functional Requirements
(FR) which are explicitly evinced by the party or parties

2

requesting the service which is being provided by software, or
as a Non-Functional Requirement (NFR) which are implicit
needed but may not be directly specified by the party or
parties requesting the service which is being provided by
software.

Functional Requirements for trustworthy software are
typically encountered in niche markets where there is a strong
technical bias in the customer community, such as in the
Safety-critical software industry (as exemplified by aviation
flight control systems and nuclear power stations) and the
Secure software industry (for example in the production of
Firewalls).

Non-Functional Requirements, also known as Qualities,
Quality Attributes, Quality Goals, or Constraints, will vary
between stakeholder communities and with implementation
details, but a generic list can be characterized by the
mnemonic “PAGICC QUESTASS”:

• Performance

• ARM (Availability (incl. Resilience), Reliability
(including. Robustness) & Maintainability (including.
Documentation))

• Governance (Legal (including Intellectual Property
Rights), Regulatory, Policy)

• ILS (Integrated Logistic Support incl. Escrow)

• Compatibility (Platforms and Dependencies)

• Cultural Fit (including Reputation and Brand)

• Quality (e.g. Faults Delivered, Fault Removal Efficacy)

• Usability

• Evolution (including. Extensibility / Scalability, PDS
(Post Design Services))

• Standards

• TEA (Training, Education, Awareness)

• Accessibility

• Security (including Data Protection Act (DPA)
compliance)

• Safety

Of these Non-Functional Requirements, trustworthy software
is typically needed in support of Performance, ARM, Quality,
Usability, Evolution, Security and Safety (PAQUESS).

To complete the consideration of requirements, it is also
necessary to consider trustworthiness in respect of Non
Objective Requirements (NOR) - an emergent term being
used to encapsulate consumer preferences typically of form
rather than function (which often give rise to usability
considerations that can have deleterious effects on
trustworthiness) - and Derived Requirements (DR) which are
those design, development or configuration decisions not

arising directly from any FR / NFR / NOR which nonetheless
may impact on trustworthiness.

3 Challenges
The degree on which society is reliant on ICT – and thus
software – is growing all the time.

It is difficult to conceive of any major sector of the economy
in the developed world which is not dependent – often
critically so – on ICT and software. Such dependence
extends into private lives, with figures for the UK in October
2011 showing that over 50% of the population now has a
“Smartphone” (against a backdrop of 80+ million and
growing active mobile phone accounts for a population of
about 62 million people).

This dependence of ICT and software can be expected to
broaden and deepen in the coming years, with a number of
trends already being identifiable to catalyse this dependence
and complicate the problem space, including:

• The move to distributed application platforms and
services (a.k.a “Cloud”)

• The increasing reliance on mobile devices, which
typically rely on lightweight operating systems that have
less inherent controls than the operating systems on
previous generation devices

• A move in business to consumerisation (“Bring-Your-
Own-Device” (BYOD)), and the related issue of
commoditisation in previously closed architectures, such
as industrial control systems (ICS)

• The pressure for ICT consolidation for energy efficiency
(the Low Carbon imperative), predominantly relying on
software based virtualisation

Furthermore, there are significant changes going on in the
way in which software is developed. The historic
assumption was that software would be developed under
engineering-style “waterfall” model, under single
organisational control, but this is now far from the only
approach, with factors such as Agile Development and Open
Source challenging this paradigm.

It should therefore not be surprising that the impact of
software problems is a high cost to the economy: figures
from the US Government National Institute of Standards &
Technology (NIST) indicate that software flaws and
weakness costs ~$60 billion / year to US alone [5], and a
2011 University of Oxford / McKinsey report [6] confirms
the trend in studies over many years [7, 8, 9] that software
remains the major source of IT project failures.

From a UK perspective, a governmental risk analysis of such
factors led to the identification of Cyber-attack and Cyber-
deficiencies as one of the 4 top “Tier One” Risks in the 2010
UK National Security Strategy [10].

3

4 Risk Model
The two main communities within which Software
Dependability has been a focus are Safety and Security,
which approach the issue in slightly different manners.

Intrinsic to both is a concept of Risk Management, using
appropriate countermeasures to reduce the Scalar quantity of
“Risk” to an Acceptable Level, and to maintain that Level
throughout the system Lifecycle, as illustrated at Figure 2.

Figure 2

The focus of Security risk management is on reduction of the
number of deleterious outcomes against the 3 main
information properties of Confidentiality, Integrity and
Availability, and it is therefore of value to examine the
statistics, again from the UK, as to the number of incidents
reported [11], as illustrated at Figure 3.

Figure 3

It is interesting to note that the majority of incidents affect
Integrity and Availability, which are common concerns with
the Safety world.

In fact the distinction between Security and Safety arises from
their differing Adversity models, with the Security
community seeking to address Threats (directed, deliberate,
hostile acts) and the Safety community seeking to address
Hazards (undirected events).

This means that the Security world assumes a deterministic
Threat model which typically ignore Hazards, and is largely
predicated upon characterization of Known classes, if not
necessarily details, of Threat Actor therefore has difficulties
handling the other elements of the KuU model [12], the
Unknown and Unknowable (KuU).

On the other hand the Safety community typically uses
Stochastic models to address Hazards, and usually ignores
Threat.

If taken in the round, therefore it can be seen that the
Adversity modelling techniques are fundamentally blinkered
based upon the perceived Functional Requirement they
address, and if the Adversity model is artificially constrained,
then the Risk management countermeasures (which in the
software realm will include technical approaches such as
Formal Methods and Static Code Analysis) will be similarly
constrained.

Furthermore, by analogy, it is assumed that the treatment of
the Non-Functional Requirements of Performance, ARM,
Quality, Usability, Evolution, Security and Safety
(PAQUESS) will be also suffer from inadvertent blinkering of
approaches.

5 Approach
The challenge therefore is to “bake in” delivery of
trustworthiness in all software, recognising that
implementations may vary with Audiences and Functional /
Assurance Requirements. This is analogous the “Public
Health” approach in the world of medicine: Prevention now
avoids Treatment later.

It is suggested that the optimal approach must be on
establishing Pareto (“80:20”) techniques to making software
better across the board, iteratively using learnings from
specialists domains and interpreting them for the common
good.

This implies that Specification, Realisation and Use of all
software needs to take appropriate cognisance of one or more
of the Facets of Trustworthiness:

• Safety - the ability of the system to operate without
harmful states

• Reliability - the ability of the system to deliver services
as specified

• Availability - the ability of the system to deliver services
when requested

• Resilience - the ability of the system to transform,
renew, and recover in timely response to events

• Security - the ability of the system to remain protected
against accidental or deliberate attacks

4

These Facets of Trustworthiness are an extension of previous
work on Dependability [13], adding Resilience to the
previous set of Facets, and amending the definitions to better
fit the holistic view.

6 Trustworthy Software Framework
Although a plethora of good practice that can inform the
Specification, Realisation and Use trustworthy software has
emerged over the 40+ years since the need for good software
engineering practices was first identified, adoption thus far
has generally been weak.

This weak adoption is a consequence of various factors, with
two major challenges standing out.

Firstly, it can be argued [14] that the “best has become the
enemy of the good”, with adherents from such niche
communities as do have specialist practices (normally driven
by strong Functional Requirements for trustworthy software)
often being reluctant to accept that a Pareto implementation
of a subset of such practices can still produce significant
benefit in other realms.

Secondly, the potential large body of knowledge is – at best –
disjointed, with no easy way to either find such information,
or navigate around such information to find subset
appropriate to the particular need. This is often confounded
by differential, and sometimes conflicting, use of
terminology.

The key to unlocking these barriers to adoption is felt to be
the development and maintenance of a Trustworthy Software
Framework (TSF), which aims to:

• Provide a “meta-ontology” as a neutral linkage between
various domain specific terminologies, Citations,
Methodologies and Information sharing techniques
(CMI)

• Provide multiple levels of abstraction to align with the
needs of different audiences and outputs - for instance
the view of the information required for general
awareness will be much less granular than that for post-
graduate researchers

• Provide ways to access differing sets of information in a
manner appropriate to economic sector, community of
interest or risk profile

This TSF is visualised in Figure 4, and is being validated
against, a number of domains, including but not limited to:

• Safety

• Security

• Dependability

• Resilience

Figure 4

7 SSDRI
It is posited that there would be a significant benefit if the
overall software community could be persuaded to take a
Pareto approach to improving software trustworthiness across
the board, and therefore that some cross-cutting coordination,
support and innovation activity is required to achieve such a
result.

Such an activity needs to be applicable across all sectors of
economic activity, both public and private, and to be effective
should recognize the challenges implicit in globalization,
although there should be measurable benefits from national
level initiatives.

In the UK this recognition led to the creation of the Software
Security, Dependability and Resilience Initiative (SSDRI) in
July 2011 as a public-private partnership, established to:

 “enhance the overall software and systems culture, with

the objective that all software should become designed,

implemented and maintained in a secure, dependable

and resilient manner”.

SSDRI is genuinely cross-sectoral, being governed by a
Steering Committee drawn from the Demand-side (in both
public and private sectors), the Supply-side, and those
producing the Corpus of knowledge, and is operated by the
new Cyber Security Centre (CSC) at De Montfort University
(DMU)

5

7.1. Environmental Shaping

The primary challenge in what is seemingly a technical
discipline – software trustworthiness – is actually a non-
technical issue: to make Stakeholders, in particular senior
decision makers, realize the potential risks that are being
exposed by the currently poor overall state of software, and
the attractions of improving the baseline of trustworthy
software across the board, in addition to the sort of niche
activities (such as Formal Methods and Static Code Analysis)
required for specialist communities like Safety and Security.

7.2. Conceptual Evolution

Although many of the concepts required for software
trustworthiness have long been established, there is still a
need for Conceptual:

Composability and Traceability represents a major challenge,
as most software is an assemblage of subordinate component.
This produces a layer model, as illustrated at Figure 5.

Figure 5

Between each of these layers there are implicating transitional
flows of information about Assertions (↑) and Assumptions
(↓), which can be Positive (+ve) and/or Negative (-ve), yet no
good modelling is currently available for this composition and
tracing challenge.

Linked to the subject of composition is that of understanding
the – potentially globalised- Supply Chain, with Cloud
Computing presenting a Disruptive Challenge

Finally, to aid the composition of software a catalogue of
generic Design and Effects Patterns (i.e. to cover both
Functional and Non-Functional concerns) would significantly
aid the Training of the current workforce.

7.3. Practice Improvement

In “mature” industries (e.g. Aviation Engineering), all
practitioners intrinsically accept responsibility for producing
quality output.

The challenge is therefore to embed software trustworthiness
practices at all levels, so it becomes “part of the Culture”:

• Training of current workforce

• Education of future workforce

• Awareness of all specifiers, producers and consumers

This TEA activity (Training, Education and Awareness)
needs to take a Pareto approach to improving the baseline of
software trustworthiness across the board, with any
community specific needs (e.g. Safety and Security)
addressed as extensions to this baseline.

7.4. Independent Verification

For market segments where a degree of assurance as to
software trustworthiness is desirable, independent validation
is a preferred technique, yet this is only currently adopted in
niche communities such as Safety and Security, and is
typically targeted as High Assurance needs.

An aspiration has been identified for:

• A widely applicable independent Black Box testing
approach for “Due Diligence” needs to address Mass
Market software either with or without specific
Functional Requirements for software trustworthiness

• “Maturity Model(s)” for assurance of software
trustworthiness in the Supply Chain

7.5. International Collaboration

Although there should be measurable benefits from National
level initiatives, to genuinely software trustworthiness this
needs to recognize the challenges implicit in globalization of
the Supply Chain.

7.6. Standards Contribution

Noting Henry Ford’s maxim that “Standardization can be
thought of as the best that you know today, but which is to be
improved tomorrow”, it is highly desirable for all learnings
from software trustworthiness to be formalised through a
widely recognized Standards Development Organisations
(SDO), such as ISO/IEC, ITU-T and ETSI.

8 Conclusions
The historic focus on trustworthy software has typically been
held within niche communities such as Safety and Security,
yet software is so pervasive across all sectors of economic
activity that such a stovepiped approach can no longer be
regarded as acceptable.

The Trustworthy Software Framework (TSF), and the
Software Security, Dependability and Resilience Initiative
(SSDRI) which aims to support and evangelise TSF, is
therefore a vital approach to rectifying the weak adoption of
good software engineering practices, recognising that despite
40+ years having elapsed since a need was first identified,
adoption thus far has generally been weak.

6

Acknowledgements
The support of the UK National Cyber Security Programme
(NCSP) for underwriting the funding of SSDRI and in the
development of TSF is gratefully acknowledge, as is the
support of numerous UK stakeholders across all sectors of
economic activity.

References

[1] P Naur, B Randell. “Report on a conference on
Software Engineering”, NATO Science Committee,
January 1969

[2] J R Harrison, W Whyte. “Secure Software
Development Failures: who should correct them and
how”, TSB Cybersecurity KTN, June 2008

[3] ISO/IEC 12207:2008 Systems and software
engineering -- Software life cycle processes

[4] ISO/IEC 15288:2008 Systems and software
engineering -- System life cycle processes

[5] "The Economic Impacts of Inadequate Infrastructure
for Software Testing", NIST, May 2002

[6] B Flyvbjerg, A Budzier. "Why Your IT Project May
Be Riskier Than You Think", Harvard Business
Review, September 2011, pp. 601-603

[7] B. Boehm, “Software Engineering Economics”,
Prentice Hall, 1981

[8] T. DeMarco, “Controlling Software Projects”, Prentice
Hall, 1982.

[9] “Chaos” Technical Report, Standish Group
International, 1994 et seq.

[10] "A Strong Britain in an Age of Uncertainty: The
National Security Strategy", Cabinet Office Cmd7953,
October 2010

[11] UK Computer Security Incident Response Team
(CSIRT-UK), retrieved 2010-05-20

[12] R E Gomory,”The known, the unknown and the
unknowable”, Sci. Amer. 272 (1995), 120.

[13] I Sommerville, “Software Engineering”, 9th Edition,
Addison-Wesley 2011

[14] Lt Gen Sir E F G Burton KBE, address to SSDRI
Stakeholder Forum, May 2012

	Ian Bryant, SSDRI, UK (ian.bryant@ssdri.org.uk)
	Abstract
	1 Introduction
	2 Scope
	2.1 Software Context
	2.2 Lifecycle Context
	2.3 Requirements Context
	3 Challenges
	This dependence of ICT and software can be expected to broaden and deepen in the coming years, with a number of trends already being identifiable to catalyse this dependence and complicate the problem space, including:
	4 Risk Model
	5 Approach
	6 Trustworthy Software Framework
	7 SSDRI
	8 Conclusions
	Acknowledgements
	References

