
1

FAILURE MODE AND EFFECTS ANALYSIS (FMEA) AND
MODEL-CHECKING OF SOFTWARE FOR EMBEDDED

SYSTEMS BY SEQUENTIAL SCHEDULING OF VECTORS
OF LOGIC-LABELLED FINITE-STATE MACHINES

V. ESTIVILL-CASTRO*, R. HEXEL*, D.A. ROSENBLUETH†

*Griffith University, Brisbane, Australia. {v.estivill-castro,r.hexel}@griffith.edu.au,
†Universidad Nacional Autónoma de Mexico, México City, Mexico. drosenbl@unam.mx

Keywords: Hazard identification, Software safety, Risk
assessment, Safety and systems engineering, Safety cases.

Abstract

Model-Driven Development (MDD) has proven to be a very
powerful tool to produce software for embedded systems that
control sophisticated equipment. It is therefore even more
critical that such software be verified to be correct and to
clearly understand what the safety implications of potential
failures in sensors, actuators or faults of the software itself
are. Using vectors of logic-labelled finite state machines, a
clear semantics is obtained as well as executable models that
provide the benefits that MDD promises. Since we can
perform effective model-checking on these models, we show
in this paper that we can use this to systematize and automate
the failure mode and effect analysis of systems with
embedded software. We illustrate this with two ubiquitous
examples in the literature of model-checking for software in
embedded systems.

1 Introduction

More and more, software for systems (in particular embedded
systems) is being developed under a Model-Driven
Development (MDD) approach. Model-Driven Engineering
provides the capacity to describe behaviour at a high level and
allows direct implementation on many platforms. Software
production using MDD presents numerous advantages.
Hence, more and more systems are using software that was
developed under such an approach. This makes it far more
critical that such software be correct by default. Ensuring that
the software is free of faults is critical, because software
failure can lead to catastrophic failure of machines and
equipment driven by such software. Avoiding this is central to
system safety.

A very successful tool for model-driven engineering of
embedded systems is finite-state machines (FSMs) whose
transitions are labelled with expressions of a common-sense
logic [2]. These are remarkably expressive when compared to
other paradigms for modelling behaviour, such as Petri Nets,
Behavior Trees, and even standard FSMs, e.g. those of

executable UML [8] or StateWorks [12]. The use of efficient
and practical model-checking techniques, however, was
previously limited. The reason is that only a single, sequential
FSM [4] could be efficiently model-checked, whereas
systems are usually composed of various components
exhibiting concurrent behaviours.

We have recently shown [3], nevertheless, that models
composed of multiple finite-state machines can be structured
as a vector whose execution uses a round-robin, sequential,
off-line schedule. This enables efficient model-checking of
the requirements. This extension also includes an extension to
the implementation that builds Kripke structures for an
individual FSM to one that derives rules for a collective of
sequential finite state machines (that operate following a
deterministic sequence). Moreover, the very interpreter that
actually implements and runs these rules also constructs the
corresponding Kripke structure. As a result, formal
verification of correctness properties using standard tools
such as NuSMV is possible.

In this paper, we show how this technology can be applied to
carry out failure mode and effects analysis (FMEA) directly,
automatically (and with a mathematical foundation) from the
software model. That is, the model-checking aspect
completely verifies the desirable properties. The model
(having several components) is shown to be correct.
Importantly, we can systematically study the effects of
hypothetical defects or failures in one or more components.
Such hypothetical situations are reflected as properties that no
longer hold.

Moreover, this analysis not only carries out FMEA for the
software; we describe here how the analysis can be carried
out for other parts or participants in the system. That is, we
can model (using the vector of logic-labelled finite-state
machines) sensors, actuators, and operators outside the
software itself. For this enlarged system, we can investigate
which properties are impacted by unanticipated or faulty
behaviour of such sensors, actuators, or human operators. The
MDD approach and its interpretation enable also the
validation by simulation of the FMEA.

2

We illustrate this approach with two case studies widely used
in the software engineering and model-checking literature
(the mining pump and the industrial press). Correct behaviour
of these systems is crucial due to their safety requirements.

2 Logic-Labelled Finite-State Machines

Finite-state machines (FSMs) are a widely used formal model
for system behaviour, particularly the dynamics of a software
system. Typically, a finite state machine is composed of a set
S of states, one of which is designated an initial state s0. The
behaviour is specified by the transitions that shift the machine
form a current (source) state to a new (target) state. We
consider here Logic-Labelled Machines; that is, for each
source state si there is a logic theory Ti and a list of transitions
<ti1, ti2,…,tin>. Each transition tij is labelled with a proposition
pij of the logic and a target state sij. It is important to highlight
that the outgoing transitions of a state are represented as a list,
since the semantics of the FSM consists of evaluating each
proposition in sequence (determining if in the theory Ti the
proposition is true). When a proposition is true, the transition
fires and the current state changes to the corresponding target
state.

States themselves have three sections. An OnEntry section, an
OnExit section, and an Internal section. The OnEntry section
and the OnExit section are always executed exactly once for
each state. The OnEntry section is executed as soon as a
machine makes such a state the current state, while the
OnExit section is executed on departure from a state. Thus,
the OnExit section of a transition source state is executed
before the OnEntry section of the target state. The Internal
section is only executed when no transition fires, i.e. the list
of the outgoing transitions of the current state is exhausted
without any proposition of the transition list evaluating to
true. After the Internal section is executed, the FSM resumes
evaluating the list of transitions from the beginning.

Figure 1 shows an example of such a FSM. The language for
transitions is expressions in simple C (C without control
structures, but including function calls and assignment), while
the language for a state section uses statements in simple C.

1 INIT
OnEntry {int currentTime; extern buttonPushed;
 extern doorOpen; currentTime=0;}
OnExit {}
{}

2 TEST
OnEntry
{timeLeft=0<currentTime;}
OnExit {}
{}

TRUE

TRUE

4 DECREMENT
OnEntry {currentTime=currentTime-1;}
OnExit {}
{}

buttonPushed && !doorOpen && (currentTime<4035)

3 ADD_60
OnEntry {currentTime=60+currentTime;}
OnExit {timeLeft=1;}
{}

!buttonPushed

!doorOpen && timeLeft && timeout(1000000)

Figure 1. FSM for the timer of a Microwave.

In Fig. 1, for example, the initial state is state 1 INIT. There
is a transition from state 2 TEST to state 3 ADD_60 whose
proposition is
buttonPushed && !doorOpen && (currentTime < 4035)

that indicates the timer should change state to a state that adds
60 seconds to currentTime (the OnEntry section of the

3 ADD_60 state) if the button has been pushed, the door is
not opened, and the current time is below the maximum value
(so that a further 60 seconds would not overflow its register).

3 Vectors of logic-labelled FSMs.

The challenge, however, is that although in theory a system
can be represented by a single logic-labelled finite-state
machine, such a model is usually extremely hard to
comprehend or design. It is much more manageable to build a
system of conceptually separate, interacting components. Our
case studies will illustrate this. For an immediate example, we
note that Fig.1 is just the timer of a microwave, but there are
other components like the light (which has two states, on
when the door is open or the beam is cooking, or in the state
of off when the door is closed and cooking is not going on).
Similarly, there is a bell that becomes armed when cooking
starts and rings when cooking completes.

If one considers all these components as concurrent
subsystems, then the challenge is that the possible states of
the composed system is the Cartesian product of the space of
states of the components. Any part of the system may change
state without the other parts acting. This quickly becomes an
unmanageable state space (in order to perform model-
checking). Note that most likely the designers and users of the
system does not need, require or desire this wide capacity for
arbitrary behaviour. And in fact, in the context of system
safety, what is desired is a precise, and possibly unique path
or significantly constrained behaviour.

We use an approach inspired by the time-triggered
architecture for scaling down this complexity. The set of
logic-labelled FSMs that constitute a system is also
represented as a list. Commencing from the first FSM on the
list, the semantics of the vector-model is that, of the current
machine, only one ringlet is executed. That is, on the current
machine, the analysis of its current state is performed. For the
initial ringlet of the state, the OnEntry section proceeds,
followed by the evaluation of the list of transitions until

• one transition fires and the OnExit section is
executed or

• none of the transitions fires and the Internal section
is executed.

Once this happens, the execution of the vector moves to the
next FSM in the list (in circular fashion, the last FSM is
followed by the first).

This actually converts the execution of concurrent FSMs into
a single thread with far fewer states and deterministic
execution, enabling model-checking on a complex system.

Such a vector of deterministically executing FSMs also
greatly simplifies communication, as all synchronisation
points are now deterministic as well. In terms of semantics, if
a variable has no declaration, it is shared by the vector, but
never modified by the environment (so in the language of
model-checking, the Kripke structure is deterministic, and
only simple C statements in the FSMs can modify its value).

3

A variable in a FSM can be further restricted to be a local
variable and thus, not visible to any other FSM in the vector
(for example, the declaration int currentTime in state 1
INIT of Fig. 1). Variables declared extern are not only
common to all FSMs but can also be modified from outside
the software. In the example of Fig. 1, we have extern
buttonPushed because it is not the software of the timer
which set the variable buttonPushed to true or false, but
the operator of the microwave by pressing the button (or the
button by being faulty). In the language of model-checking,
such external variables lead to non-deterministic states in the
Kripke structure and so is the case in our interpreter and
generator of Kripke structures for the model checker NuSMV.
Thus, our Kripke structures correctly model the software
being in any possible system state (for example, the
microwave could be turned on, with the user pushing the
button, or it could also be turned on due to a faulty button).
For safety, it is critical that the model-checking of the
software be performed with all possible combinations of
external variables the software does not have control over.
Importantly, in our interpreter, external variables are read
only once, at the commencement of the evaluation of a
ringlet. This prevents inconsistencies due to changes within
the environment once a Kripke state has commenced.
Moreover, this ensures that system safety properties do not
depend on the speed the software runs relative to sensor
perception. That is, if we prove our models correct (with
formal model-checking), such correctness is not subject to the
software running fast enough. In the example of the
microwave, while the user may push and release the button
too quickly to be noticed, such input cannot trigger
unspecified system behaviour or falsify a property of the
behaviour. Even if the user pushes and releases the button too
quickly to be detected, we can formally prove that if the
button is held for long enough to process a minimum number
of Kripke states, correct behaviour will ensue.

4 Case studies

We show here two case studies that first show how the
techniques described above are used to formally prove (using
model-checking) safety properties of the software (beyond
what previously has been reported in the literature). Then we
proceed to describe how the models enable failure mode and
effects analysis.

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

alarmOn

~alarmOn

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

pumpShallGoOn

pumpShallGoOff

4.1 The Mining Pump

The mining pump is a case widely discussed in the literature
[4, 9, 10] where software is controlling a safety-critical
system. The pump prevents a mineshaft from flooding, but
must not run if flammable gas concentration is high. We
follow Burns and Lister [1] where formality is provided. We
use this case study as it enables the presentation of our
methodology, for constructing the model, for performing
model checking, for performing failure mode and effects
analysis (FMEA) [11], and for directly executing the models
on a platform (thus, fulfilling the promise of model-driven
engineering). This case study is also illustrative of the power
of using FSMs with transitions labelled by a question to a
common-sense logic such as DPL [2].
We summarise here the development of the model. Details
can be found elsewhere [3]. The initial model for this system
appears in Figure 2. It consists of a vector of two logic-
labelled FSMs, each with its associated logic.

%Alarm.d
name{ALARM}.
input{CO2SensorHigh}.
input{airFlowLow}.
A0: {} => ~alarmOn.
A1: CO2SensorHigh => alarmOn. A1>A0.
A2: airFlowLow => alarmOn. A2>A0.
output{b alarmOn,"alarmOn"}.

name{MINEPUMP}.
input{lowWaterSensorOn}. input{highWaterSensorOn}.
input{operatorButtonOn}.
input{methaneSensorHigh}. input{indicateOn}. input{indicateOff}.

P0: {} => ~pumpShallGoOn.
P1: highWaterSensorOn => pumpShallGoOn.
P1>P0.
P2: lowWaterSensorOn => ~pumpShallGoOn.
P2>P1.
P3:
{~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=>
pumpShallGoOn. P3>P2. P3>P0.
P4:
{~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=
> ~pumpShallGoOn. P4>P3.
P5: indicateOn => pumpShallGoOn.
P5>P2. P5>P4. P5>P0.
P6: indicateOff => ~pumpShallGoOn.
P6>P5.
P7: methaneSensorHigh => ~pumpShallGoOn.
P7>P5. P7>P3. P7>P1.

N0: {} => ~pumpShallGoOff.
N1: {~indicateOn,lowWaterSensorOn} => pumpShallGoOff.
N1>N0.
N2:
{~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operato
rButtonOn}=> pumpShallGoOff. N2>N0.
N3: indicateOff => pumpShallGoOff.
N3>N0.
N4: methaneSensorHigh => pumpShallGoOff.
N4>N0.

output{b pumpShallGoOn,"pumpShallGoOn"}. output{b
pumpShallGoOff,"pumpShallGoOff"}.

Figure 3. The logic for the FSM for the alarm.

Figure 2. The complete model for the mine pump. Figure 4. The logic for the pump engine.

4

The logic appears in Figure and 4: the FSMs for the alarm
will move from the state of not ringing to ringing if the logic
can determine the predicate alarmOn. The logic would like
to have information about whether the CO2 level is high or
the airflow is low (that is the role of the input clauses). The
logic will attempt to establish the predicate alarmOn (this is
the role of the output clause). The “=>” operator is read as
“usually” (unlike implication in the sense of propositional
logic); for example, rule A0 says that usually the alarm is not
on, but rule A1 says that if the CO2 level is high, the logic
shall recommend the alarm be on; and rule A1 takes
precedence over A0 (this is the role of the precedence
operator “>”). In practice, modelling with FSMs and non-
monotonic logic results in very concise and transparent
models. For example, Fig. 4 is the complete model for the
mine pump. By comparison, an equivalent model using
Behavior Trees takes several A4 pages. A video of the model
in operation and validating the 3-state operator switch vs. the
2-state operator switch appears in youtu.be/y4muLP0jA8U.

The compilation of the logics into simple expressions and the
analysis of safety properties using model checking reveal that
the switch of the supervisor must be a 3-state switch (on, off
and inactive). Once the logics are compiled, the complete,
correct model (proven by model-checking the derived Kripke
structure generated as described earlier) appears in Fig. 5.

supervisorButtonOff && !supervisorButtonOn

2 INACTIVE
OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
 indecateOn=0; indicateOff=0;}
OnExit {}
{}

1 INDICTAE_ON
OnEntry { indecateOn=1; }
OnExit {indicateOn=0;}
{}

1 INDICTAE_OFF
OnEntry { indecateOff=1; }
OnExit {indicateOff=0;}
{}

supervisorButtonOff && !supervisorButtonOn

 !supervisorButtonOn && !supervisorButtonOff

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

2 NOT_RUNNING
OnEntry { motor=0;}
OnExit {}
{}

1 RUNNING
OnEntry {motor=1;}
OnExit {}
{}

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

2 NOT_RINGING
OnEntry {bell=0;}
OnExit {}
{}

1 RINGING
OnEntry {bell=1;}
OnExit {}
{}

CO2SensorHigh || airFlowLow !CO2SensorHigh && !airFlowLow

Figure 5. Complete and correct model of the mine pump with

all expressions compiled to simple C.

In this model, we can formally verify that the software
satisfies several safety properties, far more properties than
anywhere before in the literature.

• Property-1 “If CO2 is high, the alarm must ring.”
• Property-2 “If air flow is low, the alarm must ring.”
• Property-3 “If methane levels are high, the pump

must be turned off.”
• Property-4 “If the supervisor switches off when

running, the pump will be turned off.”
• Property-5 “If the operator turns her switch off when

the pump is running and the water level is neither

low nor high, then the pump motor goes off.”
• Property-6 “The pump is turned on when the water

is above the high water sensor (and the low-water
sensor’s signal is consistent with this), unless the
supervisor turns it off or methane levels are high.”

• Property-7 “If the supervisor sets the switch to
inactive and the pump is running when the water is
not above the high water sensor and the low-water
sensor indicates a low level, the pump turns off.”

• Property-8 “If there is low methane, low water, and
the pump is not running, but the supervisor puts the
switch to on, then the pump is turned on.”

We stress this point as models in previous research articles
actually fail some of these properties (or incorrectly suggest
that a 2-way switch for the operator is sufficient). Moreover,
we can not only model and simulate the software but the other
components of the system as well, and perform a failure mode
and effects analysis. We can efficiently generate tables such
as the one shown below, which was obtained by injecting
faults through altering the FMSs that represent the sensor
and/or actuator, and then re-running the model checker. A
similar table can be obtained for the properties that fail if
multiple sensors and/or actuators fail simultaneously (e.g.
with common-mode failures that cannot just be derived from
Table 1).

Failures Consequences
 Property that fails
 1 2 3 4 5 6 7 8
CO2-sensor stuck high
CO2-sensor stuck low X

Airflow sensor stuck high X

Airflow sensor stuck low

Bell stuck ringing

Bell stuck not ringing X X

Supervisor button stuck in on X X

Supervisor button stuck in off X X X

Operator button stuck in on X

Operator button stuck in off X

Methane sensor stuck in high X X

Methane sensor stuck in low X

(High water) sensor stuck in on X X

(High water) sensor stuck in off X X

(Low water) sensor stuck in on X

(Low water) sensor stuck in off X X X

Motor stuck running X X X X

Motor stuck not running X X

Table 1. FMEA Table Level 1 for the mine pump case study.

4.2 The Industrial Press

The industrial metal press has been also widely studied in the
literature of model-checking for failure analysis [5, 6, 7]. In
this system, a plunger is initially resting at the bottom with
the motor off. When power is supplied, the controller turns
the motor on, causing the plunger to rise. When at the top, the
plunger shall be held there until the operator pushes and holds
the down the button. This causes the controller to turn the
motor off and the plunger to fall. If the operator releases the

5

button while the plunger is falling slowly, above a point of no
return (PONR), the controlling software turns the motor on
again, causing the plunger to start rising again, without
reaching the bottom of the press. However, if the plunger is
falling fast, below the point of no return, then the controlling
software leaves the motor off until the plunger reaches the
bottom. This is the main critical safety feature, as turning the
motor on with too much inertia on the plunger results in
catastrophic scenarios. When the plunger reaches the bottom,
the software must receive a signal to turn the motor on, so the
plunger rises again.
We emphasize that the summary above of the behaviour of
this system may differ from other descriptions in the
literature, as these differ among themselves when one
analyzes the details. For example, the On/Off button is
modelled inaccurately and the infra-red link described in the
original source is not described in recent FMEA analysis
using design behaviour trees. This results in an unsafe
cyclical behaviour of the system for that model. Namely, it is
possible for the operator to keep the button pushed and the
power on, enabling the motor to raise the plunger. As a result,
the motor goes off bringing the plunger down, and then as the
power is on (no switch on the motor), the motor goes on again
raising the plunger immediately. We have demonstrated this
fault in such model in simulation and by running the model in
two platforms (illustrating this defect in a video
http://youtu.be/blUpMdH14pM), and also the corresponding
correction. Such a correction appears as part of the properties
we can formally verify about the corrected model.

• Property-1 “If the operator is not pushing the button
and the plunger is at the top, the motor should
remain on”.

• Property-2 “If the plunger is falling below the
PONR, a state modeled by the plunger falling fast,
then the motor should remain off.”

• Property-3 “If the plunger is falling above the
PONR, a state modeled by falling slow, and the
operator releases the button, the motor should turn
on, before the plunger changes state.”

• Property-4 “Once the plunger is down, a new signal
is needed to turn the motor on and raise the plunger
again.”

Our approach again allows carrying out the failure mode and
effects analysis (FMEA) by systematically injecting failures
in the FSMs that model the sensors and the actuators of the
system. Again, we illustrate this by obtaining a table of
properties that fail with one component failing. Clearly, the
exercise can be repeated for two components failing
simultaneously (or 3 or more). That is, our software generates
the Kripke structure for input for NuSMV when presented with
the vector of FSMs with one faulty, and the model-checker
highlights which of the properties no longer holds.

Failures Consequences
 Property that fails
 1 2 3 4
Bottom sensor stuck indicating press away from bottom X
Bottom sensor stuck indicating press at bottom

PONR sensor stuck on above PONR X

PONR sensor stuck on below PONR X

Top sensor stuck indicating press away from top X

Top sensor stuck indicating press at top

Operator button stuck on pressed X

Operator button stuck on released

Motor fails, leaves motor stuck on running X

Motor fails, leaves motor stuck on off X X

Power switch button stuck to supply power X

Power switch button stuck to no power X X X X

Table 2. FMEA table at level 1 for the industrial press.

In Figure we have modelled actuators like the motor (the
FSM in Figure g) and thus can introduce a failure to the
system as a faulty motor. We have also modelled all the
sensors, and even the operator (Figure h). Thus, one can even
analyse behaviour by the human operator that is not
compliant. We emphasize here we are not aiming at being
comprehensive. These are illustrative case studies. For
example, we could also model other failures. Like a bottom
sensor which, with certain frequency/probability, indicates
incorrectly the position of the plunger and analyze the
properties that no longer hold regarding the correctness of the
system. Our point here is that the FMEA analysis is
significantly automated for the safety analyst. We also have a
formal methodology that provides clear and sound evidence
of the correctness and reliability of the software. In particular,
the path to establish the criticality of each sensor/actuator

OpeningPress
OnEntry {signalMotorOn=1;}

buttonPushed

PowerOn sensorAtTopActive

Open

Closing
OnEntry{signalMotorOn=0;}

!buttonPushed && !low

sensorAtBottomActive

PressClosed
OnEntry{signalMotorOn=0;}

(a) States for the Controller.

PlungerAtBottom PlungerRisingBelowPONR

! low

motorOn && sensorAtBottomActive ! motorOn

PlungerFallingFast

PlungerRisingAbovePONR

! motorOn

PlungerFallingSlow

sensorAtTopActive PlungerAtTop
! motorOn

motorOn

low

sensorAtBottomActive

(b) States for the Plunger.

IndicatingPressAwayFromBottom
OnEntry
{ sensorAtBottomActive=0;}

IndicatingPressAtBottom
OnEntry
{sensorAtBottomActive=1;}

!signalPlungerAtBottom

signalPlungerAtBottom

(c) States of the Bottom
Sensor.

IndicatingPressHIGHerThanPONR
OnEntry {low=0;}

IndicatingPressLOWerThanPONR
OnEntry {low=1;}

signalPlungerBelowPONR

! signalPlungerBelowRONR

(d) States of the PONR
Sensor.

PressAtTop
OnEntry
{ sensorAtTopActive=1;}

PressAwayFromTop
OnEntry
{sensorAtTopActive=0;}

signalPlungerAtTop

! signalPlungerAtTop

(e) States of the Top Sen-
sor.

ButtonPressed
OnEntry
{ buttonPushed=1;}
.

ButtonIsReleased
OnEntry
{buttonPushed=0;}
.

operatorPushingButton

!operatorPusshingButton

(f) States of the Button.

ElectricMotorOn
OnEntry
{ motorOn=1;}

ElectricMotorOff
OnEntry
 {motorOn=0;}

signalMotorOn

! signalMotorOn

(g) States of the Electric
Motor.

PushingTheButton
OnEntry
 {operatorPushingButton=1;}

ButtonFree
OnEntry
{operatorPushingButton=0;}

operatorPressesButton

! operatorPressesButton

(h) States of the Operator.

Fig. 4: Corrected complete model of the industrial press that mimics the Design Behavior Tree [29, Fig. 4 and high-res gif].
This model correctly pauses for a signal that turns the system on before rising again.

When commencing the injection of the corresponding
dosage, if the batteries have normal charge, there is no air on
the line, the flow is not blocked, there is normal volume and
the ssButton is held pressed, then a timer sound is made,
the display shows dots, the timer is set to 2 minutes and the
pump starts pumping. The display shows PUMP_RUNNING.

A volume is consider normal if it is greater than five. If
the volume is between 1 to five then the display shows the
message VOLUME_LOW, even if the pump is running.

If the dosage was interrupted because of an incident and
then the situations is fixed, the recalculating will reset the
timer on the ssButton is held press again. Every time the
pump starts, the timeBeeper sounds for 3 seconds. If the
ssButton is released during those three seconds, the pump
does not actually start and the display shows the message
PUMPING_ABORTED.

2) Formal verification of properties and validation on a
robot.: Only a few properties have been formally verified for
this case study using model checking techniques.

1) If there is blockage in the line, the pump must be
stopped.

2) If there is air in the line, the pump must be stopped.
3) As soon as the pump operation is interrupted, the drug

volume must be re-calculated.

IV. CONCLUSION

ACKNOWLEDGMENT

REFERENCES

[1] D. Schmidt, “Model-driven engineering,” IEEE Computer, vol. 39, no. 2,
2006.

[2] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Non-
monotonic reasoning for requirements engineering,” in Proc. 5th Int.
Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE). Athens, Greece: SciTePress — Science and Technology
Publications (Portugal), 22-24 July 2010, pp. 68–77.

[3] S. J. Mellor and M. Balcer, Executable UML: A foundation for model-
driven architecture. Reading, MA: Addison-Wesley Publishing Co.,
2002.

[4] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, Modeling
Software with Finite State Machines: A Practical Approach. NY: CRC
Press, 2006.

[5] V. Estivill-Castro and D. Rosemblueth, “Model-checking of transition-
labeled finite-state machines,” in Proceedings of the 2011 International
Conference on Advanced Software Engineering & Its Applications, ser.
Communications in Computers and Information Science, T.-H. e. a. Kim,
Ed., vol. 257. Jeju Island, Korea: Springer Verlag, December, 2011,
p. 61.

[6] M. Wooldridge, An Introduction to Multiagent Systems. NY, USA: John
Wiley & Sons, 2002, iSBN 047149691X.

[7] D. Billington and A. Rock, “Propositional plausible logic: Introduc-
tion and implementation,” Studia Logica, vol. 67, pp. 243–269, 2001,
iSSN 1572-8730.

[8] M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel, “Designing
agent behavior with the extensible agent behavior specification language
XABSL,” in 7th International Workshop on RoboCup 2003 (Robot World
Cup Soccer Games and Conferences), ser. Lecture Notes in Artificial
Intelligence, vol. 3020. Springer, 2004, pp. 114–124.

[9] T. Merz, P. Rudol, and M. Wzorek, “Control system framework for
autonomous robots based on extended state machines,” in Proceedings
of the International Conference on Autonomic and Autonomous Systems,
ICAS ’06, Silicon Valley, CA, July 16-18 2006, p. 14.

[10] V. Estivill-Castro and R. Hexel, “Module interactions for model-driven
engineering of complex behavior of autonomous robots,” in ICSEA 6th
Int. Conf. on Software Engineering Advances, L. Lavazza, L. Fernandez-
Sanz, O. Panchenko, and T. Kanstren, Eds. Barcelona: IARA, Oct.
2011.

[11] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
2001.

[12] V. Estivill-Castro, R. Hexel, and D. Rosenblueth, “Efficient model
checking and fmea analysis with determinsitic scheduling of transition-
labeled finite-state machines,” in 3rd World Congress on Software
Engineering. Wuhan University of Technology, Wuhan, China: IEEE,
November 2012, submitted.

[13] S. Shrivastava, M. L. V., and B. Randell, “The duality of fault-tolerant
system structures,” Software — Practice and Experience, vol. 23, no. 7,
pp. 773–798, 1993.

[14] M. Sloman and J. Kramer, Distributed systems and computer networks.
Hertfordshire, UK, UK: Prentice Hall International (UK) Ltd., 1987.

[15] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay,
“Experience with fault injection experiments for FMEA,” Software,
Practice and Experience, vol. 41, no. 11, pp. 1233–1258, 2011.

[16] K. Winter and N. Yatapanage, “The mine pump case
study,” University of Queensland, Tech. Rep., supplement in
www.itee.uq.edu.au/˜docs/FMEA.

[17] A. Burns and A. Lister, “A framework for building dependable systems,”
The Computer Journal, vol. 34, no. 2, pp. 173–181, 1991.

[18] F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. Holzmann, “Val-

Figure 6. Complete Model of the Industrial Press.

6

with respect to safety, to ensure a minimum standard of to
mitigate a risk, and perhaps introduce further redundancy or
safety checks becomes systematic.

Furthermore, we do not make any assumptions about
initialisation of variables, or the state of external inputs when
the FSMs start. This allows for a more rigorous mathematical
proof of safety properties without any implied “common
sense” assumptions. For example, the LTL formula to verify
Property 1 above was defined as

LTLSPEC
G ((buttonPushed=0 & sensorAtTopActive=1) ->
signalMotorOn=1
)

in [4: page 1248], making the assumption that the software
would already have been initialised. In fact, this property is
false in the initial state of the Kripke structure. For our
models, we do not make such implicit assumptions, but
express this in the NuSMV model-checking language. For
example, the property is true if the FSM for the controller
(Figure a), by indicating that state 1 OpeningPress must
have been reached:

LTLSPEC
G ((buttonPushed=0 & sensorAtTopActive=1 & pc =
M0S1R0) -> X(signalMotorOn=1)
)

4 Conclusions

Our approach here contrasts with the Behavior Tree approach,
where several concurrent threads and channels of
communication occur within the Behavior Tree, resulting in
computations too complex to perform any sort of formal
model checking without a large number of simplifying
assumptions. None of our verifications required more than a
few seconds, although in some cases, the generated Kripke
structures result in files of several Megabytes in size (by
contrast, comparable Kripke structures for independent
execution would be in the Gigabyte or even Terabyte range).

Moreover, previous research of this type has assumed that any
update of internal variables always takes precedence over
external events (arguing that the software runs much faster
than the possibility of a user pressing and releasing a button,
but there is also an admission that this is risky [5] and their
model checking is not sound). We do not have to make these
types of assumptions. We establish very clearly the point in
the ringlet of a finite-state machine that a snapshot of the
environment is taken, and do not make any assumptions about
the speed and timing of sensor updates. Our models exhibit
deterministic behaviour even if sensors are updated much
faster than the software may be able to execute.

5 Acknowledgements

We thank members of the Mi-Pal team at Griffith University
for the implementation of many aspects of the infrastructure

that enable vectors of logic-labelled FSM to be designed,
interpreted and translated into Kripke structures for NuSMV.
We thank the Instituto de Investigaciones en Matemáticas
Aplicadas y en Sistemas (IIMAS), at the Universidad
Nacional Autónoma de México (UNAM) for providing their
facilities.

References

[1] A. Burnsand A. Lister, “A frame work for building
dependable systems,” Computer J., vol. 34, no. 2,
pp. 173–181, 1991.

[2] D. Billington, V. Estivill-Castro, R. Hexel, and A.
Rock, “Non-monotonic reasoning for requirements
engineering,” in Proc. 5th Int. Conference on
Evaluation of Novel Approaches to Software
Engineering (ENASE). Athens, Greece: SciTePress
— Science and Technology Publications (Portugal),
22-24 July 2010, pp. 68–77.

[3] V. Estivill-Castro, R. Hexel and D. A. Rosenblueth,
“Efficient Modeling of Enbedded Software Systems
and Their Fromal Verification”, to appear.

[4] V. Estivill-Castro and D. A. Rosenblueth, “Model-
checking of transition-labeled finite-state machines,”
in Proc. 2011 Int. Conf on Advanced Software
Engineering & Its Applications, Communications in
Computers and Information Science, T.-H. Kim et
al., Eds., vol. 257. Springer Verlag, 2011, p. 61.

[5] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and
P. A. Lindsay, “Experience with fault injection
experiments for FMEA,” Software, Practice and
Experience, vol. 41, no. 11, pp. 1233–1258, 2011.

[6] T. Mahmood and E. Kazmierczak, “A knowledge-
based approach for safety analysis using system
interactions,” in Software Engineering Conference,
2006. APSEC 2006. 13th Asia Pacific, Dec. 2006,
pp. 445 –452.

[7] T. McDermid, J.and Kelly, “Industrial press: Safety
case,” High Integrity Systems Engineering Group,
University of York, Tech. Rep., 1996.

[8] S. J. Mellor and M. Balcer, Executable UML: A
foundation for model-driven architecture. Reading,
MA: Addison-Wesley Publishing Co., 2002.

[9] A. Shrivastava, M. L. V., and B. Randell, “The
duality of fault-tolerant system structures,” Software
— Practice and Experience, vol. 23, no. 7, pp. 773–
798, 1993.

[10] M. Sloman and J. Kramer, Distributed systems and
computer networks. Hertfordshire, UK: Prentice Hall
1987.

[11] D. J. Reifer, “Software failure modes and effects
analysis,” Reliability, IEEE Transactions on, vol. R-
28, no. 3, pp. 247 –249, Aug. 1979.

[12] F. Wagner, R. Schmuki, T. Wagner, and P.
Wolstenholme, ���Modeling Software with Finite State
Machines: A Practical Approach. NY: CRC Press,
2006.

