
Applying Failure Mode Modular De-Composition (FMMD) across the
Software/Hardware Interface

R.Clark?, A. Fish† , C. Garrett†, J. Howse†
?Energy Technology Control, UK. r.clark@energytechnologycontrol.com

†University of Brighton, UK

Keywords: static failure mode modelling; safety-
critical; software fmea

Abstract

This paper presents a modular variant of Failure Mode
Effects Analysis (FMEA), Failure Mode Modular De-
Composition (FMMD), a methodology which can be ap-
plied to software, and is compatible and integrable with
FMMD performed on mechanical and electronic systems.
Software generally sits on top of most modern safety crit-
ical control systems and defines its most important sys-
tem wide behaviour and communications. Currently stan-
dards that demand FMEA for hardware (e.g. EN298,
EN61508), do not specify it for software, but instead spec-
ify good practise, review processes and language feature
constraints. This is a weakness. Where FMEA traces
component failure modes to resultant system failures, soft-
ware has been left in a non-analytical limbo of best prac-
tises and constraints. If software and hardware integrated
FMEA were possible, electro-mechanical-software hybrids
could be modelled, and so we could consider ‘complete’
failure mode models. Presently FMEA, stops at the glass
ceiling of the computer program: FMMD seeks to address
this, and offers additional test efficiency benefits.

1 Introduction

This paper describes a modular FMEA process that can
be applied to software. This modular variant of FMEA
is called Failure Mode Modular de-composition (FMMD).
Because this process is based on failure modes of compo-
nents, it can be applied to electrical and/or mechanical
systems. The hierarchical structure of software is then
examined, and definitions from contract programming are
used to define failure modes and failure symptoms for soft-
ware functions. With these definitions we can apply the
FMMD modular form of FMEA to existing software1.

1Existing software excluding recursive [10][16.2] code, and un-
structured non-functional language.

2 FMEA Background

Failure Mode Effects Analysis is the process of taking
component failure modes, tracing their effects through a
system and determining what system level failure modes
could be caused. FMEA dates from the 1940s where
simple electro-mechanical systems were the norm. Mod-
ern control systems nearly always have a significant soft-
ware/firmware element, and not being able to model soft-
ware with current FMEA methodologies is a cause for crit-
icism [9][Ch.12]. Difficulties in integrating mechanical and
electronic/software failure models are discussed in [1].

Current work on Software FMEA SFMEA usu-
ally does not seek to integrate hardware and software
models, but to perform FMEA on the software in isola-
tion [14]. Work has been performed using databases to
track the relationships between variables and system fail-
ure modes [7], to introduce automation into the FMEA
process [21] and to provide code analysis automation [18].
Although the SFMEA and hardware FMEAs are per-
formed separately, some schools of thought aim for Fault
Tree Analysis (FTA) [12, 17] (top down - deductive) and
FMEA (bottom-up inductive) to be performed on the
same system to provide insight into the software hard-
ware/interface [6]. Although this would give a better pic-
ture of the failure mode behaviour, it is by no means a rig-
orous approach to tracing errors that may occur in hard-
ware through to the top (and therefore ultimately control-
ling) layer of software.

2.1 Current FMEA techniques are not
suitable for software

The main FMEA methodologies are all based on the con-
cept of taking base component failure modes, and trans-
lating them into system level events/failures [3, 13]. In a
complicated system, mapping a component failure mode
to a system level failure will mean a long reasoning dis-
tance; that is to say the actions of the failed component
will have to be traced through several sub-systems, gaug-

1

ing its effects with other components. With software at
the higher levels of these sub-systems, we have yet another
layer of complication. In order to integrate software, we
need to re-think the FMEA concept of simply mapping a
base component failure to a system level event. One strat-
egy would be to modularise FMEA; to break down the fail-
ure effect reasoning into small modules from the bottom-
up. If we pre-analyse modules, and they can be combined
with others, into larger sub-systems, we eventually form a
hierarchy of failure mode behaviour for the entire system.
With higher level modules, we can reach the level in which
the software resides. For instance, to read a voltage into
software via an Analogue to Digital Converter (ADC) we
rely on an electronic sub-system that conditions the input
signal and then routes it through a multiplexer (MUX)
to the ADC. We could easily consider this conditioning
and MUX circuit a ‘module’; with its failure mode model
defined, modelling the software to hardware interface be-
comes possible. This failure mode model, would give us
the ways in which the signal conditioning and multiplexer
could fail. We can use this to work out how our software
could fail, and with this develop a modular FMEA model
of the software.

3 Modularising FMEA

In outline, in order to modularise FMEA, we must create
small modules from the bottom-up. We can do this by tak-
ing collections of base components that perform (ideally)
a simple and well defined task called functional group-
ings. We can then analyse the failure mode behaviour of
a functional grouping using all the failure modes of all its
components. When we have its failure mode behaviour,
called the symptoms of failure from the perspective of the
functional grouping, we treat the functional grouping as
a derived component, where the failure modes of the de-
rived component are the symptoms of failure of the func-
tional grouping. We can then use derived components
to build higher level functional groupings until we have a
complete hierarchical model of the failure mode behaviour
of a system. An example of this process, applied to an in-
verting op-amp configuration is given in [4].

FMMD, the process. The main aim of FMMD is to
build a hierarchy of failure behaviour from the base com-
ponent level up to the top, or system level, with analysis
stages between each transition to a higher level in the hi-
erarchy. The first stage is to choose base components that
interact and naturally form functional groupings. The ini-
tial functional groupings are collections of base compo-
nents. From the point of view of fault analysis, we are not
interested in the components themselves, but in the ways
in which they can fail. A functional grouping is a col-
lection of components that perform some simple task or

function. In order to determine how a functional grouping
can fail, we need to consider all the failure modes of its
components. By analysing the fault behaviour of a ‘func-
tional grouping’ with respect to all its components failure
modes, we can determine its symptoms of failure. In other
words we have taken a functional grouping, and analysed
how it can fail according to the failure modes of its com-
ponents, and then determine the functional grouping fail-
ure symptoms. We then create a new derived component
which has as its failure modes, the failure symptoms of the
functional grouping from which it was derived.
We use the symbol ‘D’ to represent the creation of a de-
rived component from a functional grouping. This symbol
is convenient for drawn hierarchy diagrams. We define the
D function, where G is the set of all functional groupings
and DC is the set of all derived components, D(G)→ DC.
We show an FMMD hierarchy in figure 1. There are three
functional groups comprised of base components. These
are analysed individually using FMEA. That is to say
their component failure modes are examined, and thus
the ways in which the functional groupings can fail. The
ways in which a functional grouping can fail, can be viewed
as symptoms of failure for the functional grouping. The
‘D’ function is now applied to create derived components.
These are shown in figure 1 above the functional group-
ings. Now that we have derived components, we can use
them to form a higher level functional grouping. We apply
the same FMEA process to this and can derive a top level
derived component (which has the system—or top—level
failure modes).

Figure 1: FMMD Hierarchy

Note the diagram of the FMMD hierarchy is very similar
to a simple non-recursive programmatic function call tree.

2

4 FMEA applied to Software

With modular FMEA i.e. FMMD we have the concepts
of failure modes of components, functional groupings and
symptoms of failure for a functional group. A program-
matic function has similarities with a functional group-
ing as defined by the FMMD process. An FMMD func-
tional grouping is placed into a hierarchy. A software func-
tion is placed into a hierarchy, that of its call-tree. A soft-
ware function typically calls other functions and uses data
sources via hardware interaction, which could be viewed
as its components. It has outputs, i.e. it can perform ac-
tions on data or hardware which will be used by functions
that may call upon it. We can map a software function to
a functional grouping in FMMD. Its failure modes are the
failure modes of the software components (other functions
it calls) and the hardware from which it reads values. Its
outputs are the data it changes, or the hardware actions
it performs.
When we have analysed a software function—treating fail-
ure conditions of its inputs as failure modes—we can de-
termine its symptoms of failure. We can thus apply the D
function to software functions, by viewing them in terms of
their failure mode behaviour. To simplify things, software
already fits into a hierarchy. For electronic and mechanical
systems, although we may be guided by the original de-
signers concepts of modularity in design, applying FMMD
means deciding on the members for functional groupings
and the subsequent hierarchy. With software already writ-
ten, that hierarchy is fixed/given.

4.1 Software, a natural hierarchy

Software written for safety critical systems is usually
constrained to be modular [19][vol.3] and non recur-
sive [10][15.2]. Because of this we can assume a direct
call tree. Functions call functions from the top down and
eventually call the lowest level library or IO functions that
interact with hardware/electronics.
What is potentially difficult with a software function is
deciding what are its failure modes, and later what are
its failure symptoms. With electronic components, we
can use literature to point us to suitable sets of fail-
ure modes [2, 5, 20].With software, only some library func-
tions are well known and rigorously documented enough
to have the equivalent of known failure modes. Most soft-
ware is ‘bespoke’. We need a different strategy to describe
the failure mode behaviour of software functions. We can
use definitions from contract programming to assist here.

4.2 Contract programming description

Contract programming is a discipline [11] for building soft-
ware functions in a controlled and traceable way. Each
function is subject to pre-conditions (constraints on its

inputs), post-conditions (constraints on its outputs) and
function wide invariants (rules). A precondition, or re-
quirement for a contract software function defines the cor-
rect ranges of input conditions for the function to oper-
ate successfully. For a software function, a violation of
a pre-condition is in effect a failure mode of ‘one of its
components’. A post condition is a definition of correct
behaviour by a function. A violated post condition is a
symptom of failure of a function. Post conditions could
be either actions performed (i.e. the state of hardware
changed) or an output value of a function. Invariants in
contract programming may apply to inputs to the function
(where they can be considered failure modes in FMMD ter-
minology), and to outputs (where they can be considered
failure symptoms in FMMD terminology).

4.3 Software FMMD

For the purpose of example, we chose a simple common
safety critical industrial circuit that is nearly always used
in conjunction with a programmatic element. A common
method for delivering a quantitative value in analogue
electronics is to supply a current signal to represent the
value to be sent [16][p.934]. Usually, 4mA represents a
zero or starting value and 20mA represents the full scale,
and this is referred to as 4→20mA signalling. 4→20mA
has an electrical advantage as well because the current in
a loop is constant [16][p.20]. Thus resistance in the wires
between the source and the receiving end is not an issue
that can alter the accuracy of the signal. This circuit has
many advantages for safety. If the signal becomes dis-
connected it reads an out of range 0mA at the receiving
end. This is outside the 4→20mA range, and is therefore
easy to detect as an error rather than an incorrect value.
Should the driving electronics go wrong at the source end,
it will usually supply far too little or far too much current,
making an error condition easy to detect. At the receiving
end, one needs a resistor to convert the current signal into
a voltage that we can read with an ADC.

Figure 2: Context Diagram for 4→20mA loop

The diagram in figure 2 shows some equipment which is
sending a 4→20mA signal to a micro-controller system.
The signal is locally driven over a load resistor, and then

3

read into the micro-controller via an ADC and its multi-
plexer. With the voltage detected at the ADC the multi-
plexer can read the intended quantitative value from the
external equipment.

4.4 Simple Software Example

Consider a software function that reads a 4→20mA input,
and returns a value between 0 and 999 (i.e. per mil 0/00)
representing the current detected with an additional error
indication flag. Let us assume the 4→20mA detection is
via a 220Ω resistor, and that we read a voltage from an
ADC into the software. Let us define any value outside the
4mA to 20mA range as an error condition. As a voltage,
we use ohms law [16] to determine the voltage ranges: V =
IR, 0.004A∗220Ω = 0.88V and 0.020A∗220Ω = 4.4V . Our
acceptable voltage range is therefore (V ≥ 0.88) ∧ (V ≤
4.4) .
This voltage range forms our input requirement. We can
now examine a software function that performs a conver-
sion from the voltage read to a per mil representation of
the 4→20mA input current. For the purpose of example
the ‘C’ programming language [8] is used2. We initially
assume a function read ADC which returns a floating
point value representing the voltage read (see code sample
in figure 3).

/***/
/* read_4_20_input() */
/***/
/* Software function to read 4mA to 20mA input */
/* returns a value from 0-999 proportional */
/* to the current input. */
/***/
int read_4_20_input (int * value) {

double input_volts;
int error_flag;
/* require: input from ADC to be

between 0.88 and 4.4 volts */
input_volts = read_ADC(INPUT_4_20_mA);

if (input_volts < 0.88 || input_volts > 4.4) {
error_flag = 1; /* Error flag set to TRUE */

}
else {

*value = (input_volts - 0.88) * (4.4 - 0.88) * 999.0;
error_flag = 0; /* indicate current input in range */

}
/* ensure: value is proportional (0-999) to the

4 to 20mA input */
return error_flag;

}

Figure 3: Software Function: read 4 20 input

We now look at the function called by read 4 20 input,
read ADC, which returns a voltage for a given ADC
channel. This function deals directly with the hardware in
the micro-controller on which we are running the software.
Its job is to select the correct channel (ADC multiplexer)
and then to initiate a conversion by setting an ADC ’go’
bit (see code sample in figure 4). It takes the raw ADC
reading and converts it into a floating point3 voltage value.

2C coding examples use the Misra [10] and SIL-3 recommended
language constraints [19].

3the type ‘double’ or ‘double precision’ is a standard C language
floating point type [8].

/***/
/* read_ADC() */
/***/
/* Software function to read voltage from a */
/* specified ADC MUX channel */
/* Assume 10 ADC MUX channels 0..9 */
/* ADC_CHAN_RANGE = 9 */
/* Assume ADC is 12 bit and ADCRANGE = 4096 */
/* returns voltage read as double precision */
/***/
double read_ADC(int channel) {

int timeout = 0;
/* require: a) input channel from ADC to be

in valid ADC range
b) voltage ref is 0.1% of 5V */

/* return out of range result */
/* if invalid channel selected */
if (channel > ADC_CHAN_RANGE)

return -2.0;
/* set the multiplexer to the desired channel */
ADCMUX = channel;
ADCGO = 1; /* initiate ADC conversion hardware */
/* wait for ADC conversion with timeout */
while (ADCGO == 1 || timeout < 100)

timeout++;
if (timeout < 100)

dval = (double) ADCOUT * 5.0 / ADCRANGE;
else

dval = -1.0; /* indicate invalid reading */
/* return voltage as a floating point value */
/* ensure: value is voltage input to within 0.1% */
return dval;

}

Figure 4: Software Function: read ADC

We now have a very simple software structure, a call tree,
where read 4 20 input calls read ADC, which in turn inter-
acts with the hardware/electronics. This software is above
the hardware in the conceptual call tree—from a program-
matic perspective—software is reading values from the
‘lower level’ electronics. FMEA is always a bottom-up
process and so we must begin with this hardware. The
hardware is simply a load resistor, connected across an
ADC input pin on the micro-controller and ground. We
can identify the resistor and the ADC module of the micro-
controller as the base components in this design. We now
apply FMMD starting with the hardware.

4.5 FMMD Process — 4→20mA program-
matic value implementation.

Figure 5: FMMD Hierarchy for 4→20mA input

We analyse the 4→20mA to programmatic value imple-
mentation in three stages using FMMD. We start with

4

the hardware, and then add each of the software func-
tions. This forms the fault mode hierarchy represented in
figure 5.

Functional Grouping - Convert mA to Voltage
- (CMATV) This functional grouping contains the
load resistor and the physical Analogue to Digital
Converter (ADC). Our functional grouping, G1 is thus
the set of base components: G1 = {R,ADC}. We
now determine the failure modes of all the compo-
nents in G1. For the resistor we can use a failure
mode set from the literature [20]. Where the function
fm returns a set of failure modes for a given com-
ponent we can state: fm(R) = {OPEN,SHORT}.
For the ADC we can determine the following failure
modes:

• STUCKAT — The ADC outputs a constant value,

• MUXFAIL — The ADC cannot select its input chan-
nel correctly,

• LOW — The ADC output is always LOW, or zero
ADC counts,

• HIGH — The ADC output is always HIGH, or max
ADC counts.

We can use the function fm to define the fail-
ure modes of an ADC thus: fm(ADC) =
{STUCKAT,MUXFAIL,LOW,HIGH}. With these
failure modes, we can analyse our first functional group,
see table 1.

Table 1: G1: Failure Mode Effects Analysis
Failure failure Symptom
Scenario effect ADC

1: ROPEN resistor open, HIGH
voltage on pin high

2: RSHORT resistor shorted, LOW
voltage on pin low

3: ADCSTUCKAT ADC reads out V ERR
fixed value

4: ADCMUXFAIL ADC may read V ERR
wrong channel

5: ADCLOW output low LOW
6: ADCHIGH output high HIGH

We now collect the symptoms for the hardware functional
group, {HIGH,LOW,V ERR}. We now create a de-
rived component to represent this called CMATV . We
can express this using the ‘D’ function thus: CMATV =
D(G1). As its failure modes are the symptoms of
failure from the functional group we can now state:
fm(CMATV) = {HIGH,LOW,V ERR}.

Functional Group - Software - Read ADC -
(RADC) The software function Read ADC uses the
ADC hardware analysed as the derived component
CMATV above. The code fragment in figure 4 states pre-
conditions, as /* require: a) input channel from ADC to
be in valid ADC range b) voltage ref is 0.1% of 5V */.
From the above contractual programming requirements,
we see that the function must be sent the correct chan-
nel number. A violation of this can be considered a fail-
ure mode of the function, which we can call CHAN NO.
The reference voltage for the ADC has a 0.1% accuracy
requirement. If the reference value is outside of this, it
is also a failure mode of this function, which we can call
V REF . Taken as a component for use in FMEA/FMMD
our function has two failure modes. We can therefore
treat it as a generic component, Read ADC, by stating:
fm(Read ADC) = {CHAN NO,V REF}
As we have a failure mode model for our function, we
can now use it in conjunction with the ADC hardware de-
rived component CMATV, to form a functional grouping
G2, where G2 = {CMSTV,Read ADC}. We now analyse
this hardware/software combined functional grouping.

Table 2: G2: Failure Mode Effects Analysis
Failure failure Symptom
Scenario effect RADC

1: CHAN NO wrong voltage V V ERR
read

2: V REF ADC volt-ref V V ERR
incorrect

3: CMATVV ERR voltage value V V ERR
incorrect

4: CMATVHIGH ADC may read HIGH
wrong channel

5: CMATVLOW output low LOW

We now collect the symptoms of failure for the
functional grouping analysed (see table 2) as
{V V ERR,HIGH,LOW}. We can add as well the
violation of the postcondition for the function. This
postcondition, /* ensure: value is voltage input to within
0.1% */ , corresponds to V V ERR, and is already in
the failure mode set for this functional grouping. We
can now create a derived component called RADC thus:
RADC = D(G2) which has the following failure modes:
fm(RADC) = {V V ERR,HIGH,LOW}.

Functional Group - Software - voltage to per mil
- VTPM This function sits on top of the RADC de-
rived component determined above. We look at the pre-
conditions for the function read 4 20 input to determine
its failure modes. Its pre-condition is /* require: in-
put from ADC to be between 0.88 and 4.4 volts */. We
can map this violation of the pre-condition, to the fail-

5

ure mode VRNGE; we can state fm(read 4 20 input) =
{V RNGE}. We can now form a functional group with the
derived component RADC and the software component
read 4 20 input, i.e. G3 = {read 4 20 input,RADC}.

Table 3: G3: Read 4 20: Failure Mode Effects Analysis
Failure failure Symptom
Scenario effect RADC

1: RIV RGE voltage OUT OF
outside range RANGE

2: RADCV VERR voltage V AL ERR
incorrect

3: RADCHIGH voltage value V AL ERR
incorrect

4: RADCLOW ADC may read OUT OF
wrong channel RANGE

The failure symptoms for the functional grouping are
{OUT OF RANGE, V AL ERR}. The postcondition for
the function read 4 20 input, /* ensure: value is propor-
tional (0-999) to the 4 to 20mA input */ corresponds to
the V AL ERR and is already in the set of failure modes.
For single failures these are the two ways in which this
function can fail. An OUT OF RANGE will be flagged
by the error flag variable. The V AL ERR will mean that
the value read is simply wrong. We can finally make a
derived component to represent a failure mode model for
our function read 4 20 input thus: R420I = D(G3). This
new derived component has the following failure modes:
fm(R420I) = {OUT OF RANGE, V AL ERR}. We can
now represent the software/hardware FMMD analysis as
a hierarchical diagram; see figure 5.

5 Conclusion

The FMMD method has been demonstrated using an the
industry standard 4→20mA input circuit and software.
The derived component representing the 4→20mA reader
shows that by taking a modular approach for FMEA, i.e.
FMMD, we can integrate software and electro-mechanical
models. With this analysis we have stages along the ‘rea-
soning path’ linking the failure modes from the electronics
to those in the software. Each functional grouping to de-
rived component transition represents a reasoning stage.
With traditional FMEA methods the reasoning distance
is large, because it stretches from the component failure
mode to the top—or—system level failure. We now have
a derived component for a 4→20mA input. Typically,
more than one such input could be present in a real-world
system: we can thus re-use this analysis for each 4→20mA
input in the system. Additionally, using FMMD we can
determine a failure model for the hardware/software in-
terface [15].

References
[1] Volker Bachmann and Richard Messnarz. Improving safety and

availability of complex systems by using an integrated design
approach in development. Journal of Software: Evolution and
Process, 2012.

[2] Reliability Analysis Center. Failure mode/mechanisms distri-
butions 1991. United States Department of Commerce, 1991.

[3] Neal Snooke Chris Price. An automated software fmea. Inter-
national System Safety conference singapore 2008, 2008.

[4] R Clark, A Fish, C Garrett, and J Howse. Developing a rigorous
bottom-up modular static failure modelling methodology. 6th
IET International Conference on System Safety, 2011, 2011.

[5] United States DOD. Reliability Prediction of Electronic Equip-
ment. DOD, 1991.

[6] Peter L. Goddard. Validating the safety of embedded real-time
control systems using fmea. Reliability and Maintainability
Symposium (RAMS), 1993 Proceedings - Annual, 1993.

[7] Baiqiao HUANG. Software fmea approach based on failure
modes database. Reliability, Maintainability and Safety, 2009.
ICRMS 2009. 8th International Conference, 2009.

[8] Brian W. Kernighan and Dennis Ritchie. The C Programming
Language, Second Edition. Prentice-Hall, 1988.

[9] Nancy Leveson. Safeware: System safety and Computers ISBN:
0-201-11972-2. Addison-Wesley, 2005.

[10] Gavin McCall. MISRA:C:2004 Guidelines for the use of the C
language in critical systems ISBN 978-0-9524156-4-0. Hobbs,
2004.

[11] R. Mitchel. Design By Contract by Example. Adisson-Wesley,
2002.

[12] NASA. Fault tree handbook with aerospace applications.
NASA Handbook, 2002.

[13] Shawulu Hunira Nggada. Software failure analysis at architec-
ture level using fmea. International Journal of Software and
its applications Vol 6. 1, 2012.

[14] N. Ozarin. A process for failure modes and effects analysis of
computer software. Reliability and Maintainability Symposium,
2003. Annual, 2003.

[15] N.W. Ozarin. Applying software failure modes and effects anal-
ysis to interfaces. Reliability and Maintainability Symposium,
2009. RAMS 2009. Annual, pages 533 – 538, jan. 2009.

[16] Winfield Hill Paul Horowitz. The Art of Electronics. Cam-
bridge, 1989.

[17] US Nuclear reg commission. Fault tree handbook. Nuclear
Safety Analysis Handbook, 1981.

[18] N Snooke. Model-driven automated software fmea. Reliability
and Maintainability Symposium (RAMS), 2011 Proceedings -
Annual, 2011.

[19] E N Standard. En61508:2002 functional safety of electri-
cal/electronic/programmable electronic safety related systems.
British standards Institution http://www.bsigroup.com/, 2002.

[20] E N Standard. En298:2003 gas burner controllers with forced
draft. British standards Institution http://www.bsigroup.com/,
2003.

[21] Danhua Wang. An approach of automatically performing fault
tree analysis and failure mode effects techniques to software.
Software Engineering and Data Mining (SEDM), 2010 2nd In-
ternational Conference, 2010.

6

