

A Process for Failure Modes and Effects Analysis of Computer Software

Nathaniel Ozarin • The Omnicon Group • New York
Michael Siracusa • Massachusetts Institute of Technology

Key Words: FMEA, Software FMEA, Software failure, Mission critical software, Software fault tree

Summary and Conclusions

 Software FMEA is a means to determine whether
any single failure in computer software can cause
catastrophic system effects, and additionally identifies
other possible consequences of unexpected software
behavior. The procedure described here was developed
and used to analyze mission- and safety-critical software
systems. The procedure includes using a structured
approach to understanding the subject software, developing
rules and tools for doing the analysis as a group effort with
minimal data entry and human error, and generating a final
report. Software FMEA is a kind of implementation
analysis that is an intrinsically tedious process but database
tools make the process reasonably painless, highly
accurate, and very thorough. The main focus here is on
development and use of these database tools.

Introduction

 Aerospace system development sometimes includes
a failure modes and effects analysis (FMEA) on computer
software. Software FMEA does not predict software
reliability, but aims to determine whether the failure of any
single software variable can cause specific catastrophic
events or other serious effects. At the same time, the
analysis can identify possibilities of less serious
consequence so that source code can be made more robust
in specific areas before deployment. This paper describes a
step-by-step approach for conducting a software FMEA
and outlines development of a relational database to aid the
process.

 There are many published papers on software
reliability but their approaches generally focus on the use
of historical data – software bugs discovered over time – to
predict future failures. Very few papers have addressed
approaches to software FMEA. Some present simple
examples of approaches to illustrate principles but they do
not address complications of real-world operational flight
programs.

 This paper describes techniques developed for
conducting software FMEA on code executed by an
embedded microprocessor as part of a missile control
system. Using these techniques, the analysis was
completed on time and revealed several potential problems
that were subsequently fixed by the software developers.
In the subject analysis, the authors analyzed 3294 lines of
assembly language code native to a Texas Instruments
DSP. The same techniques can be applied to any other
mission-, safety-, or revenue-critical system using high-

level languages in different architectures. The products of
this effort included a table summarizing the analysis and a
detailed table listing analysis details variable by variable.

 In a software FMEA, a failure is a software variable
that is assigned an unintended value. This kind of failure
can occur when a memory location is unintentionally
overwritten, when internal processor or memory circuits
fail, or when bad data is received from the outside world.
The analysis seeks to determine observable system effects
– usually manifest via system hardware and therefore
dependent upon hardware analysis – when any one
software failure occurs, and in particular to determine
whether any single software fault can result in a
catastrophic event.

 The software FMEA looks for consequences of all
potential software failures. It is independent of two
essential but different kinds of analysis: (1) how the
software design meets requirements, and (2) the adequacy
of the requirements themselves. Testing cannot reveal
weaknesses in these areas, nor can line-by-line analysis of
the code. It is therefore essential that system analysts and
software engineers do their homework very carefully in
these areas. A subsequent analysis considers the
implementation – that is, the detailed code and the
interfaces with memory-mapped hardware. This analysis,
the FMEA process, covers only the implementation part.
The FMEA also does not consider correctness of
algorithms or problems resulting from real-time design
errors, but makes the assumption that every variable might
fail without regard to cause.

Causes of Software Variable Failures

 Software FMEA considers the things that can go
wrong as a processor executes its code. The following are
two causes of software failures and how they are treated in
the FMEA analysis. There are obviously many more.

 (1) Failures in Memory. Data in memory can
become incorrect due to environment (EMI or EMP),
hardware failures (often detectable by test routines), and
unintentional overwrites (by far the most common case).
Unintentional overwrites, in turn, can result from (a)
system design errors, (b) programming errors (such as
writing or reading beyond the limits of an array or table, or
incorrectly computing an address), and (c) hardware
failures that alter contents of a memory address. The
altered address, if subsequently used to index memory for a
write operation, will cause a write to the wrong location
and thereby corrupt the value at that location. At the same

3652003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium
0-7803-7717-6/03/$17.00 © 2003 IEEE

time, the software fails to update the contents of the
intended location. Consequences of unintentional
overwrites are unpredictable. In the case of writing to the
wrong location, we know that the value of the intended
location will not be revised as expected, but we cannot
predict the consequence of writing to the wrong location –
results can be totally benign (with extraordinary luck and
extraordinarily robust code) but often cause the software to
crash. For the system analyzed by the authors, results
could be catastrophic. The analysis therefore assumes the
worst-case outcome.

 (2) Software-related Failures. Programming errors
can give variables incorrect values that can be considered
failures. The analysis does not specifically address these
issues but instead considers the implications of incorrect
values they may cause. Examples include incorrect
algorithms, scaling errors, use of stale data, and overflow.

The Software FMEA Process

The remainder of this discussion outlines a process
for conducting a FMEA on computer software. It is
summarized in Table 1.

Step 1: Familiarization

 Understanding the software’s operation, its safety
requirements, and its relationship with hardware is the most
important step in the FMEA process. Since FMEA should
not be performed by people who developed the code,
analysts are confronted with the difficult task of analyzing
software they’ve never seen before. Typically, the
software will have insufficient comments and misleading
variable names. Worse, real-world design documents
almost never describe source code with complete accuracy.
The comments and design data can serve as important
references for understanding, but they cannot be relied

upon because the task is to analyze operations of the code,
not the intent of its authors. Therefore, we use the
executable code to develop flow charts, verbal descriptions,
and other methods for this purpose, with a description
prepared for each software method or function.

 Timing and calling sequences among software
functions must also be understood, but tying the functions
together is more difficult. In the subject analysis, the
authors developed calling diagrams to show relationships
among all functions – who calls whom, and in what
sequence. A calling diagram may be divided into several
pages, with related functions on one page. The calling
diagram provides an additional advantage: it helps the
project manager divide the software under analysis into
logical sections of related functions that can be assigned to
individual staff members for greater efficiency. Each staff
member then concentrates on assigned portions of the
software and is best suited to fill in the associated database
tables.

 Other diagrams also aid human understanding. For
example, dataflow diagrams are particularly useful for
analyzing code designed for extensive data processing.
Traditional diagrams such as class diagrams are the least
useful to analysts because they represent interactions at an
overly high level of abstraction.

Step 2: Database Tool Development

 Database tools are the main focus of this discussion.
The database tables help analysts understand the software,
organize the FMEA process, and aid in its automation. The
authors used Microsoft Access because it was available,
but also because it allows data tables to be shared by
multiple users and updated in real time – an essential
feature for a group effort. The following discussion
focuses on table development in a logical sequence that
would be used in any software FMEA process.

 The first table to be filled out defines the software
modules (such as classes) which represent a collection of
functions. Figure 1 is part of a typical module definition
table, shown with sample data.

 The next table is a subroutine definition table that

defines each function and what it is used for. Figure 2 is an
example. Note that determining preconditions and post-
conditions in this table as an aid to familiarization may not
be cost-effective for a particular analysis.

Step Subject Description

1 System and Software
Familiarization

Using tools and guidelines to
understand the system under
analysis.

2 Database Tool
Development

Development of linked tables to
maintain information and guide
analysts.

3 Developing Rules and
Assumptions

Applying knowledge and experience
to lay out clear rules for analysis.

4 Developing Descriptive
Failure Modes

Defining the ways that variable
values can be failures.

5 Determining System Effects
of Individual Failures

Examining variables one by one in
every usage while using data in
previously developed tables to aid
the analysis.

6 Generating the Report Using the database tool to automate
report generation.

Table 1. Summary of the Software FMEA Process

Figure 1. Module Definition Table Example

2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 366

 The next table is a variable definition table. Every
variable and data structure is documented here for the
FMEA analysis. It may also be helpful to create your own
variables to reference memory that is indirectly used or to
combine variables that are treated similarly or as a group.
Figure 3 is an example of this table, in which the
“hardware” field is used if the variable is directly
associated with any hardware in the system. All memory-
mapped variables will have this field filled out. It is a good
idea to make a separate table to record all hardware-
software interfaces and link them to this field.

 Entering data in this table by hand is a tedious and
error-prone task, and it is advantageous to write a small
program that strips variable declarations and associated
comments from the source code. One of the authors wrote
a PERL script to do this. It is easily modified to retrieve
similar information from different varieties of source code.

 A variable usage table is also essential for the
analysis. This table lists all functions that use (i.e., read)
each variable and all functions that modify (or set) it. The
variable usage table helps the analyst understand the code’s
operations and provides a means to track implications of
failures. Figure 4 on the next page is a sample table. Here,
“line” is the source code line number at which the variable
is being used (“U”) or set (“S”).
The “description” field notes the
meaning of the particular use or
set.

 It is important for
information in individual fields
to be consistent among tables so
that fields in various tables can
be linked to create detailed
reports. To maintain database
relationships among tables – and
minimize typing – the database
provides tables with pull-down
menus that list names or phrases
in other tables. In this way,
analysts simply click on the
desired selection to enter it.
There is no need to type a piece
of information more than once.

Step 3: Developing

Rules and
Assumptions

 In Step 1, analysts
develop a good
understanding of the
code to be analyzed.
In Step 2, they develop
a database tool suitable
for the FMEA
requirements and enter
descriptive information
in the database. In
Step 3, analysts
develop rules for the

analysis and then apply them.
 The FMEA is based on stated assumptions that serve

as analysis rules. Rules for analyzing assembly language
will be different from rules for analyzing C code, and each
set of rules for a particular analysis will evolve as the staff
does its work and faces new situations. It is naturally
important to maintain the set of rules and be sure that each
analyst follows them. Some rules developed by the authors
are listed below as examples.

1. Input variables. The FMEA table lists only variables
that are used as inputs. If an input variable appears more
than once in a subroutine, then it may appear more than
once in the table, but it can be listed just once if it serves
the same purpose at each appearance.

2. Outputs to hardware. Some variables are outputs
only, such as those used to write to memory-mapped
hardware peripherals. These variables do not fail in a
software analysis because the locations they represent are
non-memory hardware. However, the input variables that
affect these output variables are subject to failure in the
analysis process.

3. Output variables. Every output variable (other than
memory-mapped outputs to hardware) is an input variable

Figure 2. Subroutine Definition Table Example

Figure 3. Variable Definition Table Example

3672003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

to at least one piece of software. Therefore variables are
only considered as inputs for failure analysis, and the
affected output variables are determined.

4. Numeric values. Numeric values or literal values
assigned by the assembler do not involve memory and
therefore do not fail. However, the variables that use them
are subject to failure.

5. Variables affecting decision logic. A variable with an
incorrect value that is used in decision logic may cause
unintended execution of code that is supposed to change
values of other variables (directly or through subroutine
calls), or it may cause the program flow to incorrectly skip
over a section of code that changes values of other
variables (again, directly or through subroutine calls). All
variables affected in this way are considered in the
FMEA.

Step 4: Developing Descriptive Failure Modes

 After a preliminary set of rules is developed,
failure modes are defined in a failure mode table. A
failure mode specifies how a variable can fail in a way that
affects the routines that use it. A variable fails when it is
assigned an unintended value, and the most common
failure mode for a variable is “Incorrect Value.” This label
indicates the variable has a value other than what is
expected or intended. For example, system problems may
occur when a flag is set to the opposite value of the one
intended, or when a variable representing an analog value
is set to any value other than the correct one – regardless of
whether the unintended value is ‘too low’ or ‘too high.’
However, this label is often too vague. In some situations,
only specific values or values within specific ranges will
cause a problem. For such situations, the table should
show the range of values that can cause a
problem. Typical failure modes are True,
False, Set, Clear, High Value, Low Value,
Incorrect Address, Incorrect Value, Value
equal to, Value greater than, Value greater
than or equal to, Value in range, Value less
than, Value less than or equal to, Value not
equal to, Value not in range, Bit Stuck High,
and Bit Stuck Low. Note that some failure
modes such as “Value equal to” need an actual value. This
special case is listed in a separate field elsewhere (in the
FMEA table). In all situations, an unintended value can (1)

cause an unintended effect, (2) can prevent an
intended effect, or (3) both.

 Another table, shown in Figure 5, lists
failure mode causes to represent hypotheses of
what causes a variable to fail. Again, the list of
causes will differ among analyses. However,
the table will prevent different people from
devising new ways to describe the same thing.

 A system effects table also prevents
different people from devising new ways to
describe the same thing. This table is set up
here in Step 4 for use in the Step 5. Typical
system effects might include Unpredictable,

Loss of data error logging, Uncommanded motion, and
Improper steering control. An “Unpredictable” system
effect is one whose consequences cannot be determined.
For example, an incorrect pointer may cause a memory
overwrite and corrupt a random set of variables.
“Unpredictable” means an unknown system failure is
certain (or is expected) to occur. “Unpredictable” does not
include the possibility that system behavior might be
normal. In addition, “Unpredictable” does not include the
possibility of a critical hazard.

 Figure 6 shows a sample system effects table. On
any row, the first column identifies the failure effect.
Analysts fill in this column as the work proceeds into and
during Step 5. The database tool fills in the other columns
of Table 6 automatically after completion of the FMEA
table (the work of Step 5), but a preview here is
worthwhile. The second column states the number of
software failures whose likelihood of causing the effect is
“possible” (depending on unpredictable circumstances),
and the third column identities these exact failures by
FMEA table identification numbers. The forth and fifth
columns list similar information for software failures
whose likelihood of causing the effect is “definite”
(predictable under all circumstances).

Figure 4. Variable Usage Table Example

Figure 5. Failure Mode Cause Definition Table Example

Figure 6. System Effects Table

2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 368

Step 5: Determining System Effects of
 Individual Failures

 The tables described so far aid in the analysis but
(except for the database-generated parts of Figure 6) don’t
represent results. The FMEA table, described now,
represents the heart of the analysis because it documents all
single point (software variable) failures in the system. The
tabular worksheet form is familiar to reliability engineers
and is thus the best way to represent the analysis. The
FMEA table is partially automated by the database tool in
the sense that it provides information created in other tables
during the analysis. Analysts typically click on a blank cell
and the database tool provides pull-down list with all
recognized possibilities. There is no need to retype
information already in another table. However,
development of tables is an iterative process. For example,
if none of the existing failure modes appearing in a pull-
down list fits the failure under consideration, you must add
it to the failure mode table so that it becomes available to
all other analysts working on the FMEA table.

 Table 2 lists information that typically appears
across the page for one input variable in a software FMEA
table. This information is summarized below vertically due
to space limitations. Each piece of information in the
“Item” column is typically a separate column in the
deliverable FMEA report.

In Table 2, the Input Variable field contains the
variable being analyzed. Every time a variable is used in
the system there should be a separate entry of that variable
in the FMEA table. However, it sometimes may be
sufficient to have a single entry for multiple uses of a
variable if the system and local effects are identical. Some
variables have different purposes in different modules and
will result in different effects locally in the code as well as

in the system. Certain variables may also have more than
one failure mode and thus may have multiple entries for a
single use in the code. For example, a variable used as a
condition in a series of branches may have a different effect
depending on what its unintended value has become when
the variable was corrupted.

 Software failure probabilities cannot be
assigned to a particular failure as in a hardware FMEA, but
a workable assessment of a system failure possibility is
whether (1) a failed variable might cause a particular effect,
depending on unpredictable but valid states of the system
and other variables, or (2) will cause the effect regardless
of other circumstances. The authors used the terms
Possible and Definite to represent these possibilities in the
FMEA table. A related rule of analysis was that a failed
variable whose system effects could be corrected in
subsequent iterations is described as “Definite” because
(based on yet another rule) the analysis precludes self-
healing of failures.

 The Affected Variable field in Table 2 is used to
identify variables that are directly affected by a failed input
variable. Since the failed variable may affect countless
other variables as execution proceeds, where does the list
of affected variables stop? The authors developed a rule of
analysis to draw the line. A “directly affected” variable is a
downstream (subsequent in the program execution)
variable whose value does not depend on another
downstream variable. For example, if the input variable
fails in such a way that it causes a branch to take place
when it should not, it may skip calling a subroutine or
setting a variable. The variables normally modified in the
skipped subroutine as well as the skipped variable should
all show up in the Affected Variable fields. However, only
variables that are directly affected should be added to these
fields.

Item Description How Entered Report
ID Unique identifier for a particular type of failure

caused by a each variable.
Automatically Yes

Input Variable The variable under analysis. Pull-down list Yes
Failure Mode Examples in Step 4. Pull-down list Yes
Fail Range Low Lower acceptable limit, if applicable. Analyst Yes
Fail Range High Upper acceptable limit, if applicable. Analyst Yes
Fail Mode Cause Examples in Figure 5. Pull-down list Yes
Local Effect Text for analysts’ benefit. Analyst No
System Effect
(several)

Effect of failure on system. Will generally be
one of several, with each identified as
“possible” or “definite.”

Pull-down list Yes

Notes Suggestions or notes. Analyst Yes
Subroutine Where this variable fails. Pull-down list Yes
Line Number Location in source code listing. Analyst Yes
Affected Variables All directly affected variables. Pull-down list No
Analysts Notes Whatever is helpful for analysis. Analyst No

 Table 2. Elements of the FMEA Table

3692003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium

 To illustrate this rule, consider the code fragment
below. If effects of input variable A are under
consideration, then the directly affected variables are B, C,
J, E and G. Variables A and F are not directly affected by
A because their assigned values depend on directly affected
variables B and C. When effects of B and C are analyzed,
then A and F will be considered directly affected.

void sub1(void){
 A = B + C
 D = B * C

 if(A < 0){
 B = 0
 C = 0
 Call sub2()
 }
 else {
 E = (C * D) + F
 }
}

void sub2(void){
 J = K - B
 if(B == 0 || C == 0){
 A = 0
 F = 2
 }
 G = J * F
}

The Affected Variable fields do not show up in the final

report but they are essential for tracing single variable
failure effects through the entire system. Additional
Affected Variable fields may be added as needed.

Step 6: Generating the Report

 An analysis report is generally prepared to
summarize key FMEA findings, explain ground rules, and
elaborate on the system under analysis. Fault trees may
also be included. Software fault trees are similar to those
prepared for hardware but can be far more complex
because the effects of a failed variable generally depend on
states of other variables and on related hardware. Finally,
the report may include recommendations for improving
software reliability for the specific system under analysis.

 The great advantage of the database tool is that it
can create any number of tables for the report in virtually
any format. The tool can also combine information from
tables to provide an organized summary of the analysis.

References
1. Goddard, Peter L., “Software FMEA Techniques,”

Proceedings of the Annual Reliability and Maintainability
Symposium, January 2000.

2. Bowles, John B., “Software Failure Modes and Effects
Analysis For a Small Embedded Control System,” Proceedings of
the Annual Reliability and Maintainability Symposium, January
2000.

3. Lutz, Robin R., “Analyzing Software Requirements Errors in
Safety-Critical, Embedded Systems,” Proceedings of the IEEE
International Symposium on Requirements Engineering, January
1993.

Biographies

Nathaniel W. Ozarin
The Omnicon Group Inc.
40 Arkay Drive
Hauppauge, NY 11788 USA
nozarin@omnicongroup.com

Nat Ozarin is a senior engineering consultant at The Omnicon

Group Inc., a company specializing in reliability and safety
analysis for the military, medical, industrial, and transportation
industries. His background includes hardware engineering,
software engineering, systems engineering, programming, and
reliability engineering. He received a BSEE from Lehigh
University, an MSEE from Polytechnic University of New York,
and an MBA from Long Island University. He is an IEEE
member.

Michael Siracusa
The Omnicon Group Inc.
40 Arkay Drive
Hauppauge, NY 11788 USA
msiracusa@omnicongroup.com

Michael Siracusa is an associate consulting engineer at The

Omnicon Group Inc., where he has specialized in database
development. He received his BSCE from Stony Brook
University and divides his time between Omnicon and MIT,
where he is enrolled in an MS/PhD program.

2003 PROCEEDINGS Annual RELIABILITY AND MAINTAINABILITY Symposium 370

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

