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ABSTRACT

Failure modes and effects analysis (FMEA) is a methodology for prioritizing actions
to mitigate the effects of failures in products and processes. Although originally used
by product designers, FMEA is currently more widely used in industry in Six Sigma
quality improvement efforts. Two prominent criticisms of the traditional application of
FMEA are that the risk priority number (RPN) used to rank failure modes is an invalid
measure according to measurement theory, and that the RPN does not weight the three
decision criteria used in FMEA. Various methods have been proposed to mitigate these
concerns, including many using fuzzy logic. We develop a new ranking method in this
article using a data-elicitation technique. Furthermore, we develop an efficient means
of eliciting data to reduce the effort associated with the new method. Subsequently, we
conduct an experimental study to evaluate that proposed method against the traditional
method using RPN and against an approach using fuzzy logic. [Submitted: July 9, 2010.
Revision received: October 14, 2010. Accepted: November 18, 2010.]

Subject Areas: Collaborative Decision Making, Group/Team Decision Mak-
ing, Multi-Criteria Decision Making Methods, Organizational Decision
Making, Process Improvement, Quality Management and Systems, Sys-
tems/Process/Service Design

INTRODUCTION

Multicriteria ranking problems are ubiquitous in industry (Arrow & Raynaud,
1986), and one such problem is to determine which failure modes in products
and processes should be mitigated first based on multiple characteristics of the
failure modes. Failure mode and effects analysis (FMEA) is the most prevalent
method used for this problem, and it was first applied to prioritize potential fail-
ures of product designs. Formal procedures have been defined in some industries,
including the defense industry (Department of Defense, 1980) and the automo-
bile industry (AIAG, 2008), and an FMEA is sometimes contractually required.
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Sellappan and Sivasubramanian (2008) provide a comprehensive list of industrial
FMEA standards. More recently, FMEA has been used to prioritize failures in
processes, and it has become an integral tool in Six Sigma process improvement.
FMEA can even be simultaneously applied to product design and the production
process as Wu, Kefan, Gang, and Ping (2010) have discussed in the context of con-
current engineering. The widespread adoption of Six Sigma in industry implies its
frequent use by nontechnical managers in improving processes in all functions of a
company including operations, sales and marketing, accounting, and information
technology.

FMEA ranks potential failure modes based on three criteria: frequency of
occurrence, severity of failure, and difficulty of detection. (We will use the short-
hand occurrence, severity, and detection to refer to these criteria, respectively.)
Each failure mode is assigned scores for each of these three criteria on an ordi-
nal scale, where a larger ordinal score indicates a less-desirable circumstance. In
traditional FMEA, a risk priority number (RPN) is then computed for each failure
mode by multiplying the three ordinal scores. The failure modes are subsequently
prioritized by RPN: efforts to mitigate failures are focused on the failure modes
with the greatest RPN values.

A number of issues have arisen with FMEA and, in particular, with the
computation of RPN values as cited in Ben-Daya and Raouf (1996), Braglia,
Frosolini, and Montanari (2003), Chang, Wei, and Lee (1999), Devadasan, Muthu,
Samson, and Sankaran (2003), Franceschini and Galetto (2001), Gilchrist (1993),
Jenab and Dhillon (2005), Pillay and Wang (2003), Rhee and Ishii (2002), Sankar
and Prabhu (2001), Sharma, Kumar, and Kumar (2005), and Wang, Chin, Poon,
and Yang (2008). We summarize those criticisms below:

(i) RPN is a product of ordinal measures and is, therefore, not a meaningful
measure.

(a) Multiplication is an arbitrary choice for combining three criterion
scores.

(b) Generating an RPN on [1, . . . , 1000] from criteria scores on [1, . . . ,
10] generates a fictitious increase in measurement resolution.

(ii) The method for computing RPN does not assign weights to severity, oc-
currence, and detection; all components are assumed to be of equal impor-
tance.

(a) The RPN computation assumes that the scales for occurrence, severity,
and detection are equivalent (i.e., a 3 on the severity scale represents
the same significance level as a 3 on the occurrence or detection
scoring scales).

(iii) The single RPN score does not sufficiently describe the three criteria
scores.

Thus, the predominant criticisms of RPN are with its validity as a measure, its
incapability to weight the three criteria, and its incapability to comprehend the
full complexity of the ranking problem. Support of the first criticism can be found
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in widely accepted measurement theory, which holds that the multiplication of
ordinal measures results is a meaningless measure. Also, the literature suggests
that the deficiency with regard to weighting is significant: Arrow and Raynaud
(1986) note the frequent desire of decision makers to weight decision criteria.

A vast literature is motivated by these shortcomings of RPN where re-
searchers have applied fuzzy logic to generate FMEA rankings with mathemati-
cally valid operations while weighting the decision criteria. We will focus on the
seminal paper in this area by Yager (1981) who employs fuzzy logic to construct
a general ranking procedure, and Franceschini and Galetto (2001) who applied
Yager’s procedure to FMEA. Since Franceschini and Galetto, many papers have
also used fuzzy logic to resolve possible ranking inaccuracy due to the invalid RPN
computation and the inability of RPN to weight criteria.

Although this recent research has focused on improving FMEA accuracy, the
literature suggests another important characteristic of an effective FMEA, namely
its simplicity. Franceschini and Galetto (2001), for example, use simplicity as a
criterion to justify their approach. Tay and Lim (2010) refer to ranking by RPN
as “simple and well accepted.” Yang, Bonsall, and Wang (2008) also cite the ease
of a traditional FMEA ranking with RPN, but they note that fuzzy approaches
compromise the simplicity and transparency of the traditional approach. Yang
et al., thus, signal a potential trade-off between simplicity and accuracy.

The increasing frequency of FMEA deployment motivates us to resolve this
trade-off between accuracy and simplicity by defining a FMEA ranking method
that is both simple and accurate. We strive for accuracy by developing a ranking
method that adheres to measurement theory, provides the capability to weight deci-
sion criteria, and adheres to other technical requirements such as Pareto optimality.
Our strategy is to allow arbitrary weighting of criteria by directly eliciting deci-
sion makers’ relative priority for all 1,000 criteria score combinations. A ranking
method must also be as simple as possible if it is to be adopted, and so we develop
a method to reduce the amount of data needed from a decision maker. We develop
an algorithm that requires only a subset of the 1,000 ranking scores, from which
it interpolates for the unspecified data. We also supply a mathematical proof that
guarantees that the data thus determined by the algorithm satisfy technical require-
ments (i.e., Pareto optimality). To further simplify the task of eliciting data, we
develop a software tool that eases the decision maker’s task of specifying ranking
data by providing visual cues. We build theoretical hypotheses regarding the com-
parative accuracy of the ranking methods (RPN, Yager’s method, and the proposed
method), as well as the simplicity of the RPN method compared with our pro-
posed method. We then test those hypotheses experimentally. Our contributions
are, thus, the development of a rigorous FMEA ranking method, the develop-
ment of a data-elicitation tool to support the method, and testing of the proposed
method.

In the sections that follow, we first discuss the details of FMEA, and then in
the subsequent section we discuss attributes of a rational ranking scheme that our
proposed method must satisfy. In the following section, we describe Franceschini
and Galetto’s application of Yager’s method to FMEA. Next, we develop our in-
terpolation algorithm for determining a set of ranking data from partial data. The
subsequent section draws upon preceding sections as it develops our hypotheses
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regarding the comparative accuracy and simplicity of the RPN ranking, Yager’s
method, and our proposed method. The next section describes results of our ex-
perimental study that evaluate those hypotheses. The last section in this article
discusses those results in detail.

FMEA IN DETAIL

As described in the previous section, traditional FMEA involves three steps: (i)
determining three criteria scores for each failure mode, (ii) computing RPN scores,
and (iii) ranking the failure modes in descending order by RPN. The most common
ordinal scales for occurrence, severity, and detection include 10 levels represented
by the integers 1 through 10: we will use the algebraic symbols O, S, and D to
represent these values. Each ordinal scale value for O, S, and D is defined in
either qualitative (linguistic) or quantitative terms. One can observe considerable
variation in scales depending on the particular problem at hand, the individuals
performing the analysis, and the organization in which the analysis is situated (cf.
Gilchrist, 1993; Ben-Daya & Raouf, 1996; Chang et al., 1999; Franceschini &
Galetto, 2001; Puente, Pino, Priore, & de la Fuente, 2001; Sankar & Prabhu, 2001;
Pillay & Wang, 2003; Sharma et al., 2005).

The RPN is traditionally computed as the product of the three criteria scores:

g(O, S, D) = O × S × D,

where the function g(·) used to denote the RPN calculation can be written as a
more general mapping from O, S, and D to RPN that might employ other methods
besides multiplication to derive a single value representing the overall importance
of a failure mode:

g : {1, . . . , 10} × {1, . . . , 10} × {1, . . . , 10} → {1, . . . , 1000}.
We will refer to the output of this mapping as the importance score for a failure
mode. We can write a still more general expression,

g : O × S × D → I,

where the importance score might be on some set I other than {1, 2, . . . , 1000} and
the criteria scores might be assigned from sets O, S, and D other than {1, . . . , 10}.
For example, linguistic measures are sometimes used for importance scores, such
as low importance, medium importance, and high importance. Although criteria
scoring scales with 10 levels are most common, scales with fewer than 10 levels
have been used (Sciemetric Instrument, Inc., 2005). For an in-depth description
of FMEA, see Besterfield, Besterfield-Michna, Besterfield, and Besterfield-Sacre
(2002).

CHARACTERISTICS OF RATIONAL AND PRACTICAL RANKINGS

Arrow and Raynaud (1986) define technical axioms that multicriteria decision
algorithms must satisfy, which in the context of FMEA are:
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Axiom 1: Pareto optimality: if for two failure modes m and n, On ≥ Om, Sn ≥ Sm,
and Dn ≥ Dm, then g(On, Sn, Dn) ≥ g(Om, Sm, Dm).

Axiom 2: Transitivity: for three failure modes k, m and n, if g(On, Sn, Dn) > g(Om,
Sm, Dm) and g(Om, Sm, Dm) > g(Ok, Sk, Dk), then g(On, Sn, Dn) > g(Ok,
Sk, Dk).

Axiom 3: Independence of irrelevant alternatives: if g(Om, Sm, Dm) > g(Ok, Sk,
Dk) for some failure modes m, k ∈ {1, . . . , N}, then the relative ranking
of m and k remains undisturbed when an additional failure mode N +
1 is introduced.

Pareto optimality is rational because higher criteria scores cannot lead to a lower
importance score and a lower ranking. It is easily shown that the traditional RPN
procedure is Pareto optimal, as is Yager’s method. All methods considered in this
article will also satisfy the remaining two axioms.

Arrow and Raynaud also introduce other axioms, which they argue are nec-
essary for ranking accuracy and user acceptance:

Axiom 4: Methods should be versatile so that they do not diminish the role of the
decision maker.

Axiom 5: Methods should not be so versatile that decision makers can fall victim
to their biases.

Axiom 6: Methods should be easily understood by decision makers.

Whereas, Axioms 1 through 3 might be called axioms of rationality, Axioms 4
through 6 might be called axioms of adoption because the degree to which they are
satisfied positively influences the probability of successful implementation. Also
addressed in these axioms is the accuracy of a FMEA ranking. Specifically, the
notion of versatility in Axiom 4 implies that a ranking method must allow a user
the latitude to express their true preferences. In other words, the method cannot
overly constrain a user’s ranking to one that differs substantially from their true
preferences. Conversely, Axiom 5 implies that some constraint must be present
in the method to prevent an intentional or unintentional act of manipulating the
rankings to match a user’s a priori judgments. Constraint might alternately be
implemented in a method such that, although the ranking mechanism is clear
(Axiom 6), the mechanism is not so transparent that the results can be easily
manipulated.

Other technical axioms have been advocated in the literature as well. Frances-
chini and Galetto (2001) have referred to “positive association of higher scores,”
which means that higher criteria scores should lead to higher overall importance
scores for a failure mode; while related to Pareto optimality this is a stronger
statement of the same notion. Additionally, Yager (1981) argues that, if criteria
can be weighted, then the ranking should be influenced to a greater degree by the
more highly weighted criteria.

To these axioms of adoption we would add that a method must be simple
and efficient. The literature on FMEA posits that simplicity is one critical factor
responsible for the widespread adoption of FMEA (Franceschini & Galetto, 2001;



748 Discrete Choice Models

Yang et al., 2008; Tay & Lim, 2010). We cannot expect users to adopt an onerous
tool.

YAGER’S RANKING METHOD

Yager’s ranking algorithm (Yager, 1981) was motivated by the need to weight
decision criteria that are measured on ordinal scales in a manner that adheres to
the rules of measurement theory. Yager’s method can be used for any multicriteria
ranking problem, and Franceschini and Galetto (2001) applied it to FMEA. Many
papers followed Franceschini and Galetto in applying fuzzy logic and grey the-
ory to FMEA, which are closely related to Yager’s method. We demonstrate the
characteristics of Yager’s method in this section to motivate our proposed FMEA
ranking method and to suggest hypotheses that we will test experimentally.

Summary of Yager’s Method

Franceschini and Galetto use traditional FMEA criteria scoring scales of {1, 2, . . . ,
10} in implementing Yager’s method, which requires three weighting parameters
defined on the same ordinal set as are the criteria scores, WO, WS, WD ∈ {1, 2, . . . ,
10}. The weights indicate the relative importance of criteria, with larger weights
reflecting greater importance. Denoting any arbitrary criterion score or weighting
factor by x, y ∈ X = {1, 2, . . . , 10}, Yager’s method uses three set operators:

(i) The intersection of x, y is defined as x ∩ y = min(x, y)

(ii) The union of x, y is defined as x ∪ y = max(x, y)

(iii) The complement of an element x is x ′ = |X | − x + 1

where the cardinality of X , |X |, in Franceschini and Galetto’s formulation is 10.
Yager’s mapping of criteria scores to the importance score is

gY (O, S, D) = (W ′
O ∪ O) ∩ (

W ′
S ∪ S

) ∩ (
W ′

D ∪ D
)
. (1)

Although many logic rules might be employed in such a mapping, the reader may
refer to Yager’s paper for the intuition reflected in Equation (1). Yager’s method,
importantly, adheres to the rules of measurement theory and it allows criteria to
be weighted, thus addressing two main criticisms of RPN. Yager’s method also
satisfies the technical axioms of Pareto optimality, transitivity, and independence of
irrelevant alternatives, as discussed earlier. The following subsection investigates
Yager’s method applied to FMEA in light of the remaining axioms.

Characteristics of Yager’s Method

As an example for discussion, Figure 1 shows importance scores determined by
Yager’s method for D = 1, 5, 8, 10 where (WO, WS, WD) = (10, 10, 5), from which
we note:

(i) The importance scores are identical for D = 1, 5 (and also for D = 2, 3, 4,
6).

(ii) For D = {1, . . . , 6} and S, O > W ′
D = 6, the importance score is invariant

in S and O.
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Figure 1: Yager weighted ranking scheme for (WF, WS, WD) = (10, 10, 5).

(a) D (b)1= D = 5

(c) D (d)8= D = 10
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(iii) For each value of D, holding O constant, the ranking gY (O, S, D) does not
increase as S increases unilaterally for S ≥ O. Similarly, gY (O, S, D) does
not increase when S is held constant and O increases unilaterally for O ≥
S.

(iv) When a unit increase in a criterion score increases the importance score,
the importance score always increases one unit, regardless of the criterion
weight.

We now elaborate on the observations (i) through (iii) above by writing a more
general and precise mathematical statement of the conditions when positive as-
sociation with higher scores fails to hold. The proof is trivial and, therefore, is
omitted.

Lemma 1: Denote x, y, and z as the three criterion scores, where x ∈ {O, S, D},
y ∈ {O, S, D}\x, and z ∈ {O, S, D}\{x, y}. Then, an increase in criterion score x
by one level does not affect the importance score when either

(i) x < W ′
x, or

(ii) min(x, W ′
x) < y, z

The statement holds similarly when restated for y and z.
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Table 1: Frequency of positive association with higher scores (PAHS) violation
among criteria weight combinations.

Criteria Scores Where PAHS Violated
Frequency of

Number % of Scoring Combinations Criteria Weights

516 57% 100
525 58% 100
543 60% 100
564 63% 100
612 68% 100
627 70% 100
708 79% 100
729 81% 101
801 89% 100
900 100% 99

Total 1,000

Table 1 summarizes the frequency over all 1,000 combinations of criteria
weights and shows how often at least one of the two conditions in Lemma 1 holds.
In particular, Table 1 displays the number and percentage of possible criteria
scoring combinations for which a unilateral increase in a criterion score does not
cause an increase in the importance score, and the count of the criteria weights
where each datum is observed. At a minimum, for any set of weights, an increase
in a criterion score has no impact on the importance score for over 50% of the
scoring combinations. For some weight combinations, a unilateral score change
never impacts on the importance score or ranking of a failure mode. Positive
association with higher scores should not be interpreted as the requirement that
an increase in a criterion score should always cause the importance score to
increase; it might be appropriate, for example, for a criterion score to increase by
two levels before it induces an increased importance score. Still, Table 1 might
suggest that Yager’s method does not broadly reflect positive association with
higher scores. This is caused by the minimum and maximum operators, which
omit criteria scores so they do not affect the importance score rather than reflecting
a combined effect of the criteria scores. In most situations, the nature of Yager’s
method to not reflect positive association with higher scores might imply the
inability to model users’ rational thought processes and, therefore, accurately
represent their ranking preferences. Further, Jenab and Dhillon (2005) raise the
issue of subjectivity in specifying criteria weights, which could affect ranking
accuracy.

Consistent with argumentation in the literature, we might also desire that
increases in the scores of more highly weighted criteria would cause the importance
score to increase by a greater amount (point (iv) above). With Yager’s method,
however, when an increase in a criterion score does affect the importance score
in Yager’s method it always does so in the same manner, regardless of criterion
weight: the importance score increases by one for every increment in criterion
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score. This observation, again, raises the potential for insufficient rationality and
inaccuracy.

Finally, Arrow and Raynaud suggest that a barrier to implementation might
be raised if decision makers do not find the mechanics of a ranking method
to be intuitive. Yang et al. (2008) state that fuzzy logic approaches to rank-
ing inhibit clarity, thus raising an issue about adoption of Yager’s and related
methods.

PROPOSED RANKING METHOD

Interpolation Algorithm for Elicited Data

We are motivated by the criticisms of RPN and the preceding critique of Yager’s
method to develop an alternate ranking method. The design criteria are all the
axioms of rationality and adoption, such that our method would be as accurate and
simple as possible. We later evaluate this candidate method compared with the
RPN method and Yager’s method.

The method that gives a decision maker the greatest possible ranking flex-
ibility specifies importance scores for the 1,000 scoring combinations (assuming
O,S,D = {1, 2, . . . , 10}) with the requirement that importance scores satisfy
Pareto optimality. This approach would allow an arbitrary weighting criteria and,
therefore, could be adapted to any user’s ranking preferences. Its versatility vis-
á-vis Axiom 4 could impart greater ranking accuracy. This approach also, pre-
sumably, would be understandable to users: they would be specifying a ranking
framework that would be deployed on a particular problem or problems (we will
test for this hypothesis). The greatest barrier to implementing this approach is, per-
haps, the burdensome task of specifying 1,000 data points. To remove this barrier,
we develop a method for interpolating a full set of importance scores from a partial
set specified by a decision maker. The method will be designed to satisfy Pareto
optimality and the other technical axioms.

We can describe the problem of interpolating for unspecified data where
importance scores are missing for one level of detection, D = d, as follows. Because
we know g(O, S, D) for O, S ∈ {1, 2, . . . , 10} and D = D/d = {1, . . . , d − 1, d +
1, . . . , 10}, the task at hand is to infer g(O, S, d) for O, S ∈ {1, 2, . . . , 10} such that
Pareto optimality is maintained (we assume the specified data is Pareto optimal).
Pareto optimality requires g(O, S, d), for every combination of O, S ∈ {1, 2, . . . ,
10} to be greater than or equal to each failure mode importance score that its
arguments dominate, and less than or equal to the ranking of each instance where
its arguments are dominated:

g(O, S, d) ≥ g(O ′, S ′, D) for all O ≥ O ′, S ≥ S ′, and d > D

g(O, S, d) ≤ g(O ′, S ′, D) for all O ≤ O ′, S ≤ S ′, and d < D
. (2)

The theorem below simplifies the Pareto optimality requirement from Equation (2),
which we use in our algorithm (the proof is contained in the Appendix).
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Theorem 1: The set of admissible values, R(O, S, d), for importance score g(O,
S, d) that preserve Pareto optimality for O ∈ O and S ∈ S is:

g(O, S, d) ∈ R(O, S, d) ≡ {x : x ∈ I, g(O, S, d − 1) ≤ x ≤ g(O, S, d + 1)}.
(3)

Note that the set R(O, S, d) may contain more than one admissible value. Also
note that Theorem 1 assumes missing data for only one value of D but, in what
follows, we iteratively apply Theorem 1 to determine g(O, S, d) for multiple,
consecutive missing values of D.

Simply put, Theorem 1 says that choosing an importance score g(O, S, d)
for any one (O, S) that is between the importance values for adjacent values of d,
g(O, S, d − 1) and g(O, S, d + 1), preserves Pareto optimality between specified
and interpolated importance scores. We must also ensure Pareto optimality within
the interpolated data g(O, S, d) for D = d over all (O, S). For example, Figure 2(c)
shows the admissible values R(O, S, d) for d = 4 and d = 5 based on interpolation
between importance scores for D = 3 and D = 6, where the importance score
for (O, S, D) = (9, 7, 4) can be either 4 or 5. If 4 is selected then, by Pareto
optimality, the importance values for (O, S, D) ∈ {(8, 7, 4), (8, 6, 4), (9, 6, 4)}
are constrained to 4 as well. Our algorithm, which we describe later, facilitates
such Pareto optimality using the definitions below, where R(O, S, dL, dU ) denotes
the set of admissible importance scores between two matrices g(O, S, dL) and
g(O, S, dU) with dU > dL, where importance scores are known for detection
levels D = dL and D = dU , and unknown for the integers in the interval [dL

+ 1, dU − 1]. The subscripts L and U can be thought of as lower and upper
boundaries on the detection levels for which the importance scores are unknown.
In Figure 2, dL = 3 and dU = 6. Note that there may be more than one level of
detection where importance scores are unknown; that is, dU − dL may be greater
than 2.

Definition 1: A subordinate cell is a combination (O, S) with a cardinality greater
than 1, |R(O, S, dL, dU )| > 1, where by restricting from consideration some values
from the set R(O, S, dL, dU ) for at least one other combination (O, S) �= (O, S)
the cardinality of R(O, S, dL, dU ) could decrease.

Definition 2: A dominant cell is a combination (O∗, S∗) with a cardinality
greater than 1, |R(O∗, S∗, dL, dU )| > 1, that is not subordinate to any other cell
(O, S).

Thus, in Figure 2(c), (O, S) = (9, 7) is a dominant cell and (O, S) ∈ {(8, 7),
(8, 6), (9, 6)} are subordinate to (9, 7). Note that a dominant cell such as (O, S) =
(9, 2) in Figure 2(c) may have no cells subordinate to it. Denote by CD(d) the cells
(O, S) for a particular level of detection d that are dominant cells and CS(d) the set
of subordinate cells for D = d.

A mechanism must be defined to choose among the values in the set
R(O, S, d) for each (O, S) ∈ O × S when it contains more than one element.
Our algorithm below interpolates between importance scores at two levels of de-
tection, g(O, S, dU) and g(O, S, dL), for D = d where for dL + 1 ≤ d ≤ dU − 1,
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Figure 2: Example interpolation of unknown importance scores for two levels of
detection.

using ⎢⎢⎢⎢⎢⎢⎣
g̃(O, S, d) = g(O, S, d + 1) − vd

d∑
w=dL

vw

[maxR(O, S, dL, d + 1)

− minR(O, S, dL, d + 1)] + 0.5

⎥⎥⎥⎥⎥⎥⎦ ,

(4)
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where z� denotes the greatest integer less than or equal to z. The vector v =
{v1, v2, . . . , v10}, where each vw for w = 1, . . . , 10, allows flexibility in how the
importance scores transition from those at D = dU to those at D = dL (note that
v has the same cardinality as D). Flexibility, as previously discussed, is desirable
for greater ranking accuracy. If v = {1, . . . , 1}, then interpolated values between
g(O, S, dU) and g(O, S, dL) decrease from D = dU to D = dL in roughly uniform
increments over [dL + 1, dU − 1] (allowing for the integer nature of importance
scores). A power series such as vw = 2w−1 would result in importance scores
decreasing by a greater amount from D = dU to D = dU − 1 than from D = dL +
1 to D = dL. Conversely, vw = ( 1

2 )w−1 would cause importance scores to decrease
by a lesser amount from D = dU to D = dU − 1 than from D = dL + 1 to D =
dL. Further, any arbitrary set of positive values might be used for v, and it is also
possible to define an array v(O, S) = {v1(O, S), . . . , v10(O, S)} such that v varies
with O and S.

In the algorithm below we interpolate using Equation (4) mediated by con-
straints imposed by Pareto optimality requirements. We leave the investigation of
how to specify the most appropriate vector v to follow-on research, and we use
v = {1, . . . , 1} to induce a uniform interpolation. Our focus, instead, is on investi-
gating the fundamental effectiveness of interpolated importance scores; moreover,
our arbitrary choice of v implies that any favorable results that we might obtain
regarding this proposed algorithm could possibly be improved with a more prudent
specification of v.

(i) Set n = 1.

(ii) Use Theorem 1 to compute the set of allowable importance scores for
D = dU − n, R(O, S, dL, dU − n) given g(O, S, dU − n + 1) and g(O,
S, dL), for each (O, S). Use that result to determine the dominant cells for
D = dU − n.

(iii) Set the importance score for each dominant cell (O, S) ∈ CD(dU − n) to
g̃(O, S, dU − n).

(iv) Set the importance score for each subordinate cell (O, S) ∈ CS(dU − n)
to the minimum of g̃(O, S, dU − n) and importance scores of cells that
dominate it from (O, S) ∈ CD(dU − n) (Pareto optimality), which were set
in the previous step.

(v) Stop if n = dU − dL − 1. Otherwise, set n = n + 1 and go to Step (ii).

For the example in Figure 2, the algorithm determines the importance scores for
D = dU − n = 5 when n = 1. Figure 2(d) shows that the interpolation algorithm
results in an importance score of 5 for the dominant cell (O, S) = (9, 7) as calculated
by Equation (4). The cells (O, S) ∈ {(8, 7), (8, 6), (9, 6)} subordinate to (9, 7)
are also 5 because g̃(O, S, 4) is equal to 5 for all these cells and the previously
determined value for cell (9, 7) does not constrain cells (O, S) ∈ {(8, 7), (8, 6), (9,
6)} to a lesser value. When n = 2 in the algorithm, the admissible values for (O, S)
and D = dU − n = 4 remain the same as in Figure 2(c). The interpolated value for
the dominant cell (O, S) = (9, 7) as calculated in Equation (4) is 4. Subsequently,
g̃(O, S, 4) = 4 for (O, S) ∈ {(8, 7), (8, 6), (9, 6)} which results in importance
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Figure 3: Graphical user interface ranking data-elicitation tool.

scores of 4 for all of these cells because the importance score of their dominant
cell is also g̃(9, 7, 4) = 4.

The Spreadsheet Elicitation Tool

The interpolation algorithm was programmed in a spreadsheet, which was also used
to elicit importance scores (Figure 3 shows the spreadsheet). The spreadsheet
tool simplified the task of specifying importance scores by allowing users to
simultaneously assign a common importance score to multiple spreadsheet cells.
This was done by selecting a range of cells and then clicking on one of the
buttons labeled 1 through 5. The spreadsheet used color coding to indicate the
importance score values contained in the cells, which was intended to facilitate
visual interpretation of a user’s input as shown in Figure 4. The tool prevented
users from entering values that violated Pareto optimality, which ensured rational
importance scores as required by the interpolation algorithm. Importance scores
could be entered and re-entered until a group was satisfied with their response.

Upon completing the specification of a subset of the 1,000 scoring combi-
nations, users click on a button to interpolate for the unknown importance scores.
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Figure 4: Example of a group’s elicited ranking data.

That importance score framework, then, allows ranking of failure modes based on
their respective occurrence, severity, and detection scores.

Development of Hypotheses

The preceding sections have discussed important characteristics of accurate and
easily adopted ranking methods. We have developed a proposed method based on
data elicitation and interpolation to circumvent the issues discussed with RPN and
Yager’s method. A possible key advantage that the proposed method possesses is
that its can weight decision criteria flexibly and, thus, perhaps accurately reflect
users’ preferences. In this section, we synthesize the information on the RPN
method, Yager’s method, and the proposed method as we construct hypotheses
aimed at providing evidence regarding the accuracy of the proposed method and
how readily managers might embrace it. Those hypotheses rely on the RPN method
as a benchmark because it is so widely used and accepted. We also have one
hypothesis regarding the difference between Yager’s method and the proposed
ranking method.

Accuracy of an FMEA ranking is difficult to assess because the proper bench-
mark upon which to judge accuracy is a user’s true preference, which we cannot
know. Indeed, FMEA is aimed at determining a user’s preference but, like any
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measurement tool, we must assume the presence of measurement error. More-
over, each user’s preference might be different than the next, so no one universal
ranking benchmark exists for any problem. However, we can measure statistically
whether the RPN method and the proposed method yield similar rankings, which
can inform our assessment of accuracy. If, for example, both methods’ rankings
are statistically equivalent, then we can conclude that both methods are equally
accurate, although we have not characterized precisely the benchmark of accuracy.

H1: Users’ rankings with the RPN method and the proposed method are con-
sistent.

We demonstrated that Yager’s method often violates the axiom of “positive associ-
ation with higher scores.” The flexibility of our proposed method permits users to
freely specify importance scores reflecting positive association with higher scores.
In addition, specifying each importance score independently implies that any ar-
bitrary weighting can be applied to the criteria. Further, Jenab and Dhillon (2005)
indicate that specifying weights for criteria in methods such as Yager’s can be
subjective and difficult. When data is elicited as in the proposed method, numeri-
cal weights on criteria are implied, but there is no need to quantify them. Moreover,
a practitioner might not comprehend in a formula such as Yager’s how the relative
weights affect importance scores; if this is true, it might add to the difficulty of
setting criteria weights. More generally, one might find a barrier to implementation
in Yager’s method if decision makers do not find Yager’s formula intuitive. To test
if the proposed method is substantially different than Yager’s method, we test the
following:

H2: Users’ rankings with Yager’s method and the proposed method are con-
sistent.

Our next hypothesis, aimed at evaluating whether managers would find the
proposed method easy to use, is suggested by Arrow and Raynaud’s argument that
the users must feel as though they understand the principles of a decision making
method in order for them to willingly adopt it. The following hypothesis is, thus,
designed to gauge whether users’ find the mechanics of either the RPN ranking or
the proposed ranking method easier to understand:

H3: Users find the RPN method and the proposed method to be equivalently
intuitive.

We have noted simplicity as an important hallmark of the traditional RPN ranking.
Simplicity, however, albeit a very important trait of a ranking method, is not the
only consideration; the literature on FMEA ranking using fuzzy logic is focused
on accuracy and it raises the issue of a potential trade-off between simplicity and
accuracy. Although users might find one method to be more simple or intuitive, it
is not a given that they will perceive that same method to also be more accurate:
users might ascribe greater accuracy to a method that is more complex and opaque.
Thus, where there is a trade-off between simplicity and accuracy, a user might opt
for a slightly more difficult method if the gains in accuracy are sufficient. Note
that the issue here regarding likelihood of adoption is not a rigorous measurement
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of accuracy but, rather, a user’s perception of accuracy. We use this test to gauge
users’ perception of accuracy.

H4: Users perceive the RPN method and the proposed method with elicited
data to be of equivalent accuracy.

The key feature of the proposed method that would make it less simple to use
than the RPN-based method is specifying importance scores using the spreadsheet
tool we developed. Thus, we gauge the difficulty of specifying importance scores
in the following hypothesis:

H5: A majority of users perceive the task of eliciting data in the proposed
method to be difficult.

EXPERIMENTAL STUDY OF FMEA RANKING

Experimental Design

The experimental design was structured to investigate our hypotheses in Section
“Development of Hypotheses.” The responses of groups rather than individuals
were considered because Guerrero and Bradley (2011) have shown that group
FMEA rankings using RPN more closely replicate experts’ rankings than do in-
dividuals’ FMEA rankings. The groups were composed of MBA students who
were studying FMEA in a core operations course. This subject pool was selected
because the subjects’ knowledge and skill sets are representative of individuals
who seek Lean Six Sigma certification and, thus, would implement FMEA to im-
prove processes. Many of these students did subsequently enroll in a Lean Six
Sigma certification program. The respondents were all first-time users of FMEA
so they were given instruction on the traditional RPN method at the outset of the
experiment. Before the last stage of the experiment, training was also provided for
the spreadsheet tool (Figure 3), which was used in that stage.

The study had multiple stages. First, 96 individuals performed an RPN rank-
ing for a problem posed in a case study by assigning occurrence, severity, and
detection scores for eight predefined failure modes. In the second stage, these
same individuals were assigned to 21 groups, each of which convened to determine
group consensus criteria scores, which determined group-based RPN rankings of
the failure modes.

In the final stage of the experiment, a partial set of importance score data
was elicited from each group using the spreadsheet tool previously described.
Elicitation of importance score data was simplified by requiring groups to specify
scores for four levels of detection score, D = 1, 4, 7, 10, which constitute 400 of the
1,000 possible combinations of criteria scores. The spreadsheet tool interpolated for
the missing importance data using the previously defined interpolation algorithm
and then used the full set of importance data to rank the failure modes based
on the groups’ previously determined consensus criteria scores. We used the set
I ={1, 2, 3, 4, 5} for importance scores with the proposed method; while other sets
I with greater cardinality could have been used, we wanted to investigate whether
a smaller set of ranking values would simplify the elicitation of data and increase
user acceptance. Thus, the groups’ consensus criteria scores gave rise to two
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rankings, one based on RPN and one based on the proposed method. We compared
the two rankings to evaluate H1. We were able to investigate H2 by comparing
the ranking with the proposed method to the ranking with Yager’s method using
criteria weighting information elicited from the groups in the spreadsheet tool.

Both the Kruskal–Wallis test and the Mann–Whitney U test are nonparamet-
ric and well suited to comparing ordinal rankings, which is the focus of hypotheses
H1 and H2. These tests can be applied to our data by considering each failure mode
individually and comparing the distribution of ranks assigned to a failure mode
by the groups using one ranking method versus another method. The sampling
distribution in the Mann–Whitney is the well-known U distribution, where the U
statistic is derived from putting in rank order all the groups’ ranks for a particular
failure mode for the two respective treatments considered in each of H1 and H2.
The Kruskal–Wallis test is more general than Mann–Whitney because it can be
used to compare more than two treatments, and it uses the H distribution for its
sampling distribution. Our statistical tests for H1 and H2 are based on n = 20
rather than n = 21 because a portion of one group’s response was corrupted.

For H1 we compared the RPN and proposed method rankings, and for H2 we
compared Yager’s method with the proposed method. For Yager’s method in the
H2 analysis, we did not ask respondents for specific criteria weights. Rather, we
asked the subjects to specify the priority order of the criteria: occurrence, severity,
and detection. These data allowed us to do an exhaustive search of all criteria
weights to determine which weights yielded the best fit between Yager’s method
and the proposed method, while adhering to a group’s priorities on criteria. The
best fit was determined by minimizing the sum of squared differences between
the rankings of the proposed method and Yager’s method. This analysis was
conservative because we allowed ties when searching for the best criteria weights
rather then adhering to groups’ strict preferences. Subsequently, we applied the
Kruskal–Wallis and Mann–Whitney U tests to the resulting Yager ranking. This
approach can be viewed as a conservative one because we perform the test on the
best possible Yager outcome, which assumes that each group could have identified
the precise criteria weights that led to that ranking. We were also able to determine
which criteria weights used in Yager’s method provided the best fit irrespective of
the groups’ stated criteria priorities. This allowed us to compare the groups’ stated
priorities and their implicit criteria weights employing Yager’s method.

We asked the following questions to facilitate statistical tests of proportions
for H3 through H5, which gauge the proposed method’s prospects for adoption by
comparing users’ perceptions of it with the RPN-based method:

(i) (H3) “Which ranking of the failure modes did your group find most in-
tuitive: (a) the RPN method, (b) the alternative method with elicited and
interpolated data, or (c) no difference?”

(ii) (H4) “In general, which approach toward ranking failure modes would you
trust most to most accurately determine the most important failure modes,
the RPN method or the [elicited data method]?”

(iii) (H5) “True or False: We found the task of assigning priority categories to
be relatively easy.”
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Our sample size (n = 20) is sufficient to use the normal distribution as our sampling
distribution in testing differences between RPN and the proposed method (in H3
and H4) and in gauging the simplicity of specifying data in the proposed method
(H5). For corroboration, we also evaluated H3 through H5 using a chi-square
test.

Results
Comparison of RPN-based ranking versus proposed method

The results from the Mann–Whitney and Kruskal–Wallis tests are not materially
different for H1 and H2, and so we focus our discussion on the Kruskal–Wallis
here in regards to H1 and also later when H2 is discussed. The Kruskal–Wallis test
results in Table 2 show that when RPN and the proposed method are compared,
four of eight failure modes have statistically significant changes in their rank-
ings at a 0.10 level of significance or greater. Additionally, another failure mode
changed at a significance level just slightly greater than 0.10. Of these failure
modes with statistically significant changes, failure modes 7 and 8 were ranked
more highly with elicited data, whereas failure modes 3, 5, and 6 were ranked
lower. We can say, then, that the ranking of failure modes based on elicited im-
portance scores in the proposed method is statistically different than a RPN-based
ranking, even when the two rankings are derived from a common set of criteria
scores.

From a practical standpoint, perhaps the most relevant measure of difference
between two rankings is whether a decision-maker’s actions would be materially
different with one method versus the other. That is, would the top-ranked failure
modes that were addressed first change? We answered that question by computing
descriptive statistics regarding the most critical failure modes under both ranking
methods, which we defined using the idiomatic 80%–20% rule: we focused on the
top two failure modes, which constitute roughly 20% of the failure modes. For
100% of the groups, the top ranked failure mode identified by RPN was also in
the top two priorities with elicited data; for 70% of the groups, the second highest
priority under RPN was also in the top two with elicited data; for 70% of the

Table 2: Kruskal–Wallis test results for Hypotheses 1 and 2.

Failure Mode

1 2 3 4 5 6 7 8

Hypothesis 1
Significance level 0.176 0.372 0.045 0.925 0.053 0.027 0.102 0.001
Direction of change ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↑

Hypothesis 2
Significance level 0.014 0.797 0.140 0.083 0.008 0.040 0.022 0.000
Direction of change ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↓
↓/↑ indicates that a failure mode was judged less/more important relative to other failure
modes, respectively, with the proposed method versus the risk priority number (RPN)
method (H1) and Yager’s Method (H2).
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groups the top two rankings were the same for both ranking methods. Thus, there
is a large degree of consistency between the two rankings generated by each group
using RPN and elicited data with interpolation: for many groups the choice of
ranking methodology would not result in a substantially different set of critical
failure modes.

Although each group’s priorities under the two methods are common to a
large degree, a striking difference can be observed in the results of the two ranking
methods when we observe which failure modes are identified as critical under
the two methods. In both the RPN ranking and the ranking with elicited data,
failure modes 7 and 4 were most frequently identified as the top two failure modes.
Interestingly, 40% of the groups identified those failure modes as top priorities with
RPN, whereas 80% of groups identified those failure modes as most critical with
elicited data. Despite many groups’ priorities not changing when using elicited data
versus RPN, those whose priorities did change did so by promoting the importance
of failure mode 7 at the expense of failure modes 3, 5, and 6 (Table 2). Thus, while
within groups we found consistency in rankings using RPN and elicited data,
among groups the method with elicited data resulted in a significantly greater
consensus on which failure modes were most critical.

Comparison of Yager ranking versus proposed method

For H2 we tested for statistically significant differences of failure mode rankings
between the proposed method and the best-fit Yager ranking (constrained by the
groups’ stated priorities among criteria) using the Kruskal–Wallis and Mann–
Whitney tests. We found, as reported in Table 2, that five of eight failure modes
had statistically significant ranking differences at the p = .05 level of significance
or greater, one failure mode’s ranking difference was significant at greater than
p = .10, and the difference of another failure mode’s ranking was moderately
significant at p = .140. Thus, moderate or stronger evidence suggests ranking
differences in seven of eight failure modes.

Some further descriptive statistics illuminate the significance of this differ-
ence. We computed each group’s best-fit Yager ranking without constraining the
criteria weights to groups’ stated preferences. We then computed the ranking of the
criteria weights and compared them with the groups’ stated preferences. For only
3 of 20 groups did the implicit Yager criteria weights match the stated weights, and
for only 5 of 20 groups did the top priority criterion match. The disparity here can
be explained either by the inability of the groups to accurately state criteria priori-
ties, the inability of Yager’s method to accurately rank failure modes given users’
properly stated criteria weights, or the inability of users’ to specify importance
scores (e.g., in the proposed method).

We observed other notable differences between Yager’s method and the
proposed method. First, elicited importance scores contradicted property (i) of
Yager’s method: all groups specified different importance score matrices for D =
1, 4, 7, 10. Most notably, groups whose implied Yager weights for the detection
criterion were either D = 1 or D = 2 , in contrast, specified unilateral increases
in importance scores where D ≤ W ′

D (specifically, for D = 1, 4, 7). Second, and
contrary to property (iii) of Yager’s method, groups’ elicited importance scores did
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increase with unilateral increases in occurrence and severity scores over the entire
range of criterion scores. Third, contrary to property (iv) of Yager’s method, where
elicited importance scores increased with increased criteria scores, importance
scores most often did not increase one level for every level increase in criterion
score. For example, in Figure 4(a) where for O = 1, . . . , 5, an increase in severity
score has a differential effect on importance scores depending on whether the
severity score is high or low. Twenty of 21 teams exhibited this characteristic.

Finally, another significant disparity between Yager’s ranking method and
elicited importance scores is visually apparent in comparing one (representative)
group’s importance scores (Figure 4) with importance scores generated by Yager’s
method (Figure 1): the regions that share common importance scores (an “iso-
quant”) with elicited data “point to the southeast” whereas the isoquants in Yager’s
method “point to the northwest.” In two cases, respondents also constructed diag-
onal isoquants, from lower left to upper right, which is not possible with Yager’s
method. This difference may indeed be a primary cause of the statistical ranking
differences that we observed above.

Hypotheses regarding user adoption

We report in this subsection the results of the hypothesis tests H3 through H5 that
we proposed earlier regarding factors affecting the likelihood of adoption for the
proposed method.

For H3 we accumulated responses for those groups who either preferred
RPN or found RPN and the proposed method to be equally intuitive. We tested
that proportion against the null hypothesis that the same percentage of groups
would prefer each method. This test is balanced in favor of RPN because RPN
is given “credit” for those groups who find the methods comparable. Of the 20
groups, 8 found RPN to be more intuitive, 10 found the proposed method to be
more intuitive, and 2 found no difference. We obtained consistent results using
both a test of proportions using a normal sampling distribution and a chi-square
test (run on the number of groups preferring the RPN rather than the proportion of
groups). Using either test, we cannot reject the null hypothesis that both methods
are equally intuitive with 50% of the groups either favoring RPN in this regard or
finding the two methods comparable.

In responding to the question focused on H4, 6 groups perceived the RPN
to be more accurate while 14 groups perceived the proposed method to be more
accurate. With the null hypothesis that half of the groups would find each method
more accurate, we are able to reject that null hypothesis at a significance level of
0.10 with both a Normal test and a chi-square test. Precisely, the significance level
is p = .074.

For H5, 80% of the respondents agreed with the statement indicating that
assigning importance scores was easy, and 20% disagreed. We can, thus, reject the
null hypothesis at a significance level of p = .007 with both the normal and chi-
square tests. We, thus, observe evidence that the proposed method is sufficiently
easy such that a majority of groups would not find this factor a barrier in its
implementation. We did not have a formal hypothesis about the effectiveness of
the spreadsheet tool, but 100% of the respondents agreed with this statement: “The
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color coding of the priority categories was helpful in assigning priority categories
to scoring combinations.” This might be one factor in the perception of a majority
of groups that specifying importance scores was easy.

Qualitative responses regarding user adoption

We allowed subjects to respond to open-ended questions explaining their responses
to H3 through H5. Although not actionable in a statistical sense, these comments
provide depth to the preceding statistics and could also motivate hypotheses in
future research.

Following the question on H3, representative comments from those favoring
RPN are:

(i) “Our group likes RPN method because it is more user friendly and easier
to visualize the effects of severity, occurrence, and detection. [. . .] RPN
allows us to do quick calculations and come up with a result.”

(ii) “With the RPN method, conceptually it is easier for us to quantify the
differences. And it offers a very clear numerical ranking rather than general
categories, which [are] too ambiguous.”

(iii) “Because [the RPN method] is a one step process it is more direct and we
can have better understanding on how the scores are calculated.”

The first comment reflects a perceived simplicity in the RPN method. Similar
comments, like the second comment above, based this view on the appeal of
simple calculations and confidence in numerical importance scores being more
accurate than qualitative category labels. The second and third comments refer to
a discomfort with performing an additional step (specifying importance scores)
and with the abstract notion of specifying a ranking framework for an unspecified
problem. Representative comments from teams favoring the method with elicited
data are:

(i) “Additionally, we felt this method was better because we can determine
which factor should be considered most. The RPN method gives equal
weight to the three factors; therefore, we feel that it does not best reflect
the order of factors considered.”

(ii) “It helps prioritize the characteristics that are most important to you. For
example, two failure modes could have the same RPN making it harder
to prioritize between the two. The [elicited data] method helps distinguish
each failure mode by prioritizing them based on the input.”

(iii) “[Failure mode 4] became a critical event under interpolation, but was of
less concern under RPN. We felt that even though [failure mode 4] was the
most critical failure mode, the simple RPN calculation did not reflect that.
We feel that the interpolation method more accurately reflects the most
dangerous failure modes.”

(iv) “It allowed us to classify each occurrence with a more descriptive ranking
scheme, such as very high or moderately low. This would be much more
useful when looking at the problems than just raw RPN numbers.”
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The first three comments are representative of those teams that recognized a
capability in the elicited data method to shape preferences more flexibly than
in the RPN. Contrary to a comment favoring RPN, the fourth comment reflects an
affinity to textual categorical labels rather than numerical scores.

Regarding H4, representative comments from those favoring RPN included:

(i) “As our interpolation method ranking came up either very high or very
low, we prefer the RPN method because we think it is more accurate and
evenly distributed across levels.”

(ii) “RPN because we can force the importance (we make the decision) in
a more detailed manner (choosing 1–10); whereas in the [elicited data]
method, we choose levels (1,4,7,10) and have less choice on grades (1–5).
For example, we ranked “portable case falling on child” RPN = 56 and
“tank falling on child” RPN = 45, yet in the [elicited data] method, the
RPN’s were “moderately low” for both. In effect, you are losing sight of the
difference in importance (45 → 56) by using the [elicited data] method.”

(iii) “The results were based on the analysis of the data given in the case. The
interpolation method was more generalized.”

(iv) “In the RPN method we had to rank each failure mode ourselves with our
own numbers, while the other method involved some extrapolation of the
data. Our scores resulted from us looking at each mode and taking into
account all circumstances, which is why we trust it more than a computer
model using a couple inputs and then creating a score.”

The first comment justifies the RPN-based ranking, interestingly, on a team’s
intuition about a characteristic that may or may not be associated with ranking
accuracy. The second comment, echoing an earlier quote, shows that a team as-
sociates greater precision with numerical measures rather than categorical labels;
based on the criticisms of RPN, we would argue that this may be a false preci-
sion. The remaining comments echo an earlier sentiment that assigning criteria
scores is easier when focusing on a particular context than specifying importance
scores absent a specific application. One comment also reflects a resistance to take
ownership of the importance scores in the method with elicited data because the in-
terpolated scores were not specified directly by the team. This observation supports
Arrow and Raynaud’s axioms of adoption: if a decision maker does not understand
the mechanics of a method (or the method is hidden) they may find the results
difficult to accept. Conversely, representative comments from teams who thought
elicited data yielded a more accurate result reflected a perceived understanding of
the interpolation method:

(i) “I feel that being able to weight the three metrics in this case will result
in more accurate/important failure modes. Furthermore, understanding the
dynamics behind the [elicited data] method versus the RPN approach, I
feel more confident in the [elicited data] method because of its deeper,
more detailed analysis.”

(ii) “With the [elicited data] method, we are able to prioritize among severity,
occurrence, and detection.”
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Regarding H5, representative comments include the following:

(i) “We thought it was relatively easy to just move “southeast” down the
gradient from 1 to 5, and to make the different combinations become a
higher priority more quickly as we moved from detection #1 to #10.”

(ii) “1. The lecture was informative and helpful 2. Logic textboxes make the
scoring self-explanatory”

(iii) “There was some disagreement in the group as to the appropriate numbers
to assign to each category. Also there was some debate on which of the
categories was the most important and thus should receive more weight.
In the end we were able to come to an agreement and I think we benefited
from seeing how each person thought on the issues.”

(iv) “It is not that intuitive. We had to really think about what was more
important and spend some time discussing about it.”

(v) “It was relatively easy because reaching consensus on what should have
each priority was simple within our group.”

(vi) “It was easy because of the capability to assign priority categories to
multiple blocks simultaneously.”

(vii) “It is very intuitive. Just click, drag, and select a number. It also helps that
the program recognizes when your ranking of one square does not agree
with the ranking of a similar square in another matrix.”

(viii) “Although this was not a daunting task, having to assign priorities to
hazardous possibilities challenged us to look at the results from angles
that we normally would have overlooked or ignored having done just the
RPN method.”

Some found the task of specifying preferences easy, while others had more diffi-
culty. It is interesting to note that filling out the matrices did prompt discussion in
some groups which many found to be an informative process.

DISCUSSION AND CONCLUSIONS

Motivated by criticisms of the traditional RPN ranking of failure modes in FMEA,
as well as methods based on fuzzy logic, we developed a new method based on the
idea of eliciting importance scores from users. One goal was to achieve an accurate
ranking method, which we intended to achieve vis-á -vis the inherent flexibility
of specifying importance scores. Another intent of our design was to create a
simple and easy method to motivate its use in practice. Our method was designed
to accomplish simplicity through requiring only a partial set of importance score
data: our algorithm determines the remaining unknown data using an interpolation
method, which we proved maintains Pareto optimality. Further simplifying data
elicitation, we developed a spreadsheet tool. After designing the proposed method,
we tested it experimentally to evaluate it against these design goals. Most papers
on FMEA accomplish only the design task. In addition, we have also tested our
design that, to our knowledge, no other paper on the design of FMEA does.
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We found a reasonable level of consistency between the RPN-based method
and the proposed method: for 70% of the groups the top two failure modes with RPN
were the same top two goals using the proposed method. Despite this substantial
correspondence borne out in the descriptive statistics. We nonetheless found a
statistically significant difference in the rankings of five out of eight failure modes.
That significant change in rankings was manifest by five group’s changing their
top two failure modes, such that fully 80% of the groups agreed on the top two
failure modes with the proposed method compared with 40% with RPN. The
greater coincidence in groups’ rankings might be due in part to the capability of
weighting criteria arbitrarily, a ranking process that is less susceptible to error
in RPN determination via multiplying ordinal values, or both. Although we have
substantial evidence that RPN and the proposed method are different, arguing
for one method having greater accuracy is difficult because the subjects’ true
preferences cannot be known. Nonetheless, the broader agreement in failure mode
rankings among subjects with the proposed method would be indicative of greater
accuracy assuming that the consensus was on the correct answer and that, indeed,
there was one correct answer. Toward the latter requirement, the experiment in
this article was controlled by having all teams evaluate the same case, consider the
same predetermined failure modes, receive the same training, and use the same tool.
Commonality on all of these dimensions, despite the possibility of idiosyncratic
group preferences, might suggest a working hypothesis regarding the proposed
method’s comparative accuracy with respect to the RPN-based method.

A statistical comparison of rankings from Yager’s method and the proposed
method revealed that the proposed method differed more substantially from Yager’s
method than from the RPN method; specifically, a greater number of failure modes
had statistically significant differences in ranking when the proposed method was
compared with Yager’s method. Additionally, descriptive statistics that we reported
show a discrepancy between users’ stated priorities on criteria and the priorities
implied in the best-fit Yager rankings. If the reasonable consistency between RPN
and the proposed method can be assumed as evidence of the latter method’s
accuracy (i.e., assuming RPN has reasonable accuracy), then it could be argued that
Yager’s method might be inappropriate for FMEA problems (but not necessarily
for all ranking problems). Other descriptive statistics reported here would support
that position.

Regarding the practicality of the proposed method, we found in H3 through
H5 that the subjects’ perceptions indicated that it fared well in comparison to the
RPN-based method. Users found the specification of importance scores to be easy,
the visual cues of the spreadsheet tool to be effective, and the algorithm to be
intuitive. Furthermore, the users perceived the proposed method’s accuracy to be
greater than the RPN, which would aid adoption of the proposed method.

Although the proposed method requires the specification of importance
scores, it is important to note that once the importance scores have been determined
by that tool, they can be deployed on similar problems in the same organization
(where ranking preferences are shared). Thus, similar to the RPN calculation, the
importance score can be determined by a spreadsheet function. Whereas RPN is
calculated as the product of three values, an importance score in the proposed
method could be calculated with an Excel VLOOKUP function. Thus, adopting
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the proposed method is easier than some of the subjects in our experiment might
have perceived. Additionally, we note that while a rigorous mathematical proof
was required to ensure Pareto optimality of interpolated importance scores, there
is no requirement for users to either understand that proof or even know of its
existence: thus, it imposes no barrier to implementation.

Even though the method using elicited data is flexible in how decision criteria
are weighted, some teams have demonstrated that the results might not be accepted
if the method is not understood. Although improvements in the explanatory lecture
might resolve the issues we observed in this regard with a minority of the groups,
some teams might always disown the interpolated importance scores because the
method that determines them is within a computer, which they could perceive
as a “black box.” Even though users provided a partial set of importance scores,
they might feel that role constituted insufficient control over the ranking process.
We also found evidence that some teams viewed numerical measures as being
more precise than qualitative labels (even though numbers were associated with
these categorical labels in the proposed method), which reflects, perhaps, a false
sense of precision in the numerically expressed ordinal measures and the invalid
multiplication of three ordinal values in the RPN method. Thus, decision-makers’
intuitions and acceptance might not always be aligned with accuracy.

We might infer from Arrow and Raynaud’s axioms of adoption that: (i) a
ranking process should be sufficiently versatile to allow whatever ranking prefer-
ences are appropriate, while (ii) not being so malleable that a decision maker can
intentionally or unintentionally act on their biases to promote a particular failure
mode’s importance without subjecting all the failure modes fairly to the ranking
analytics. In the proposed FMEA ranking method, the separation of the determi-
nation of the importance score data from the problem at hand, perhaps, might have
given the users space to consider their ranking preferences absent their biases about
a current problem. Indeed, some groups mentioned useful discussion that ensued
during the specification of importance scores. Thus, the proposed ranking method
might fulfill these two of Arrow and Raynaud’s axioms by giving a decision maker
a flexible tool (i.e., any Pareto-optimal set of importance scores can be specified
with elicited data), while prohibiting the participants from manipulating the result
to fit their a priori opinions of a particular case.

Conversely, a minority of groups found difficulty in specifying generalized
importance scores absent a particular problem. One possible solution for this would
be to elicit data by asking a group to base their input on a tangible scenario. Sub-
sequently, the elicited and interpolated data could be redeployed for other similar
problems, using a simple lookup function to make computation of importance
scores easy. A risk here would be that the elicited data might be intentionally
or unintentionally manipulated to fit a team’s preconceived ranking of the failure
modes.

Because FMEA is so widely used in product and process design, we believe
that more research is warranted to understand its accuracy, while retaining (if
not improving) its simplicity. Our observations suggest some potentially fruitful
follow-on research, including whether elicitation of importance scores should be
determined in the abstract or based on an explicit case. Using our proposed method,
which we have introduced in this article, further research might be done in a number
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of areas: (i) how greater or lesser cardinality in the set of importance scores would
affect reliability and users’ impressions of the method’s accuracy and intuitiveness;
(ii) how a greater or lesser cardinality of criteria scores affects users’ acceptance;
and (iii) how various alternatives in describing the proposed method might affect
decision makers’ acceptance of it.
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APPENDIX: PROOFS

The observation in the lemma below simplifies the construction of our interpolation
method.

Lemma 2: Assuming that the specified importance data for all D/d constitutes a
Pareto-optimal ranking, then g(O, S, d + 1) ≤ g(O′, S′, D) for all O′ ≥ O, S′ ≥ S,



770 Discrete Choice Models

and D ≥ d + 1, and also g(O, S, d − 1) ≥ g(O′, S′, D) for all O′ ≤ O, S′ ≤ S, and
D ≤ d − 1.

Proof of Theorem 1: The importance score that we assign to g(O, S, d) for each
O, S must be dominated by each known data point g(O′, S′, D) where O′ ≥ O,
S′ ≥ S, and D > d. The known data is Pareto optimality so that g(O, S, d + 1) is
dominated by all the known importance scores g(O′, S′, D) where O′ ≥ O, S′ ≥
S, and D ≥ d + 1, which implies that the importance score g(O, S, d + 1) places
the tightest upper bound on the members of R(O, S, d). A similar argument is
possible that g(O, S, d − 1) places the tightest lower bound on R(O, S, d). By
Pareto optimality of the known data (i.e., g(O, S, d + 1) ≥ g(O, S, d − 1)), at least
one x exists such that g(O, S, d + 1) ≥ x ≥ g(O, S, d − 1), thus R(O, S, d) is a
nonempty set.

We must ensure that a Pareto-optimal ranking can be constructed from the
nonempty set R(O, S, d) for each O ∈ O, S ∈ S for each g(O, S, d), which must
(weakly) dominate all g(O′, S′, d) where O > O′, S > S′, and which must be
weakly dominated by each g(O′, S′, d) for O < O′, S < S′. If we can show that
a Pareto-optimal importance score can be determined for each g(O, S, d) with
respect to its immediate neighbors, then, by transitivity, that score will be Pareto
optimal with respect to all g(O, S, d) for each O, S. A feasible choice for the upper
bounds on g(O, S, d), which are g(O + 1, S, d), g(O, S + 1, d), and g(O + 1, S +
1, d), comes from the known data:

g(O + 1, S, d) = g(O + 1, S, d + 1)

g(O, S + 1, d) = g(O, S + 1, d + 1)

g(O + 1, S + 1, d) = g(O + 1, S + 1, d + 1),

which by Pareto optimality must be at least as great as the upper bound on g(O, S,
d):

g(O, S, d) ≤ g(O, S, d + 1) ≤ g(O + 1, S, d + 1) = g(O + 1, S, d)

g(O, S, d) ≤ g(O, S, d + 1) ≤ g(O, S + 1, d + 1) = g(O, S + 1, d)

g(O, S, d) ≤ g(O, S, d + 1) ≤ g(O + 1, S + 1, d + 1) = g(O + 1, S + 1, d).

Thus, the largest elements in R(O + 1, S, d), R(O, S + 1, d), and R(O + 1, S +
1, d) are at least as large as the largest element in R(O, S, d). A similar argu-
ment indicates that the smallest elements in R(O − 1, S, d), R(O, S − 1, d), and
R(O − 1, S − 1, d) are at least as small as the smallest element in R(O, S, d) so
that a Pareto-optimal ranking is possible. �
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