
From a Single Discipline Risk Management Approach to an Interdisciplinary
One: Adaptation of FMEA to Software Needs

Susanne Hartkopf
Fraunhofer Institute for Experimental Software Engineering

Sauerwiesen 6, 67661 Kaiserslautern, Germany
Phone +49 6301 707 238; Email hartkopf@iese.fraunhofer.de

Abstract
Risk management has been identified as a vitally

important project management task. Hence, many risk
management approaches have been developed.
Unfortunately, most of them deal with the risks of a
single discipline only, meaning disciplines in which
either software or non-software products are
developed. In contrast, nowadays many projects are
highly interdisciplinary undertakings in the sense that
newly developed conventional non-software products
are enhanced by software. With the advent of software,
many additional risks have emerged. In this paper, the
differences between software and non-software
products are investigated. From these differences,
consequences for interdisciplinary projects are
derived. It is indicated how an interdisciplinary risk
management approach can cope with the
consequences. An answer is given to the question of
how to achieve such an interdisciplinary approach.
One possible solution is presented here as an
adaptation of the Failure Modes and Effects Analysis,
a single discipline approach, to the needs of software.
This paper is an extension of a position paper
presented at the STEP2003 Workshop of
Interdisciplinary Software Engineering.

1. Introduction

This paper is an extension of a position paper
presented at the second Workshop on Interdisciplinary
Software Engineering (WISE) held during the tenth
International Workshop Software Technology and
Engineering Practice (STEP) in Amsterdam, The
Netherlands, in September 2003. The position paper
was called “Interdisciplinary Risk Management”, and
the position statement was: In order to meet the
challenge of interdisciplinary projects in the German
automotive industry, it is necessary to adapt the
established risk management technique FMEA, which
originates from the mechanical and electrical

engineering field, to a situation, where software and
hence software engineering plays a more and more
prominent role in automobiles and their production
processes [1]. It contributed to the topic of WISE 2002
in that it draws on a technique that is used in a
discipline cognate to software engineering in order to
transform software engineering into a more holistic,
interdisciplinary activity that breaks down rigid
barriers between disciplines and processes [2], [3].

In [3], a framework is presented, that identified,
first, seven groups of issues that are related to
contemporary software engineering practice and
research (e.g., information explosion, procurement
decision, risk identification and management) and,
second, thirteen disciplines cognate to software
engineering (e.g., civil engineering, systems
engineering, production engineering). For each group
of issues, techniques or models from these cognate
disciplines are identified that are recognized as
transferable to software engineering along with the
level of diffusion. This level describes to which extent
a transformation from the cognate discipline to
software engineering has already taken place.

In order to classify the disciplines (mechanical and
electrical engineering) and technique (risk management
technique FMEA) from the position statement into the
table of the above mentioned framework, some
explanation is needed, because the classification is not
straightforward. Certainly, risk management was
identified as one group of issues of current software
engineering practice and research, but mechanical or
electrical engineering were not explicitly regarded as a
cognate disciplines. Considering the automotive
context of the position statement, the most cognate
discipline seems to be the discipline of production
engineering. This assignment can be supported, since
FMEA as described in [4], [5] defines a risk
management process that covers the same life cycle
phases as described for production engineering in [3].
The level of diffusion of FMEA can be stated between
3 and 4. That means from “best practice in some

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

organizations, perhaps covered by frameworks CMM,
SWEBOK, RUP …” to “waiting on standards being
developed and accepted”. An example for best practice
in some organization is described in [6]. Here, the
application of FMEA for software-intensive
components at Siemens is exemplified. However, quite
a lot of organizations encountered problems when
applying FMEA in projects in which they produce
products that were formerly pure non-software
products and are now enhanced by software. These
organizations look for unified guidelines on how to
perform FMEA in interdisciplinary projects.

After the explanation of the context of the paper, in
the following, the structure of the paper as well as its
extension in comparison to the position paper is
explained.

Chapter 2 describes the gap that arises in
interdisciplinary projects due to the fact that project
management has no means to cope with new demands
in such projects and risk management approaches are
traditionally designed for single discipline projects.
Chapter 3 and 4 elaborate thoroughly on the question
of the position paper, Why do we need an
interdisciplinary risk management approach? In
Chapter 3, the differences between software and non-
software products are worked out. Chapter 4 describes
the consequences with respect to products combining
software and formerly non-software products, the
processes in the life cycle of such products, and the
people involved in such interdisciplinary projects. The
question from the position paper, Why is risk
management a useful means to bridge the gap between
disciplines? is investigated in depth in Chapter 5.
Chapter 6 explains how an interdisciplinary risk
management can be achieved, whereas in Chapter 7
one possible solution for an interdisciplinary risk
management approach is described. Chapter 8
previews the expected benefits for the different
disciplines involved. Chapter 9 closes the paper with a
summary.

2. The gap in interdisciplinary projects

In the context of this paper, interdisciplinary
projects are projects in which engineering products are
developed that were formerly pure non-software
products and are now enhanced by software. That
means, in the development of these combined products,
components with different features, processes from
more than one engineering discipline, and project staff
with different educational backgrounds are involved
and must be integrated.

In interdisciplinary projects, a gap between project
management and its vitally important activity of risk

management can be observed. On one side of the gap,
risk management approaches are traditionally
developed for a single discipline, and on the other side,
project management has few means to cope with the
challenges in interdisciplinary projects. In order to
close the gap, an extension of single discipline risk
management approaches to the needs of
interdisciplinary projects is a potential solution.

This extension is necessary as, on the one hand,
market trends show a general shift from single
discipline to interdisciplinary projects, and, on the
other hand, the media report on the quality problems of
combined products almost every day. For example, in
the automotive industry, more and more functionality
is and will be provided by software, in addition to
conventional mechanical and electrical components.
Independently of any discipline, risk management is
recognized as a very important project management
activity to successfully perform a project. So far,
project managers apply – if at all – existing, single
discipline risk management techniques to their
projects. They use approaches they are familiar with,
neglecting the fact that their projects have mutated into
interdisciplinary projects. They can hardly do better,
since risk management techniques that cover the needs
of interdisciplinary projects are still missing.

In the following, the essential differences between
software and non-software products are examined. This
is done to better understand the difficulties encountered
in interdisciplinary projects.

3. Essential differences between software
and non-software

In the following, the differences between software
and non-software are thoroughly investigated. Since
“non-software” is an awkward term to use, the term
hardware is introduced, it is used for non-software
products such as items made from steel or metal.

In order to figure out the differences between
software and hardware, a literature review was
performed. The results presented here are mainly taken
from Beizer [7] and the well-known article of Brooks
[8]. Nevertheless, if other papers contributed valuable
aspects, then they are referenced as well.

The main differences between software and
hardware can be reduced to invisibility, intangibility,
non-applicability of natural constraints, changeability,
conformity, and complexity. Thereby, Brooks’ four
essences of software are extended by intangibility and
the non-applicability of natural constraints. This is
done because these two create many consequences
when comparing software engineering with the other
engineering areas.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

The six main differences form a quasi-deduction
chain. In Figure 1, a quasi-deduction chain of the
differences between software and hardware is depicted.
Quasi-deduction here means that the line of the
deduction might not be as strict as the arrows indicate.
Nevertheless, from these six differences, the major
consequences for interdisciplinary projects can be
derived. In the following, each of the differences is
defined, their characteristics for software and hardware
are worked out and, if seen as necessary, explained
with examples.

Figure 1: Quasi-deduction chain of the differences
between software and hardware

3.1 Invisibility and intangibility

Invisibility and intangibility are somehow similar
concepts. Nevertheless, both are considered, because in
the remainder of the paper, both concepts are
referenced depending on what is easier to understand.

Definition “Invisibility”: Not visible, not able to
be perceived by the eye [9].

Definition “Intangibility”: Incapable of being
perceived by touch; impalpable [9], [10].

Hardware is visible and can be touched. Hardware
has a material embodiment, for example, a punch or a
hammer. The action or movement of hardware is
normally directly observable without any special
means.

Software is invisible [8] and intangible [11]. To be
more precise, the intangibility of software is
manifested in two ways. First, software entities do not
have a material embodiment [11], [12], except being
presented to human beings by numbers, letters, or
graphics on paper or on the monitor screen. Second,
the visibility of software code when in action is
normally not observable or solely indirectly [13] and
just by means of a computer [12].

Straight consequence: From these two differences,
the applicability or non-applicability, respectively, of
natural constraints to software and hardware follows
[12].

3.2 Non-applicability of natural constraints

Definition: Natural constraints are the natural laws
and the properties of physical material.

Hardware is subject to natural constraints. Thus,
these enforce discipline on the design, construction,
and modification of hardware [14].

Software. With the advent of software, a new way
of thinking was introduced. The intuitive
understanding of the physical world as human beings
had perceived it up to that point has been turned up-
side down. Software code is stored in electronic bits
and no natural law or property of physical material
governs the software engineer when designing,
constructing, or modifying the software [14]. That
means, on the other hand, that discipline is brought
into the design, construction, and modification not
through natural constraints, but through the capability
of the individual software engineer or a group of
engineers [11]. If they are disciplined and use proper
tools, methods, processes, and architecture, there is a
chance that software is engineered in a sensible way.

Straight Consequences. From the applicability or
non-applicability of natural constraints, two
consequences can be derived. First, it makes a
difference in the changeability of software and
hardware (see Section 3.3). Second, it has an impact on
the degree of complexity which can be reached in
software and hardware [14], [12] (see Section 3.5).

3.3 Changeability

Definition: Changeability is understood here as a
superior term to four aspects associated with
software’s and hardware’s ability to change throughout
their entire life cycle. (1) Ease of modification: The
ease with which hardware or software can be modified
before mass production. (2) Ease of extendability1: The
ease with which software and hardware from an entire
release and series, respectively, can be modified to
increase functional capacity. (3) Ease of flexibility1:
The ease with which software and hardware from an
entire release and series, respectively, can be modified
for use in applications or environments other than
those for which it was specifically designed. (4) Ease
of maintainability1: The ease with which software and
hardware from an entire release and series,
respectively, can be modified to correct faults, or
improve performance or other attributes.

Hardware. For hardware, (1) Ease of modification
is relatively easy. In the development phase, i.e., before
the prototype is built and the build-up of the

1 Definitions adhere to the definitions in [15].

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

infrastructure has started, the design of the new product
is performed mostly in the heads of the engineers and
on paper. In the further course of the life cycle, the
following is true: the more of the prototype and the
infrastructure for the manufacturing process is finished,
the harder it gets to implement major changes. This
explanation is true for the production of a building as
well as of a car model.

(2) Ease of extendability is hard for hardware. Just
think of the following example: a manufacturer of a
rear-wheel drive car wants to extend it to an all-wheel
drive. Most likely, this extension can not be done for
cars already in the field. The infrastructure for
production needs a redesign, or even worse, a new site
for the plant. The line between ease of extendability
and (3) Ease of flexibility is hard to draw for hardware.
An example for flexibility could be the modification of
a car toward an amphibian car. Nevertheless, ease of
flexibility and extendability behave in similar ways.

(4) Ease of maintainability in the sense of
correcting faults is hard for hardware. A good example
for this are many recalls that are initiated in order to
correct systematic faults for all cars in a series that are
already sold. In contrast, recalls are rare in which the
manufacturer wants to improve performance or other
attributes. Such a maintainability action might be
performed for cars in a series not yet built, but not for
cars already on the street. Ease of maintainability in the
sense of improving attributes such as performance does
not really exist for cars and, therefore, maybe neither
for the majority of hardware products.

Software. The perception by the general public is
that changeability of software is high. The four aspects
of changeability seem to be realized relatively easy.
Major changes seem to be performed quickly and at
seemingly low cost [14]. However, the consequences
of the changes are often not considered carefully.

For (1) Ease of modification it is true, that a
modification has always an impact on the software
product, because the software developed before mass
production is always the final product (except if
prototyping was selected as process model). That
means the basis for the future quality is already laid in
the development phase. (2) Ease of extendability and
(3) Ease of flexibility are seen by the general public as
beneficial advantages of software. Why (4) Ease of
maintainability is perceived as easy to perform is
shown by the following example: A software user can
easily maintain his software by installing a new service
pack either down-loaded from a storage device or from
the Internet. Then faults are corrected, and even
performance might be improved.

The perception of “easy to perform” must be further
explained. As long as the changes are performed only
on the code, then a change seems to be easy to

perform. However, often side effects to other parts of
the code are not considered carefully, which may cause
different, maybe severe failures. Additionally, in order
to ensure traceability between the different software
entities (i.e., requirements document or design
document), the change should be performed
universally in every entity. If a check of the potential
side effects is conducted beforehand and the changes
are performed universally, then the ease is immediately
reduced.

Straight Consequences. Changeability has an
impact on conformity (see Section 3.4) and complexity
(see Section 3.5).

3.4 Conformity

Definition: “Compliance in actions, behavior, etc.,
with certain accepted standards and norms.” [9]

Hardware: Due to the natural constraints, the
degree of conformity of hardware is limited.

Software: Software is conformable for two reasons.
First, it is perceived as the most conformable. Second,
it is the most recent arrival on the scene [8].
Inconsistencies discovered in a late phase of hardware
development are often adjusted by software, because it
is perceived as easy to conform. The same is true for
hardware that has been around for a long time. If this
hardware is supposed to be enhanced, often software is
selected for the enhancement and is made conform.

Straight Consequences: Conformity has an impact
on complexity. If a product is highly conformable, then
it is likely that complexity increases with every step of
conformity.

3.5 Complexity

Definition: In [15] complexity is defined as the
degree to which a system or component has a design or
implementation that is difficult to understand and
verify. In [10], complexity is defined as the state or
quality of being intricate or complex, whereby intricate
can be described as difficult to understand and
complex can be described as made up of various
[involved] interconnected parts. Both definitions
emphasize that the difficulty in understanding indicates
the degree of complexity. Therefore, the following
measures for complexity, some found in literature, will
be introduced, in order to facilitate the comparison
between software and hardware: (1) Proportionality of
complexity: Describes what effect the addition of new
features on the system size has. [7], [8]. (2)
Intertwining: Describes the inner structure of a system.
Two forms of description are selected: The degree of
decomposition and the clearness of graphical

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

presentation. (2a) Applicability of the decomposition
principle: Describes to which extent a system can be
dismantled. [7], [14] (2b) The clearness of graphical
presentation: Describes how easily a graphical
presentation can be understood. (3)
Functionality/complexity relation: This relation
describes the visible impact of functionality on
complexity. [7]. (4) Repeatability of similar elements:
This describes to which extent similar elements exist,
physically or as software code, and how they are
reused, in terms of software terminology invoked. [8] .

Hardware. In order to explain the nature of
hardware, an example is used. The example relates to
the design of an apartment building. (1)
Proportionality of complexity can be best explained
with the relation to costs: If the future builder-owner
wants to have a building with one more floor, then
costs increase in nearly linear proportion. That means
in reverse, with respect to complexity, that complexity
will not increase more than in linear proportion.
Otherwise the architect would increase costs as well.
The (2a) Applicability of the decomposition principle
can be called high, because a building can be
dismantled to its smallest not decomposable elements
(e.g., rooms, floors, doors, ceilings, walls, windows,
and so on). (2b) Clearness of graphical presentation of
a building is easy to understand by looking at the
blueprint. In general, hardware can be documented by
literal engineering drawing. Concerning the (3)
Functionality/complexity relation, it can be stated that
more functionality for the user increases complexity
for the user. For example, if a tenant wants a heating
system and shutters with programmable heating times
and opening/closing times respectively, then this
increases the usage complexity for the tenant. (4)
Repeatability of similar elements is high in a building.
It consists of many elements that have the same
functionality (e.g., doors), but are repeated in their
material embodiment.

Software. (1) Proportionality of complexity of
software increases more than in linear proportion. In
most cases, a newly added element interacts with the
other elements in some non-linear fashion and this
increases the complexity of the whole much more than
in linear proportion [8]. (2a) Applicability of the
decomposition principle is also an objective in
software engineering. However, other software
engineering objectives, such as global data storage or
the principle of abstraction [13] interfere with this
objective [7]. (2b) Clearness of graphical presentation
is mostly not given, due to several, generally directed
graphs superimposed one upon another [8]. These
graphs may represent flow of control, flow of data,
time sequences, and even more (compare with all the
different UML Diagrams). Additionally, these graphs

are usually not planar and much less hierarchical [8].
The (3) Functionality/complexity relation of software
is often an inverse relation. A functionality that may
ease the usage of the software system for the user often
increases internal complexity, which is not visible for
the user [7]. (4) Repeatability of similar elements has a
totally different character for software than it does for
hardware. In software, similar elements exist just once
as code, and then they are invoked where needed from
all over the entire software system. Whether this
increases or decreases the proportionality of
complexity is hard to say. Nevertheless, it contributes
heavily to intertwining and to an unclear graphical
presentation of software.

Straight consequences. Brooks described in [8]
many consequences from complexity. Consequences
relevant in this context of interdisciplinary projects are
depicted in Chapter 4.

4. Consequences for interdisciplinary
projects

In this chapter, consequences from the essential
differences between software and hardware are shown.
The consequences can be classified to be associated
with the combined product, the life cycle of the
combined product, and the people involved in
interdisciplinary projects. The list of consequences is
most likely not complete. Nevertheless, it gives a clue
regarding the severity of the consequences, which is
sufficient for the understanding of the remainder of this
paper.

4.1 Consequences associated with the combined
product

In the following, consequences from the essential
differences of software associated with combined
products are explained.

Determination of the progress of completion. Due
to the invisibility and intangibility of software,
determination of the progress of completion of
software is hard. An engineer in the automotive
industry sees the progress of a new car model by how
the prototype evolves and how the production plant for
the mass production is built up. He has three indicators
for the progress at hand. First, the material consumed,
second, the visible growth, and third, the effort spent.
Of course, in software development, effort spent is also
an indicator, but a weak one. Effort is spent for what
and for which things? The counterpart of consumed
material could be the number or requirements
implemented. Nevertheless, the determination of the
number of requirements implemented depends, among

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

other issues, on the chosen life cycle framework model
(e.g., waterfall model, spiral model, or throwaway
prototype model).

Presentation schemata are different. Due to
invisibility, intangibility, and complexity, the
presentation schemata of software and hardware are
different. For the presentation scheme of hardware, the
decomposition principle can be applied. For the
presentation scheme of software, other principles such
as abstraction [13] or global data storage might be
superior. This difference makes it hard to represent a
combined product in one schema.

Detection of errors: Due to the invisibility,
intangibility, and the consequences of the non-
applicability of natural constraints to software, the
detection of errors is different in software and
hardware. First of all, software does not have a link of
form and function [13]. That means, a profound error is
not as obvious as many errors in hardware. Beizer [7]
identified three types of errors, differentiating software
errors from hardware errors. That is, the space locality
of a software error is manifested arbitrarily far away
from the cause, the time locality of a software error is
manifested arbitrarily long after the execution of the
faulty code, and the consequences of a software bug
are arbitrarily related to the cause. Another profound
difference to hardware is that for software, no
counterpart to continuous mathematics exists or is
applicable to prove the reliability of complex software
[16].

Duplication. Due to the intangibility, software is
easy to duplicate. Duplication simply consists of
copying code on another storage device. In contrast, in
order to duplicate hardware, first a production plant is
necessary, and second, the stages of the assembly line
in the production plant must be run through.

The essential differences between software and
hardware impose many severe consequences for
combined products. The issues explained above show
just a selection of consequences of combined products.
Project staff on interdisciplinary projects must learn to
handle these differences.

4.2 Consequences associated with the processes
in the life cycle of a combined product

On a coarse level, software and hardware have the
same processes in their life cycle, but with different
characteristics. The characteristics vary with regard to
implementation, cost, duration, effort, and
accompanying activities such as quality assurance. The
processes on the coarse level are the initial concept, the
design, the production, the use, and the final disposal.

The initial concept consists of a feasibility study,
market analysis, or similar activities. The design
process in hardware can be divided into the processes
of designing the prototype of a hardware model and the
planning and build-up of the infrastructure of the
production plant. For software, the design process is
the development of the actual final product. In the
production process, the hardware is duplicated multiple
times in the production plant, whereas the production
of software consists of simply copying. Use and final
disposal are not important in this context.

The initial concept does not differ much for
software and hardware. However, the design and
production process reveal significant differences in
implementation. With respect to cost, duration, and
effort, the hardware production process costs more, is
longer, and takes more effort than the hardware design
process. On the other hand, the cost, duration, and
effort in the software and hardware design process
might be similar. With respect to the quality assurance
activity, significant differences also exist. In software,
quality assurance must be built in during the design
phase, whereas for hardware, quality assurance starts
with the production process.

The consequence for the processes and the
accompanying activities in the life cycle of a combined
product are manifold. In particular, special attention
needs to be paid to the implementation of the
accompanying activities.

4.3 Consequences associated with the people
involved in interdisciplinary projects

People involved in the interdisciplinary projects are
the customer, project management, software and
hardware project staff. Apart from the software staff, it
can be assumed that the others do have similar
knowledge and attitude about software. Customer and
project management still tend to be from the hardware
side and therefore, their perception of software is often
that software is easy to change and thus easy to be
made conform. This attitude determines the procedure
in the development of the combined product. They are
not aware of what consequences arise from this
perception. They are not aware that the determination
of the progress of completion or the detection of errors
is so different for software and hardware.

It can be assumed that especially the different
perception of software among hardware and software
people is one reason for the major problems in
interdisciplinary projects.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

5. A potential solution to cope with the
differences and consequences:
Interdisciplinary risk management

In order to cope with all the differences and
consequences, means must be at hand that can help.
Due to the diversity of the differences and
consequences, a whole bundle of solutions might be
necessary. On the other hand, the differences and
consequences can be seen as risks in interdisciplinary
projects. Risk is commonly defined as the possibility
of suffering a loss [10].

One way to reduce or prevent the occurrence of
risks, thus help projects to be successful, is the
application of risk management. Considering the
definition for risk management of PMBOK [17] and
that for software project risk management of SEI [18],
software risk management can be understood as a
systematic, disciplined, continuous, proactive activity
in which the processes of identifying, analyzing,
responding to, monitoring and controlling of risks and
their countermeasures are performed in order to
maximize the probability and consequences of positive
events and minimize the probability and consequences
of events adverse to project objectives.

The benefits of risk management are that it supports
the finding of items that can possibly harm the project,
helps focusing on items that promise the most benefit,
encourages proactive instead of reactive management,
makes it possible to detect possible problems in early
project phases (which will show up only in later phases
without risk management), and supports the discovery
and exploitation of opportunities.

What is special in interdisciplinary risk
management is first, that it is especially designed to be
applied in interdisciplinary projects and second, that
project staff is familiar with one risk management
process, terminology, and document templates. Such a
uniform process would foster the communication and
understanding among project staff. In the risk
management sessions, which are performed regularly,
all involved personnel will participate, that means
representatives from all involved technical levels are
present as well as from the different hierarchical levels.

Risk management is not a silver bullet. However, it
can help to focus on the highest risks in the project and
can find appropriate measures taking into account the
objectives of the project.

In the following, the question is answered of how an
interdisciplinary risk management approach can be
achieved.

6. Achieving an interdisciplinary risk
management approach

In order to achieve an interdisciplinary approach,
three solutions are possible. The first solution is the
development of a totally new risk management
approach. The second solution is the adaptation of a
software engineering risk management approach to
hardware needs. And the third solution would be the
adaptation of a hardware risk management approach to
software needs.

The possibility of developing a totally new
approach has the drawback that it must overcome the
acceptance barrier. Furthermore, until such a new
approach is matured, a lot of time goes by, which
might not be available.

There are several reasons why we propose to adapt
a hardware risk management approach to software
needs and not vice versa. The first reason is that
hardware risk management approaches are more
commonly used in companies than software
engineering approaches. A fact that can be explained
due to many laws, norms, or directives that recommend
or call for the application of a risk management
approach for design and production processes. The
second reason is that our experience shows that project
staff is used to the “old” approaches. Now that they
have to learn a lot about software engineering, they are
reluctant to use or learn a new risk management
approach as well. While they accept the need to change
processes when they switch from mechanical to
software engineering, they do not accept different
terminology, forms, and processes for a supporting
task like risk management. Therefore, to help such
staff in upcoming interdisciplinary projects in which
software plays a larger role, and to get a higher
acceptance, we propose the adaptation of a hardware
risk management approach.

In particular, we propose the adaptation of the
Failure Modes and Effects Analysis (FMEA) as it is
applied in the German automotive industry [5], [4] to
the software needs.

Nevertheless, an important question for the midterm
future is: Since it is obvious that software components
increasingly permeate systems and software
functionality becomes more and more complex, it
might be more beneficial to adapt software risk
management techniques to the needs of the other
engineering disciplines. The hypothesis is that only in
this way the challenges imposed by an increasing
amount of software will be dealt with adequately. In
the following chapter, an interdisciplinary risk
management approach is described and results from a
first application in an industrial setting.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

7. Software Risk and Effects Analysis

The Software Risk and Effects Analysis (SREA) is
based on the Failure Mode and Effects Analysis
(FMEA). The idea was to create an approach suitable,
first, for manufacturing companies that expand their
products with software components and second, for
companies already producing combined products, e.g.,
embedded systems. More information about SREA can
be found in [19], [20], [21].

SREA paradigma. The SREA paradigm is not only
an adaptation of FMEA to software needs, but also
uses best practices to define a practice-oriented and
effective risk management approach for
interdisciplinary projects. The innovations encompass
five aspects: (1) The explicit definition of a Risk
Management Mandate process, (2) the adaptation of
the three FMEA types to the specific requirements of
the software development process, (3) introduced
scalability with respect to the software-related needs of
the project, (4) the inclusion of a software-adapted
Ishikawa diagram, (5) new definition of the detection
factor in the FMEA risk priority number (RPN).

SREA defines an explicit process for both product-
and process-related risks. SREA product assesses the
risks within the software itself (interfaces, modules,
structure,…), whereas SREA process evaluates the
software development process (requirements,
frameworks used, testing). This separation enables
continuous improvement of the development process,
which also leads to a reduction of risks within every
single product.

SREA Process Definition. SREA comprises three
main processes. The first main process encompasses
the risk management mandate and the goal adjustment
process, which describe the communication to the
stakeholders and the triggering of input artifacts of the
risk management process. The incorporation of the
stakeholder is transferred from Riskit [22] into SREA.
The second main process, the analysis and structure
process, visualizes and documents the project functions
and their dependencies by running structural analysis,
functional analysis, component clustering, net analysis,
and risk identification. Furthermore, the third main
process describes the evaluation of the risks and the
actions set for risk reduction by running risk
evaluation, risk control planning, and risk control.

The Net Analysis, in the second main process, is
one of the most important procedures within SREA,
especially for combined products. This procedure
detects not only interfaces between manufacturing OR
software parts of the system, but focuses particularly
on the interfaces between manufacturing AND
software parts. Customized Ishikawa diagrams for

manufacturing and software engineering concern topics
that are used to get an open minded view of product
interfaces and risks.

Within the Risk Evaluation process, the risk priority
number (RPN) is calculated by multiplying the factors
of Severity, Occurrence, and Detection. The first factor
is the severity number. It is an expression of the
impact, in other words, the influence of a failure if it
occurs. It depends on the influence on costumers, the
functionality of the system, harm to the machine or to
human beings, and the amount of work to solve the
problem.

The second multiplier is the probability of
occurrence. Development status, experiences as well as
known failure scenarios of tested components are
possible criteria for the estimation of occurrence.

Consequently, the third criterion for calculation is
the probability of detection. In contrast to FMEA, this
detection has to be adapted to the needs of software
projects. The only possibility to detect a failure in a
software component is to run tests. Therefore, the
probability of detection gives information about the
efficiency of the test method and, in addition, a ratio
for possible detection of a failure before the software is
delivered to customers.

Summarizing, the focus of SREA makes it possible
to find risks that are not considered by traditional risk
management methods, like FMEA. In addition to the
strength of SREA in detecting risks within interfaces to
other components, it has a second advantage by
definition. On the one hand, it is possible to evaluate
process-related risks. On the other hand, product-
related risks can be evaluated. This enables evaluation
of project risks from different points of view, leading
to better results.

Case study results. The following section describes
the environment and the design of the case study.
Notice that this case study does not provide a full
evaluation of the method, but was used as a first
orientation for further experimentation and
improvement.

The project in which SREA was evaluated was
carried out at a manufacturing company in a traditional
engineering field. The core business of the company is
the production of cranes for international sales.
Furthermore, the company is the world market leader
in their field. They have developed a configuration
software for their cranes that runs on web-based
personal computers as well as on Personal Digital
Assistants (PDA). Embedding the software on a small
device such as a PDA with few storage resources
forced them to evaluate the risks for the PDA
application.

One of the main results of the case study was the
discovery that the SREA approach identifies risks not

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

only on the software level but also on the management,
project, and context level. Additional risks within
interfaces of the software and the environment were
identified by SREA. Together with the scalability to
certain components, this result could be a future
advantage of the method.

According to the risk ranking, the main result was
the identified influence of the detection factor. FMEA
experts mentioned at meetings before the case study
that this factor also causes some problems when
FMEA is applied in its original context. In contrast,
this study shows that there was an important influence
on the result of the SREA risk evaluation process.

Regarding the effectiveness and efficiency of
SREA, it can be said that, in principle, the method is
applicable to combined products. For the exact
evaluation of the method concerning effectiveness and
efficiency, more experimentation has to be applied to
get better results in the future.

In summary, several lessons learned resulted from
the case study for the new SREA approach, on the one
hand, and for Risk Management in general, on the
other hand. Three of them are mentioned here. First,
SREA was useful and applicable for the participants of
the case study. Second, project members found risks
that were not identified before despite continuous
observation by the project team. Third, improvements
with respect to experimentation for more convincing
results were found.

8. Benefits for disciplines

As the number of mechanical, electrical, and
software components constantly increases in many
traditionally non-software products, and therefore more
and more interdisciplinary projects are set up, the
different disciplines must join forces in order to meet
the requirements caused by the different attitudes of
the disciplines. Project staff must learn to look beyond
their own educational background and must accept that
new ways of thinking are emerging. In other words,
there is a need for project staff to solve problems in an
interdisciplinary manner. The approach proposed here
is meant to unify project staff with different
backgrounds in order to perform successful projects.
And if a good product is developed, then it is produced
in a successful engineering project. Consequently, not
only does the discipline of software engineering benefit
from this experience, but so do the other engineering
disciplines.

9. Summary

This paper is the extension of a position paper
presented at the STEP2003 Second Workshop for
Interdisciplinary Risk Management. This series of
workshops intends to identify techniques successfully
applied to disciplines cognate to software engineering.
The participants of the workshop wanted to know to
which extent these techniques can be transferred to
software engineering or what can be learned for
software engineering. In this sense, this paper proposes
the adaptation of an existing risk management
approaches originally developed for a single discipline
to the needs of interdisciplinary projects.

9. References

[1] S. Hartkopf, P. Kaiser, and B. Freimut. Interdisciplinary
risk management - A position paper. Technical Report IESE-
Report No. 091.03/E, Fraunhofer Institute for Experimental
Software Engineering (IESE), Kaiserslautern, Germany,
Sauerwiesen 6, D-67661 Kaiserslautern, 2003.
http://www.iese.fraunhofer.de/pdf_files/iese-091_03.pdf.
[2] P. Brereton, N. Mehandjiev, and P. Layzell.
Interdisciplinary software engineering. In F. Coallier,
G. Hoffnagle, P. Layzell, L. O´Brien, and D. Poo, editors,
Proceedings of the Tenth International Workshop Software
Technology and Engineering Practice (STEP), page 45. IEEE
Computer Society, Los Alamitos, California, USA, October
2002.
[3] N. Mehandjiev, P. Layzell, P. Brereton, G. Lewis,
M. Mannion, and F. Coallier. Thirteen knights and the seven-
headed dragon: an interdisciplinary software engineering
framework. In F. Coallier, G. Hoffnagle, P. Layzell,
L. O'Brien, and D. Poo, editors, Proceedings of the 10th
International Workshop on Software Technology and
Engineering Practice (STEP 2002), pages 46-54. IEEE
Computer Society, 2002.
[4] Arbeitsgruppe 131 "FMEA" Deutsche Gesellschaft für
Qualität e.V., Frankfurt am Main, Germany. FMEA -
Fehlermöglichkeits- und Einflussanalyse. Beuth, 2 edition,
2001.
[5] Verband der Automobilindustrie e.V. (VDA).
Qualitätsmanagement in der Automobilindustrie: Sicherung
der Qualität vor Serieneinsatz Teil 2, System-FMEA.
Verband der Automobilindustrie e.V. (VDA),
Qualitätsmanagement Center (QMC), Karl-Hermann-Flach-
Str. 2, 641440 Oberursel, Germany, Fax: +49 (0)6171 9122-
14, 1st edition, 1996.
[6] O. Mäckel. Mit Blick aufs Risiko - Software-FMEA im
Entwicklungsprozess softwareintensiver technischer
Systeme. QZ Qualität und Zuverlässigkeit:
Qualitätsmanagement in Industrie und Dienstleistung,
46(1):65-68, 2001, (in German).
[7] B. Beizer. Software is different. Annals of Software
Engineering, 10(1-4):293-310, 2000.
[8] F. P. Brooks, Jr. No silver bullet: essence and accidents of
software engineering. Computer, 20(4):10-19, 1987.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

[9] anonymous. Collins English dictionary. HarperCollins
Publishers, PO Box, Glasgow G4 0NB, 3rd edition, 1991.
[10] anonymous. The American Heritage Dictionary of the
English Language. Third Edition. Houghton Mifflin
Company, 3rd edition, 1996.
[11] M. Glinz. Skript zur Software Engineering I Vorlesung
im Wintersemester 2002/2003 an der Universität Zürich,
Institut für Informatik. available on July 10, 2003 on
http://www.ifi.unizh.ch/groups/req/ftp/se_I/kapitel_01.pdf,
2002.
[12] M. Broy and D. Rombach. Software Engineering:
Wurzeln, Stand und Perspektiven. Informatik Spektrum,
16:438-451, Dezember 2002.
[13] G. A. King. Quality technique transfer: Manufacturing
and software. Annals of Software Engineering, 10(1-4):359-
372, 2000.
[14] N. G. Leveson. Safeware: system safety and computers.
Addison-Wesley, Reading, Massachusetts, USA, 1995.
[15] IEEE Computer Society, IEEE Standard Glossary of
Software Engineering Terminology, Los Alamitos,
California, USA: IEEE Computer Society, 2003.
[16] D. L. Parnas. Software aspects of strategic defense
systems. Communications of the ACM, 28(12):1326-1335,
December 1985.
[17] W. R. Duncan. A Guide to the Project Management
Body of Knowledge. PMI Project Management Institute,
Newtown Square, PA, USA, 1996.
[18] C. J. Alberts, A. J. Dorofee, R. P. Higuera, R. L.
Murphy, J. A. Walker, and R. C. Williams. Continuous Risk
Management Guidebook. SEI, Carnegie Mellon University,
Pittsburgh, 1989.
[19] T. Kurz. Risk Management for Embedded Systems: The
Software Risk and Effects Analysis (SREA). Master's thesis,
School of Telecommunications Engineering of the University
of Applied Sciences and Technologies, June 2003.
[20] S. Hartkopf, T. Kurz, and T. Heistracher. Risk
management as a means to better manage interdisciplinary
projects. In A. Fricke, G. Kerber, D. Lange, and R. Marre,
editors, Proceedings of the second conference on
Interdisciplinary Project Management 2004 (InterPM2004),
pages 259-273, GPM Deutsche Gesellschaft für
Projektmanagement e.V., Roritzerstr. 27, 90419 Nürnberg,
Germany, March 2004.
[21] S. Hartkopf, T. Kurz, and T. Heistracher. Risk
management as a means to better manage interdisciplinary
projects. Technical Report IESE-Report 045.04/E,
Fraunhofer Institute for Experimental Software Engineering,
Kaiserslautern, Germany, 2004.
[22] J. Kontio. The Riskit method for software risk
management,version 1.00. Computer Science Technical
Reports CS-TR-3782, University of Maryland. College Park,
MD, 1997.

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04)

0-7695-2218-1/04 $20.00 © 2004 IEEE

