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Abstract 
Risk management has been identified as a vitally 

important project management task. Hence, many risk 
management approaches have been developed. 
Unfortunately, most of them deal with the risks of a 
single discipline only, meaning disciplines in which 
either software or non-software products are 
developed. In contrast, nowadays many projects are 
highly interdisciplinary undertakings in the sense that 
newly developed conventional non-software products 
are enhanced by software. With the advent of software, 
many additional risks have emerged. In this paper, the 
differences between software and non-software 
products are investigated. From these differences, 
consequences for interdisciplinary projects are 
derived. It is indicated how an interdisciplinary risk 
management approach can cope with the 
consequences. An answer is given to the question of 
how to achieve such an interdisciplinary approach. 
One possible solution is presented here as an 
adaptation of the Failure Modes and Effects Analysis, 
a single discipline approach, to the needs of software. 
This paper is an extension of a position paper 
presented at the STEP2003 Workshop of 
Interdisciplinary Software Engineering.  

1. Introduction 

This paper is an extension of a position paper 
presented at the second Workshop on Interdisciplinary 
Software Engineering (WISE) held during the tenth 
International Workshop Software Technology and 
Engineering Practice (STEP) in Amsterdam, The 
Netherlands, in September 2003. The position paper 
was called “Interdisciplinary Risk Management”, and 
the position statement was: In order to meet the 
challenge of interdisciplinary projects in the German 
automotive industry, it is necessary to adapt the 
established risk management technique FMEA, which 
originates from the mechanical and electrical 

engineering field, to a situation, where software and 
hence software engineering plays a more and more 
prominent role in automobiles and their production 
processes [1]. It contributed to the topic of WISE 2002 
in that it draws on a technique that is used in a 
discipline cognate to software engineering in order to 
transform software engineering into a more holistic, 
interdisciplinary activity that breaks down rigid 
barriers between disciplines and processes [2], [3].  

In [3], a framework is presented, that identified, 
first,  seven groups of issues that are related to 
contemporary software engineering practice and 
research (e.g., information explosion, procurement 
decision, risk identification and management) and, 
second, thirteen disciplines cognate to software 
engineering (e.g., civil engineering, systems 
engineering, production engineering). For each group 
of issues, techniques or models from these cognate 
disciplines are identified that are recognized as 
transferable to software engineering along with the 
level of diffusion. This level describes to which extent 
a transformation from the cognate discipline to 
software engineering has already taken place.  

In order to classify the disciplines (mechanical and 
electrical engineering) and technique (risk management 
technique FMEA) from the position statement into the 
table of the above mentioned framework, some 
explanation is needed, because the classification is not 
straightforward. Certainly, risk management was 
identified as one group of issues of current software 
engineering practice and research, but mechanical or 
electrical engineering were not explicitly regarded as a 
cognate disciplines. Considering the automotive 
context of the position statement, the most cognate 
discipline seems to be the discipline of production 
engineering. This assignment can be supported, since 
FMEA as described in [4], [5] defines a risk 
management process that covers the same life cycle 
phases as described for production engineering in [3]. 
The level of diffusion of FMEA can be stated between 
3 and 4. That means from “best practice in some 

Proceedings of the Eleventh Annual International Workshop on Software Technology and Engineering Practice (STEP’04) 

0-7695-2218-1/04 $20.00 © 2004 IEEE



organizations, perhaps covered by frameworks CMM, 
SWEBOK, RUP …” to “waiting on standards being 
developed and accepted”. An example for best practice 
in some organization is described in [6]. Here, the 
application of FMEA for software-intensive 
components at Siemens is exemplified. However, quite 
a lot of organizations encountered problems when 
applying FMEA in projects in which they produce 
products that were formerly pure non-software 
products and are now enhanced by software. These 
organizations look for unified guidelines on how to 
perform FMEA in interdisciplinary projects.  

After the explanation of the context of the paper, in 
the following, the structure of the paper as well as its 
extension in comparison to the position paper is 
explained.

Chapter 2 describes the gap that arises in 
interdisciplinary projects due to the fact that project 
management has no means to cope with new demands 
in such projects and risk management approaches are 
traditionally designed for single discipline projects. 
Chapter 3 and 4 elaborate thoroughly on the question 
of the position paper, Why do we need an 
interdisciplinary risk management approach? In 
Chapter 3, the differences between software and non-
software products are worked out. Chapter 4 describes 
the consequences with respect to products combining 
software and formerly non-software products, the 
processes in the life cycle of such products, and the 
people involved in such interdisciplinary projects. The 
question from the position paper, Why is risk 
management a useful means to bridge the gap between 
disciplines? is investigated in depth in Chapter 5. 
Chapter 6 explains how an interdisciplinary risk 
management can be achieved, whereas in Chapter 7 
one possible solution for an interdisciplinary risk 
management approach is described. Chapter 8 
previews the expected benefits for the different 
disciplines involved. Chapter 9 closes the paper with a 
summary. 

2. The gap in interdisciplinary projects 

In the context of this paper, interdisciplinary 
projects are projects in which engineering products are 
developed that were formerly pure non-software 
products and are now enhanced by software. That 
means, in the development of these combined products, 
components with different features, processes from 
more than one engineering discipline, and project staff 
with different educational backgrounds are involved 
and must be integrated. 

In interdisciplinary projects, a gap between project 
management and its vitally important activity of risk 

management can be observed. On one side of the gap, 
risk management approaches are traditionally 
developed for a single discipline, and on the other side, 
project management has few means to cope with the 
challenges in interdisciplinary projects. In order to 
close the gap, an extension of single discipline risk 
management approaches to the needs of 
interdisciplinary projects is a potential solution.  

This extension is necessary as, on the one hand, 
market trends show a general shift from single 
discipline to interdisciplinary projects, and, on the 
other hand, the media report on the quality problems of 
combined products almost every day. For example, in 
the automotive industry, more and more functionality 
is and will be provided by software, in addition to 
conventional mechanical and electrical components. 
Independently of any discipline, risk management is 
recognized as a very important project management 
activity to successfully perform a project. So far, 
project managers apply – if at all – existing, single 
discipline risk management techniques to their 
projects. They use approaches they are familiar with, 
neglecting the fact that their projects have mutated into 
interdisciplinary projects. They can hardly do better, 
since risk management techniques that cover the needs 
of interdisciplinary projects are still missing.  

In the following, the essential differences between 
software and non-software products are examined. This 
is done to better understand the difficulties encountered 
in interdisciplinary projects. 

3. Essential differences between software 
and non-software 

In the following, the differences between software 
and non-software are thoroughly investigated. Since 
“non-software” is an awkward term to use, the term 
hardware is introduced, it is used for non-software 
products such as items made from steel or metal. 

In order to figure out the differences between 
software and hardware, a literature review was 
performed. The results presented here are mainly taken 
from Beizer [7] and the well-known article of Brooks 
[8]. Nevertheless, if other papers contributed valuable 
aspects, then they are referenced as well.  

The main differences between software and 
hardware can be reduced to invisibility, intangibility, 
non-applicability of natural constraints, changeability, 
conformity, and complexity. Thereby, Brooks’ four 
essences of software are extended by intangibility and 
the non-applicability of natural constraints. This is 
done because these two create many consequences 
when comparing software engineering with the other 
engineering areas. 
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The six main differences form a quasi-deduction 
chain. In Figure 1, a quasi-deduction chain of the 
differences between software and hardware is depicted. 
Quasi-deduction here means that the line of the 
deduction might not be as strict as the arrows indicate. 
Nevertheless, from these six differences, the major 
consequences for interdisciplinary projects can be 
derived. In the following, each of the differences is 
defined, their characteristics for software and hardware 
are worked out and, if seen as necessary, explained 
with examples. 

Figure 1: Quasi-deduction chain of the differences 
between software and hardware 

3.1 Invisibility and intangibility 

Invisibility and intangibility are somehow similar 
concepts. Nevertheless, both are considered, because in 
the remainder of the paper, both concepts are 
referenced depending on what is easier to understand. 

Definition “Invisibility”: Not visible, not able to 
be perceived by the eye [9]. 

Definition “Intangibility”: Incapable of being 
perceived by touch; impalpable [9], [10].

Hardware is visible and can be touched. Hardware 
has a material embodiment, for example, a punch or a 
hammer. The action or movement of hardware is 
normally directly observable without any special 
means. 

Software is invisible [8] and intangible [11]. To be 
more precise, the intangibility of software is 
manifested in two ways. First, software entities do not 
have a material embodiment [11], [12], except being 
presented to human beings by numbers, letters, or 
graphics on paper or on the monitor screen. Second, 
the visibility of software code when in action is 
normally not observable or solely indirectly [13] and 
just by means of a computer [12].  

Straight consequence: From these two differences, 
the applicability or non-applicability, respectively, of 
natural constraints to software and hardware follows 
[12]. 

3.2 Non-applicability of natural constraints 

Definition: Natural constraints are the natural laws 
and the properties of physical material. 

Hardware is subject to natural constraints. Thus, 
these enforce discipline on the design, construction, 
and modification of hardware [14]. 

Software. With the advent of software, a new way 
of thinking was introduced. The intuitive 
understanding of the physical world as human beings 
had perceived it up to that point has been turned up-
side down. Software code is stored in electronic bits 
and no natural law or property of physical material 
governs the software engineer when designing, 
constructing, or modifying the software [14]. That 
means, on the other hand, that discipline is brought 
into the design, construction, and modification not 
through natural constraints, but through the capability 
of the individual software engineer or a group of 
engineers [11]. If they are disciplined and use proper 
tools, methods, processes, and architecture, there is a 
chance that software is engineered in a sensible way. 

Straight Consequences. From the applicability or 
non-applicability of natural constraints, two 
consequences can be derived. First, it makes a 
difference in the changeability of software and 
hardware (see Section 3.3). Second, it has an impact on 
the degree of complexity which can be reached in 
software and hardware [14], [12] (see Section 3.5). 

3.3 Changeability 

Definition: Changeability is understood here as a 
superior term to four aspects associated with  
software’s and hardware’s ability to change throughout 
their entire life cycle. (1) Ease of modification: The 
ease with which hardware or software can be modified 
before mass production. (2) Ease of extendability1: The 
ease with which software and hardware from an entire 
release and series, respectively, can be modified to 
increase functional capacity. (3) Ease of flexibility1:
The ease with which software and hardware from an 
entire release and series, respectively, can be modified 
for use in applications or environments other than 
those for which it was specifically designed. (4) Ease 
of maintainability1: The ease with which software and 
hardware from an entire release and series, 
respectively, can be modified to correct faults, or 
improve performance or other attributes.  

Hardware. For hardware, (1) Ease of modification
is relatively easy. In the development phase, i.e., before 
the prototype is built and the build-up of the 

1 Definitions adhere to the definitions in [15]. 
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infrastructure has started, the design of the new product 
is performed mostly in the heads of the engineers and 
on paper. In the further course of the life cycle, the 
following is true: the more of the prototype and the 
infrastructure for the manufacturing process is finished, 
the harder it gets to implement major changes. This 
explanation is true for the production of a building as 
well as of a car model.  

(2) Ease of extendability is hard for hardware. Just 
think of the following example: a manufacturer of a 
rear-wheel drive car wants to extend it to an all-wheel 
drive. Most likely, this extension can not be done for 
cars already in the field. The infrastructure for 
production needs a redesign, or even worse, a new site 
for the plant. The line between ease of extendability 
and (3) Ease of flexibility is hard to draw for hardware. 
An example for flexibility could be the modification of 
a car toward an amphibian car. Nevertheless, ease of 
flexibility and extendability behave in similar ways.  

(4) Ease of maintainability in the sense of 
correcting faults is hard for hardware. A good example 
for this are many recalls that are initiated in order to 
correct systematic faults for all cars in a series that are 
already sold. In contrast, recalls are rare in which the 
manufacturer wants to improve performance or other 
attributes. Such a maintainability action might be 
performed for cars in a series not yet built, but not for 
cars already on the street. Ease of maintainability in the 
sense of improving attributes such as performance does 
not really exist for cars and, therefore, maybe neither 
for the majority of hardware products.  

Software. The perception by the general public is 
that changeability of software is high. The four aspects 
of changeability seem to be realized relatively easy. 
Major changes seem to be performed quickly and at 
seemingly low cost [14]. However, the consequences 
of the changes are often not considered carefully. 

For (1) Ease of modification it is true, that a 
modification has always an impact on the software 
product, because the software developed before mass 
production is always the final product (except if 
prototyping was selected as process model). That 
means the basis for the future quality is already laid in 
the development phase. (2) Ease of extendability and 
(3) Ease of flexibility are seen by the general public as  
beneficial advantages of software. Why (4) Ease of 
maintainability is perceived as easy to perform is 
shown by the following example: A software user can 
easily maintain his software by installing a new service 
pack either down-loaded from a storage device or from 
the Internet. Then faults are corrected, and even 
performance might be improved.  

The perception of “easy to perform” must be further 
explained. As long as the changes are performed only 
on the code, then a change seems to be easy to 

perform. However, often side effects to other parts of 
the code are not considered carefully, which may cause 
different, maybe severe failures. Additionally, in order 
to ensure traceability between the different software 
entities (i.e., requirements document or design 
document), the change should be performed 
universally in every entity. If a check of the potential 
side effects is conducted beforehand and the changes 
are performed universally, then the ease is immediately 
reduced.  

Straight Consequences. Changeability has an 
impact on conformity (see Section 3.4) and complexity 
(see Section 3.5).  

3.4 Conformity 

Definition: “Compliance in actions, behavior, etc., 
with certain accepted standards and norms.” [9]

Hardware: Due to the natural constraints, the 
degree of conformity of hardware is limited.  

Software: Software is conformable for two reasons. 
First, it is perceived as the most conformable. Second, 
it is the most recent arrival on the scene [8]. 
Inconsistencies discovered in a late phase of hardware 
development are often adjusted by software, because it 
is perceived as easy to conform. The same is true for 
hardware that has been around for a long time. If this 
hardware is supposed to be enhanced, often software is 
selected for the enhancement and is made conform.  

Straight Consequences: Conformity has an impact 
on complexity. If a product is highly conformable, then 
it is likely that complexity increases with every step of 
conformity.   

3.5 Complexity 

Definition: In [15] complexity is defined as the 
degree to which a system or component has a design or 
implementation that is difficult to understand and 
verify. In [10], complexity is defined as the state or 
quality of being intricate or complex, whereby intricate 
can be described as difficult to understand and 
complex can be described as made up of various 
[involved] interconnected parts. Both definitions 
emphasize that the difficulty in understanding indicates 
the degree of complexity. Therefore, the following 
measures for complexity, some found in literature, will 
be introduced, in order to facilitate the comparison 
between software and hardware: (1) Proportionality of 
complexity: Describes what effect the addition of new 
features on the system size has. [7], [8]. (2) 
Intertwining: Describes the inner structure of a system. 
Two forms of description are selected: The degree of 
decomposition and the clearness of graphical 
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presentation. (2a) Applicability of the decomposition 
principle: Describes to which extent a system can be 
dismantled. [7], [14] (2b) The clearness of graphical 
presentation: Describes how easily a graphical 
presentation can be understood. (3) 
Functionality/complexity relation: This relation 
describes the visible impact of functionality on 
complexity. [7]. (4) Repeatability of similar elements:
This describes to which extent similar elements exist, 
physically or as software code, and how they are 
reused, in terms of software terminology invoked. [8] . 

Hardware. In order to explain the nature of 
hardware, an example is used. The example relates to 
the design of an apartment building. (1) 
Proportionality of complexity can be best explained 
with the relation to costs: If the future builder-owner 
wants to have a building with one more floor, then 
costs increase in nearly linear proportion. That means 
in reverse, with respect to complexity, that complexity 
will not increase more than in linear proportion. 
Otherwise the architect would increase costs as well. 
The (2a) Applicability of the decomposition principle 
can be called high, because a building can be 
dismantled to its smallest not decomposable elements 
(e.g., rooms, floors, doors, ceilings, walls, windows, 
and so on). (2b) Clearness of graphical presentation of 
a building is easy to understand by looking at the 
blueprint. In general, hardware can be documented by 
literal engineering drawing. Concerning the (3) 
Functionality/complexity relation, it can be stated that 
more functionality for the user increases complexity 
for the user. For example, if a tenant wants a heating 
system and shutters with programmable heating times 
and opening/closing times respectively, then this 
increases the usage complexity for the tenant. (4) 
Repeatability of similar elements is high in a building. 
It consists of many elements that have the same 
functionality (e.g., doors), but are repeated in their 
material embodiment.  

Software. (1) Proportionality of complexity of 
software increases more than in linear proportion. In 
most cases, a newly added element interacts with the 
other elements in some non-linear fashion and this 
increases the complexity of the whole much more than 
in linear proportion [8]. (2a) Applicability of the 
decomposition principle is also an objective in 
software engineering. However, other software 
engineering objectives, such as global data storage or 
the principle of abstraction [13] interfere with this 
objective [7]. (2b) Clearness of graphical presentation
is mostly not given, due to several, generally directed 
graphs superimposed one upon another [8]. These 
graphs may represent flow of control, flow of data, 
time sequences, and even more (compare with all the 
different UML Diagrams). Additionally, these graphs 

are usually not planar and much less hierarchical [8]. 
The (3) Functionality/complexity relation of software 
is often an inverse relation. A functionality that may 
ease the usage of the software system for the user often 
increases internal complexity, which is not visible for 
the user [7]. (4) Repeatability of similar elements has a 
totally different character for software than it does for 
hardware. In software, similar elements exist just once 
as code, and then they are invoked where needed from 
all over the entire software system. Whether this 
increases or decreases the proportionality of 
complexity is hard to say. Nevertheless, it contributes 
heavily to intertwining and to an unclear graphical 
presentation of software.  

Straight consequences. Brooks described in [8] 
many consequences from complexity. Consequences 
relevant in this context of interdisciplinary projects are 
depicted in Chapter 4. 

4. Consequences for interdisciplinary 
projects 

In this chapter, consequences from the essential 
differences between software and hardware are shown. 
The consequences can be classified to be associated 
with the combined product, the life cycle of the 
combined product, and the people involved in 
interdisciplinary projects. The list of consequences is 
most likely not complete. Nevertheless, it gives a clue 
regarding the severity of the consequences, which is 
sufficient for the understanding of the remainder of this 
paper. 

4.1 Consequences associated with the combined 
product  

In the following, consequences from the essential 
differences of software associated with combined 
products are explained. 

Determination of the progress of completion. Due 
to the invisibility and intangibility of software, 
determination of the progress of completion of 
software is hard. An engineer in the automotive 
industry sees the progress of a new car model by how 
the prototype evolves and how the production plant for 
the mass production is built up. He has three indicators 
for the progress at hand. First, the material consumed, 
second, the visible growth, and third, the effort spent. 
Of course, in software development, effort spent is also 
an indicator, but a weak one. Effort is spent for what 
and for which things? The counterpart of consumed 
material could be the number or requirements 
implemented. Nevertheless, the determination of the 
number of requirements implemented depends, among 
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other issues, on the chosen life cycle framework model 
(e.g., waterfall model, spiral model, or throwaway 
prototype model).

Presentation schemata are different. Due to 
invisibility, intangibility, and complexity, the 
presentation schemata of software and hardware are 
different. For the presentation scheme of hardware, the 
decomposition principle can be applied. For the 
presentation scheme of software, other principles such 
as abstraction [13] or global data storage might be 
superior. This difference makes it hard to represent a 
combined product in one schema. 

Detection of errors: Due to the invisibility, 
intangibility, and the consequences of the non-
applicability of natural constraints to software, the 
detection of errors is different in software and 
hardware. First of all, software does not have a link of 
form and function [13]. That means, a profound error is 
not as obvious as many errors in hardware. Beizer [7] 
identified three types of errors, differentiating software 
errors from hardware errors. That is, the space locality 
of a software error is manifested arbitrarily far away 
from the cause, the time locality of a software error is 
manifested arbitrarily long after the execution of the 
faulty code, and the consequences of a software bug 
are arbitrarily related to the cause. Another profound 
difference to hardware is that for software, no 
counterpart to continuous mathematics exists or is 
applicable to prove the reliability of complex software 
[16].  

Duplication. Due to the intangibility, software is 
easy to duplicate. Duplication simply consists of 
copying code on another storage device. In contrast, in 
order to duplicate hardware, first a production plant is 
necessary, and second, the stages of the assembly line 
in the production plant must be run through. 

The essential differences between software and 
hardware impose many severe consequences for 
combined products. The issues explained above show 
just a selection of consequences of combined products. 
Project staff on interdisciplinary projects must learn to 
handle these differences. 

4.2 Consequences associated with the processes 
in the life cycle of a combined product

On a coarse level, software and hardware have the 
same processes in their life cycle, but with different 
characteristics. The characteristics vary with regard to 
implementation, cost, duration, effort, and 
accompanying activities such as quality assurance. The 
processes on the coarse level are the initial concept, the 
design, the production, the use, and the final disposal.  

The initial concept consists of a feasibility study, 
market analysis, or similar activities. The design 
process in hardware can be divided into the processes 
of designing the prototype of a hardware model and the 
planning and build-up of the infrastructure of the 
production plant. For software, the design process is 
the development of the actual final product. In the 
production process, the hardware is duplicated multiple 
times in the production plant, whereas the production 
of software consists of simply copying. Use and final 
disposal are not important in this context. 

The initial concept does not differ much for 
software and hardware. However, the design and 
production process reveal significant differences in 
implementation. With respect to cost, duration, and 
effort, the hardware production process costs more, is 
longer, and takes more effort than the hardware design 
process. On the other hand, the cost, duration, and 
effort in the software and hardware design process 
might be similar. With respect to the quality assurance 
activity, significant differences also exist. In software, 
quality assurance must be built in during the design 
phase, whereas for hardware, quality assurance starts 
with the production process. 

The consequence for the processes and the 
accompanying activities in the life cycle of a combined 
product are manifold. In particular, special attention 
needs to be paid to the implementation of the 
accompanying activities. 

4.3 Consequences associated with the people 
involved in interdisciplinary projects 

People involved in the interdisciplinary projects are 
the customer, project management, software and 
hardware project staff. Apart from the software staff, it 
can be assumed that the others do have similar 
knowledge and attitude about software. Customer and 
project management still tend to be from the hardware 
side and therefore, their perception of software is often 
that software is easy to change and thus easy to be 
made conform. This attitude determines the procedure 
in the development of the combined product. They are 
not aware of what consequences arise from this 
perception. They are not aware that the determination 
of the progress of completion or the detection of errors 
is so different for software and hardware.  

It can be assumed that especially the different 
perception of software among hardware and software 
people is one reason for the major problems in 
interdisciplinary projects. 
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5. A potential solution to cope with the 
differences and consequences: 
Interdisciplinary risk management 

In order to cope with all the differences and 
consequences, means must be at hand that can help. 
Due to the diversity of the differences and 
consequences, a whole bundle of solutions might be 
necessary. On the other hand, the differences and 
consequences can be seen as risks in interdisciplinary 
projects. Risk is commonly defined as the possibility 
of suffering a loss [10].  

One way to reduce or prevent the occurrence of 
risks, thus help projects to be successful, is the 
application of risk management. Considering the 
definition for risk management of PMBOK [17] and 
that for software project risk management of SEI [18],  
software risk management can be understood as a 
systematic, disciplined, continuous, proactive activity 
in which the processes of identifying, analyzing, 
responding to, monitoring and controlling of risks and 
their countermeasures are performed in order to 
maximize the probability and consequences of positive 
events and minimize the probability and consequences 
of events adverse to project objectives. 

The benefits of risk management are that it supports 
the finding of items that can possibly harm the project, 
helps focusing on items that promise the most benefit, 
encourages proactive instead of reactive management, 
makes it possible to detect possible problems in early 
project phases (which will show up only in later phases 
without risk management), and supports the discovery 
and exploitation of opportunities. 

What is special in interdisciplinary risk 
management is first, that it is especially designed to be 
applied in interdisciplinary projects and second, that 
project staff is familiar with one risk management 
process, terminology, and document templates. Such a 
uniform process would foster the communication and 
understanding among project staff. In the risk 
management sessions, which are performed regularly, 
all involved personnel will participate, that means 
representatives from all involved technical levels are 
present as well as from the different hierarchical levels. 

Risk management is not a silver bullet. However, it 
can help to focus on the highest risks in the project and 
can find appropriate measures taking into account the 
objectives of the project. 

In the following, the question is answered of how an 
interdisciplinary risk management approach can be 
achieved. 

6. Achieving an interdisciplinary risk 
management approach 

In order to achieve an interdisciplinary approach, 
three solutions are possible. The first solution is the 
development of a totally new risk management 
approach. The second solution is the adaptation of a 
software engineering risk management approach to 
hardware needs. And the third solution would be the 
adaptation of a hardware risk management approach to 
software needs.  

The possibility of developing a totally new 
approach has the drawback that it must overcome the 
acceptance barrier. Furthermore, until such a new 
approach is matured, a lot of time goes by, which 
might not be available.  

There are several reasons why we propose to adapt 
a hardware risk management approach to software 
needs and not vice versa. The first reason is that 
hardware risk management approaches are more 
commonly used in companies than software 
engineering approaches. A fact that can be explained 
due to many laws, norms, or directives that recommend 
or call for the application of a risk management 
approach for design and production processes. The 
second reason is that our experience shows that project 
staff is used to the “old” approaches. Now that they 
have to learn a lot about software engineering, they are 
reluctant to use or learn a new risk management 
approach as well. While they accept the need to change 
processes when they switch from mechanical to 
software engineering, they do not accept different 
terminology, forms, and processes for a supporting 
task like risk management. Therefore, to help such 
staff in upcoming interdisciplinary projects in which 
software plays a larger role, and to get a higher 
acceptance, we propose the adaptation of a hardware 
risk management approach. 

In particular, we propose the adaptation of the 
Failure Modes and Effects Analysis (FMEA) as it is 
applied in the German automotive industry [5], [4] to 
the software needs.  

Nevertheless, an important question for the midterm 
future is: Since it is obvious that software components 
increasingly permeate systems and software 
functionality becomes more and more complex, it 
might be more beneficial to adapt software risk 
management techniques to the needs of the other 
engineering disciplines. The hypothesis is that only in 
this way the challenges imposed by an increasing 
amount of software will be dealt with adequately. In 
the following chapter, an interdisciplinary risk 
management approach is described and results from a 
first application in an industrial setting. 
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7. Software Risk and Effects Analysis 

The Software Risk and Effects Analysis (SREA) is 
based on the Failure Mode and Effects Analysis 
(FMEA). The idea was to create an approach suitable, 
first, for manufacturing companies that expand their 
products with software components and second, for 
companies already producing combined products, e.g., 
embedded systems. More information about SREA can 
be found in [19], [20], [21]. 

SREA paradigma. The SREA paradigm is not only 
an adaptation of FMEA to software needs, but also 
uses best practices to define a practice-oriented and 
effective risk management approach for 
interdisciplinary projects. The innovations encompass 
five aspects: (1) The explicit definition of a Risk 
Management Mandate process, (2) the adaptation of 
the three FMEA types to the specific requirements of 
the software development process, (3) introduced 
scalability with respect to the software-related needs of 
the project, (4) the inclusion of a software-adapted 
Ishikawa diagram, (5) new definition of the detection 
factor in the FMEA risk priority number (RPN). 

SREA defines an explicit process for both product- 
and process-related risks. SREA product assesses the 
risks within the software itself (interfaces, modules, 
structure,…), whereas SREA process evaluates the 
software development process (requirements, 
frameworks used, testing). This separation enables 
continuous improvement of the development process, 
which also leads to a reduction of risks within every 
single product. 

SREA Process Definition. SREA comprises three 
main processes. The first main process encompasses 
the risk management mandate and the goal adjustment 
process, which describe the communication to the 
stakeholders and the triggering of input artifacts of the 
risk management process. The incorporation of the 
stakeholder is transferred from Riskit [22] into SREA. 
The second main process, the analysis and structure 
process, visualizes and documents the project functions 
and their dependencies by running structural analysis, 
functional analysis, component clustering, net analysis, 
and risk identification. Furthermore, the third main 
process describes the evaluation of the risks and the 
actions set for risk reduction by running risk 
evaluation, risk control planning, and risk control.  

The Net Analysis, in the second main process, is 
one of the most important procedures within SREA, 
especially for combined products. This procedure 
detects not only interfaces between manufacturing OR 
software parts of the system, but focuses particularly 
on the interfaces between manufacturing AND 
software parts. Customized Ishikawa diagrams for 

manufacturing and software engineering concern topics 
that are used to get an open minded view of product 
interfaces and risks.  

Within the Risk Evaluation process, the risk priority 
number (RPN) is calculated by multiplying the factors 
of Severity, Occurrence, and Detection. The first factor 
is the severity number. It is an expression of the 
impact, in other words, the influence of a failure if it 
occurs. It depends on the influence on costumers, the 
functionality of the system, harm to the machine or to 
human beings, and the amount of work to solve the 
problem.  

The second multiplier is the probability of 
occurrence. Development status, experiences as well as 
known failure scenarios of tested components are 
possible criteria for the estimation of occurrence.  

Consequently, the third criterion for calculation is 
the probability of detection. In contrast to FMEA, this 
detection has to be adapted to the needs of software 
projects. The only possibility to detect a failure in a 
software component is to run tests. Therefore, the 
probability of detection gives information about the 
efficiency of the test method and, in addition, a ratio 
for possible detection of a failure before the software is 
delivered to customers. 

Summarizing, the focus of SREA makes it possible 
to find risks that are not considered by traditional risk 
management methods, like FMEA. In addition to the 
strength of SREA in detecting risks within interfaces to 
other components, it has a second advantage by 
definition. On the one hand, it is possible to evaluate 
process-related risks. On the other hand, product-
related risks can be evaluated. This enables evaluation 
of project risks from different points of view, leading 
to better results. 

Case study results. The following section describes 
the environment and the design of the case study. 
Notice that this case study does not provide a full 
evaluation of the method, but was used as a first 
orientation for further experimentation and 
improvement. 

The project in which SREA was evaluated was 
carried out at a manufacturing company in a traditional 
engineering field. The core business of the company is 
the production of cranes for international sales. 
Furthermore, the company is the world market leader 
in their field. They have developed a configuration 
software for their cranes that runs on web-based 
personal computers as well as on Personal Digital 
Assistants (PDA). Embedding the software on a small 
device such as a PDA with few storage resources 
forced them to evaluate the risks for the PDA 
application. 

One of the main results of the case study was the 
discovery that the SREA approach identifies risks not 
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only on the software level but also on the management, 
project, and context level. Additional risks within 
interfaces of the software and the environment were 
identified by SREA. Together with the scalability to 
certain components, this result could be a future 
advantage of the method. 

According to the risk ranking, the main result was 
the identified influence of the detection factor. FMEA 
experts mentioned at meetings before the case study 
that this factor also causes some problems when 
FMEA is applied in its original context. In contrast, 
this study shows that there was an important influence 
on the result of the SREA risk evaluation process. 

Regarding the effectiveness and efficiency of 
SREA, it can be said that, in principle, the method is 
applicable to combined products. For the exact 
evaluation of the method concerning effectiveness and 
efficiency, more experimentation has to be applied to 
get better results in the future. 

In summary, several lessons learned resulted from 
the case study for the new SREA approach, on the one 
hand, and for Risk Management in general, on the 
other hand. Three of them are mentioned here. First, 
SREA was useful and applicable for the participants of 
the case study. Second, project members found risks 
that were not identified before despite continuous 
observation by the project team. Third, improvements 
with respect to experimentation for more convincing 
results were found. 

8. Benefits for disciplines 

As the number of mechanical, electrical, and 
software components constantly increases in many 
traditionally non-software products, and therefore more 
and more interdisciplinary projects are set up, the 
different disciplines must join forces in order to meet 
the requirements caused by the different attitudes of 
the disciplines. Project staff must learn to look beyond 
their own educational background and must accept that 
new ways of thinking are emerging. In other words, 
there is a need for project staff to solve problems  in an 
interdisciplinary manner. The approach proposed here 
is meant to unify project staff with different 
backgrounds in order to perform successful projects. 
And if a good product is developed, then it is produced 
in a successful engineering project. Consequently, not 
only does the discipline of software engineering benefit 
from this experience, but so do the other engineering 
disciplines. 

9. Summary  

This paper is the extension of a position paper 
presented at the STEP2003 Second Workshop for 
Interdisciplinary Risk Management. This series of 
workshops intends to identify techniques successfully 
applied to disciplines cognate to software engineering. 
The participants of the workshop wanted to know to 
which extent these techniques can be transferred to 
software engineering or what can be learned for 
software engineering. In this sense, this paper proposes 
the adaptation of an existing risk management 
approaches originally developed for a single discipline 
to the needs of interdisciplinary projects.  
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