ref to voltage divider

This commit is contained in:
Robin 2010-03-24 10:46:00 +00:00
parent e3dab88706
commit f7bda0e6c4

View File

@ -52,8 +52,6 @@ look-up tables or a suitable polynomial expression.
\end{figure}
The voltage ranges we expect from this three stage potential divider
are shown in figure \ref{fig:pt100vrange}. Note that there is
an expected range for each reading, for a given temperature span.
@ -155,52 +153,15 @@ on the effects of each test case are found in section \ref{pt100range}
and \ref{pt100temp}.
\pagebreak
% \subsection{Single Fault Modes as PLD}
%
% The component~failure~modes in table \ref{ptfmea} can be represented as contours
% on a PLD diagram. Each test case, or analysis into the effects of the component failure
% caused by the component~failure is represented by an labelled asterisk.
%
%
% \begin{figure}[h]
% \centering
% \includegraphics[width=400pt,bb=0 0 518 365,keepaspectratio=true]{./pt100/pt100_tc.jpg}
% % pt100_tc.jpg: 518x365 pixel, 72dpi, 18.27x12.88 cm, bb=0 0 518 365
% \caption{PT100 Component Failure Modes}
% \label{fig:pt100_tc}
% \end{figure}
%
% This circuit supplies two results, sense+ and sense- voltage readings.
% To establish the valid voltage ranges for these, and knowing our
% valid tempperature range for this example ({0\oc} .. {300\oc}) we can calculate
% valid voltage reading ranges by using the standard voltage divider equation \ref{eqn:vd}
% for the circuit shown in figure \ref{fig:vd}.
\begin{figure}[h]
\centering
\includegraphics[width=100pt,bb=0 0 183 170,keepaspectratio=true]{./pt100/voltage_divider.png}
% voltage_divider.png: 183x170 pixel, 72dpi, 6.46x6.00 cm, bb=0 0 183 170
\caption{Voltage Divider}
\label{fig:vd}
\end{figure}
%The looking at figure \ref{fig:vd} the standard voltage divider formula (equation \ref{eqn:vd}) is used.
\begin{equation}
\label{eqn:vd}
V_{out} = V_{in}.\frac{Z2}{Z2+Z1}
\end{equation}
\subsection{Range and PT100 Calculations}
\label{pt100temp}
PT100 resistors are designed to
have a resistance of \ohms{100} at 0 \oc \cite{eurothermtables}.
have a resistance of \ohms{100} at {0\oc} \cite{aoe},\cite{eurothermtables}.
A suitable `wider than to be expected range' was considered to be {0\oc} to {300\oc}
for a given application.
According to the Eurotherm PT100
tables \cite{eurothermtables}, this corresponded to the resistances \ohms{60.28}
tables \cite{eurothermtables}, this corresponded to the resistances \ohms{100}
and \ohms{212.02} respectively. From this the potential divider circuit can be
analysed and the maximum and minimum acceptable voltages determined.
These can be used as bounds results to apply the findings from the
@ -246,48 +207,6 @@ Table \ref{ptbounds} gives ranges that determine correct operation. In fact it c
for any single error (short or opening of any resistor) this bounds check
will detect it.
%\vbox{
%\subsubsection{Calculating Bounds: High Value : HP48 RPL}
%
%
%HP RPL calculator program to take pt100 resistance
%and convert to voltage and {\adctw} values.
%
%\begin{verbatim}
%<< -> p
% <<
% p 2200 + 2200 2200 + p + / 5 * DUP 5
% / 4096 *
% >>
%>>
%\end{verbatim}
%}
%
%\vbox{
%\subsubsection{Calculating Bounds: LOW Value : HP48 RPL}
%
%
%HP RPL calculator program to take pt100 resistance
%and convert to voltage and {\adctw} values.
%
%\begin{verbatim}
%<< -> p
% <<
% p 2200 2200 p 2200 + + / 5 * DUP 5
% / 4096 *
% >>
%>>
%\end{verbatim}
%}
%
%\subsection{Implementation of Four Wire Circuit}
%
%A standard 4 wire PT100\cite[pp 992]{aoe} circuit is read by
%ports on the 12 bit ADC of the PIC18F2523\cite{pic18f2523}.
%Three readings are taken. A reading to confirm the voltage level
%over $R_2$ is taken,
%from which the current can be determined.
%The two sense lines then give the vo
\section{Single Fault FMEA Analysis of PT100 Four wire circuit}
@ -312,7 +231,22 @@ This circuit supplies two results, sense+ and sense- voltage readings.
To establish the valid voltage ranges for these, and knowing our
valid temperature range for this example ({0\oc} .. {300\oc}) we can calculate
valid voltage reading ranges by using the standard voltage divider equation \ref{eqn:vd}
for the circuit shown in .
for the circuit shown in figure \ref{fig:vd}.
\begin{figure}[h]
\centering
\includegraphics[width=100pt,bb=0 0 183 170,keepaspectratio=true]{./pt100/voltage_divider.png}
% voltage_divider.png: 183x170 pixel, 72dpi, 6.46x6.00 cm, bb=0 0 183 170
\caption{Voltage Divider}
\label{fig:vd}
\end{figure}
%The looking at figure \ref{fig:vd} the standard voltage divider formula (equation \ref{eqn:vd}) is used.
\begin{equation}
\label{eqn:vd}
V_{out} = V_{in}.\frac{Z2}{Z2+Z1}
\end{equation}