.
This commit is contained in:
parent
8a59071d68
commit
f4cbae815e
@ -349,9 +349,9 @@ Because of this, the failure mode set $F=fm(R)$ is `unitary~state'.
|
|||||||
|
|
||||||
Thus because both fault modes cannot be active at the same time, the intersection of $ R_{SHORTED} $ and $ R_{OPEN} $ cannot exist.
|
Thus because both fault modes cannot be active at the same time, the intersection of $ R_{SHORTED} $ and $ R_{OPEN} $ cannot exist.
|
||||||
|
|
||||||
$$ R_{SHORTED} \cap R_{OPEN} = \emptyset $$
|
The intersection of these is therefore the empty set, $ R_{SHORTED} \cap R_{OPEN} \eq \emptyset $,
|
||||||
therefore
|
therefore
|
||||||
$$ fm(R) \in \mathcal{U} $$
|
$ fm(R) \in \mathcal{U} $.
|
||||||
|
|
||||||
|
|
||||||
We can make this a general case by taking a set $F$ (where $f_1, f_2 \in F$) representing a collection
|
We can make this a general case by taking a set $F$ (where $f_1, f_2 \in F$) representing a collection
|
||||||
@ -470,7 +470,7 @@ from $1$ to $cc$ thus
|
|||||||
%
|
%
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}S}| = \sum^{k}_{1..cc} \frac{|{S}|!}{ k! ( |{S}| - k)!}
|
|{\mathcal{P}_{cc}S}| = \sum^{cc}_{k=1} \frac{|{S}|!}{ k! ( |{S}| - k)!}
|
||||||
\label{eqn:ccps}
|
\label{eqn:ccps}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -478,7 +478,7 @@ from $1$ to $cc$ thus
|
|||||||
|
|
||||||
\subsection{Actual Number of combinations to check \\ with Unitary State Fault mode sets}
|
\subsection{Actual Number of combinations to check \\ with Unitary State Fault mode sets}
|
||||||
|
|
||||||
Where all the fault modes in $S$ were to be independent,
|
If all of the fault modes in $S$ were independent,
|
||||||
the cardinality constrained powerset
|
the cardinality constrained powerset
|
||||||
calculation (in equation \ref {eqn:ccps}) would give the correct number of test case combinations to check.
|
calculation (in equation \ref {eqn:ccps}) would give the correct number of test case combinations to check.
|
||||||
Because sets of failure modes in FMMD analysis are constrained to be unitary state,
|
Because sets of failure modes in FMMD analysis are constrained to be unitary state,
|
||||||
@ -486,7 +486,7 @@ the actual number of test cases to check will usually
|
|||||||
be less than this.
|
be less than this.
|
||||||
This is because combinations of faults within a components failure mode set,
|
This is because combinations of faults within a components failure mode set,
|
||||||
are impossible under the conditions of unitary state failure mode.
|
are impossible under the conditions of unitary state failure mode.
|
||||||
To correct equation \ref{eqn:ccps} we must subtract the number of component `internal combinations'
|
To modify equation \ref{eqn:ccps} for unitary state conditions, we must subtract the number of component `internal combinations'
|
||||||
for each component in the functional group under analysis.
|
for each component in the functional group under analysis.
|
||||||
Note we must sequentially subtract using combinations above 1 up to the cardinality constraint.
|
Note we must sequentially subtract using combinations above 1 up to the cardinality constraint.
|
||||||
For example, say
|
For example, say
|
||||||
@ -495,7 +495,7 @@ $|{n \choose 2}|$ and $|{n \choose 3}|$ for each component in the functional~gro
|
|||||||
|
|
||||||
\subsubsection{Example: Two Component functional group \\ cardinality Constraint of 2}
|
\subsubsection{Example: Two Component functional group \\ cardinality Constraint of 2}
|
||||||
|
|
||||||
For example: were we to have a simple functional group with two components R and T, of which
|
For example: suppose we have a simple functional group with two components R and T, of which
|
||||||
$$fm(R) = \{R_o, R_s\}$$ and $$fm(T) = \{T_o, T_s, T_h\}$$.
|
$$fm(R) = \{R_o, R_s\}$$ and $$fm(T) = \{T_o, T_s, T_h\}$$.
|
||||||
|
|
||||||
This means that the functional~group $FG=\{R,T\}$ will have a component failure mode set
|
This means that the functional~group $FG=\{R,T\}$ will have a component failure mode set
|
||||||
@ -504,7 +504,7 @@ of $fm(FG) = \{R_o, R_s, T_o, T_s, T_h\}$
|
|||||||
For a cardinality constrained powerset of 2, because there are 5 error modes ( $|fm(FG)|=5$),
|
For a cardinality constrained powerset of 2, because there are 5 error modes ( $|fm(FG)|=5$),
|
||||||
applying equation \ref{eqn:ccps} gives :-
|
applying equation \ref{eqn:ccps} gives :-
|
||||||
|
|
||||||
$$\frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15$$
|
$$ | P_2 (fm(FG)) | = \frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15$$.
|
||||||
|
|
||||||
This is composed of ${5 \choose 1}$
|
This is composed of ${5 \choose 1}$
|
||||||
five single fault modes, and ${5 \choose 2}$ ten double fault modes.
|
five single fault modes, and ${5 \choose 2}$ ten double fault modes.
|
||||||
@ -525,7 +525,7 @@ $$ \mathcal{P}_{2}(fm(FG)) = \{
|
|||||||
\}
|
\}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
And by inspection
|
And % by inspection
|
||||||
$$
|
$$
|
||||||
|
|
|
|
||||||
\{
|
\{
|
||||||
@ -539,30 +539,30 @@ $$
|
|||||||
\subsubsection{Establishing Formulae for unitary state failure mode \\
|
\subsubsection{Establishing Formulae for unitary state failure mode \\
|
||||||
cardinality calculation}
|
cardinality calculation}
|
||||||
|
|
||||||
The cardinality constrained powerset in equation \ref{eqn:ccps}, can be corrected for
|
The cardinality constrained powerset in equation \ref{eqn:ccps}, can be modified for % corrected for
|
||||||
unitary state failure modes.
|
unitary state failure modes.
|
||||||
This is written as a general formula in equation \ref{eqn:correctedccps}.
|
This is written as a general formula in equation \ref{eqn:correctedccps}.
|
||||||
|
|
||||||
%\indent{
|
%\indent{
|
||||||
where :
|
To define terms :
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Let $C$ be a set of components (indexed by $j \in J$)
|
\item Let $C$ be a set of components (indexed by $j \in J$)
|
||||||
that are members of the functional group $FG$
|
that are members of the functional group $FG$
|
||||||
i.e. $ \forall j \in J | C_j \in FG $
|
i.e. $ \forall j \in J | C_j \in FG $
|
||||||
\item Let $|fm({C}_{j})|$
|
\item Let $|fm({C}_{j})|$
|
||||||
indicate the number of mutually exclusive fault modes of each component
|
indicate the number of mutually exclusive fault modes of component $C_j$.
|
||||||
\item Let $fm(FG)$ be the collection of all failure modes
|
\item Let $fm(FG)$ be the collection of all failure modes
|
||||||
from all the components in the functional group.
|
from all the components in the functional group.
|
||||||
\item Let $SU$ be a set of failure modes from the functional group,
|
\item Let $SU$ be the set of failure modes from the {\fg} where all $FG$ is such that
|
||||||
where all contributing components $C_j$
|
components $C_j$ are in
|
||||||
are guaranteed to be `unitary state' i.e. $(SU = fm(FG)) \wedge (\forall j \in J | fm(C_j) \in \mathcal{U}) $
|
`unitary state' i.e. $(SU = fm(FG)) \wedge (\forall j \in J | fm(C_j) \in \mathcal{U}) $
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
%}
|
%}
|
||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} {|FM({C_{j})}| \choose p}}}
|
- \sum^{cc}_{p=2}{{\sum{j \in J} {|FM({C_{j})}| \choose p}}}
|
||||||
\label{eqn:correctedccps}
|
\label{eqn:correctedccps}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
@ -570,16 +570,56 @@ Expanding the combination in equation \ref{eqn:correctedccps}
|
|||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}SU}| = {\sum^{k}_{1..cc} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
- \sum^{p}_{2..cc}{{\sum^{j}_{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
- \sum^{cc}_{p=2}{{\sum{j \in J} \frac{|FM({C_j})|!}{p!(|FM({C_j})| - p)!}} }
|
||||||
\label{eqn:correctedccps2}
|
\label{eqn:correctedccps2}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
|
\paragraph{Use of Equation \ref{eqn:correctedccps2} }
|
||||||
Equation \ref{eqn:correctedccps2} is useful for an automated tool that
|
Equation \ref{eqn:correctedccps2} is useful for an automated tool that
|
||||||
would verify that an `N' simultaneous failures model had complete failure mode coverage.
|
would verify that an `N' simultaneous failures model had complete failure mode coverage.
|
||||||
By knowing how many test cases should be covered, and checking the cardinality
|
By knowing how many test cases should be covered, and checking the cardinality
|
||||||
associated with the test cases, complete coverage would be verified.
|
associated with the test cases, complete coverage would be verified.
|
||||||
|
|
||||||
|
\paragraph{Practicality}
|
||||||
|
Functional Group may consist, typically of four or five components, which typically
|
||||||
|
have two or three failure modes each. Taking a worst case of mutiplying these
|
||||||
|
by a factor of five (the number of failure modes and components) would give
|
||||||
|
$25 \times 15 = 375$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
|
||||||
|
# define a factorial function
|
||||||
|
# gives 1 for negative values as well
|
||||||
|
define f(x) {
|
||||||
|
if (x>1) {
|
||||||
|
return (x * f (x-1))
|
||||||
|
}
|
||||||
|
return (1)
|
||||||
|
|
||||||
|
}
|
||||||
|
define u1(c,x) {
|
||||||
|
return f(c*x)/(f(1)*f(c*x-1))
|
||||||
|
}
|
||||||
|
define u2(c,x) {
|
||||||
|
return f(c*x)/(f(2)*f(c*x-2))
|
||||||
|
}
|
||||||
|
|
||||||
|
define uc(c,x) {
|
||||||
|
return c * f(x)/(f(2)*f(x-2))
|
||||||
|
}
|
||||||
|
|
||||||
|
# where c is number of components, and x is number of failure modes
|
||||||
|
# define function u to calculate combinations to check for double sim failure modes
|
||||||
|
define u(c,x) {
|
||||||
|
f(c*x)/(f(1)*f(c*x-1)) + f(c*x)/(f(2)*f(c*x-2)) - c * f(c)/(f(2)*f(c-2))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
|
||||||
\pagebreak[1]
|
\pagebreak[1]
|
||||||
\section{Component Failure Modes \\ and Statistical Sample Space}
|
\section{Component Failure Modes \\ and Statistical Sample Space}
|
||||||
|
42
component_failure_modes_definition/unitary_state.bc
Normal file
42
component_failure_modes_definition/unitary_state.bc
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
# NOT FINISHED YET !!!!
|
||||||
|
|
||||||
|
# define a factorial function
|
||||||
|
# gives 1 for negative values as well
|
||||||
|
define f(x) {
|
||||||
|
if (x>1) {
|
||||||
|
return (x * f (x-1))
|
||||||
|
}
|
||||||
|
return (1)
|
||||||
|
}
|
||||||
|
|
||||||
|
# determine how many combinations would be dis-allowed
|
||||||
|
# from a cardinality constrained powerset
|
||||||
|
# given unitary state failure mode conditions
|
||||||
|
define uc(k,c,x) {
|
||||||
|
aa = 0;
|
||||||
|
for(i=2; i<=k; i++) aa += c * f(c)/(f(i)*f(c-i));
|
||||||
|
return aa;
|
||||||
|
}
|
||||||
|
|
||||||
|
# cardinality constrained powerset
|
||||||
|
# how many combinations of cardinality k
|
||||||
|
# can we have from c number of components
|
||||||
|
# with x number of failure modes
|
||||||
|
define ccps(k,c,x) {
|
||||||
|
return f(c*x)/(f(k)*f(c*x-k))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
define us(k,c,x) {
|
||||||
|
a=0;
|
||||||
|
for(i=1;i<=k;i++) a += ccps(i,c,x);
|
||||||
|
# a now holds all combinations
|
||||||
|
# we must now subtract those combinations
|
||||||
|
# dis-allowed under unitary state conditions.
|
||||||
|
a -= uc(k,c,x);
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
us(2,3,3);
|
Loading…
Reference in New Issue
Block a user