PFMEA with ford pinto

This commit is contained in:
Robin Clark 2011-09-29 18:59:11 +01:00
parent 9b837086d4
commit ecb417232d
4 changed files with 187 additions and 8 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 632 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 154 KiB

View File

@ -90,6 +90,12 @@ to do this completely (all failure modes against all components).
This is represented in equation~\ref{eqn:fmea_state_exp},
where $N$ is the total number of components in the system, and
$cfm$ is the number of failure modes per component.
\end{frame}
\begin{frame}
\frametitle{Rigorous Single Failure FMEA}
\begin{equation}
\label{eqn:fmea_single}
@ -125,6 +131,42 @@ double failure scenarios (for burner lock-out scenarios).
\end{frame}
\section{FMEA used for Saftey Critical Aprovals}
\begin{frame}
\frametitle{Safety Critical Approvals FMEA}
Experts from Approval House and Equipement Manufacturer
discuss selected component failure modes
judged to be in critical sections of the product.
\begin{figure}[h]
\centering
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
\caption{FMEA Meeting}
\label{fig:tech_meeting}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Safety Critical Approvals FMEA}
\begin{figure}[h]
\centering
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
\caption{FMEA Meeting}
\label{fig:tech_meeting}
\end{figure}
\begin{itemize}
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
\pause \item Meeting notes or minutes only.
\end{itemize}
\end{frame}
\section{PFMEA - Production FMEA : 1940's to present}
\begin{frame}
@ -145,6 +187,34 @@ will return most cost benefit.
\begin{frame}
% benign example of PFMEA in CARS - make something up.
\frametitle{PFMEA Example}
{
\begin{table}[ht]
\caption{FMEA Calculations} % title of Table
%\centering % used for centering table
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
% rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
% ruptured f.tank & & & & \\ \hline
\hline
\end{tabular}
\end{table}
}
%Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: $200,000 per death, $67,000 per injury, $700 per vehicle.
%Total Benefit: 180 X ($200,000) + 180 X ($67,000) + $2,100 X ($700) = $49.5 million.
%COSTS
%Sales: 11 million cars, 1.5 million light trucks.
%Unit Cost: $11 per car, $11 per truck.
%Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = $137 million.
\end{frame}
@ -152,25 +222,134 @@ will return most cost benefit.
%\subsection{Production FMEA : Example Ford Pinto : 1975}
\begin{frame}
\frametitle{PFMEA Example: Ford Pinto: 1975}
\begin{figure}[h]
\centering
\includegraphics[width=200pt]{./ad_ford_pinto_mpg_red_3_1975.jpg}
% ad_ford_pinto_mpg_red_3_1975.jpg: 720x933 pixel, 96dpi, 19.05x24.69 cm, bb=0 0 540 700
\caption{Ford Pinto Advert}
\label{fig:fordpintoad}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{PFMEA Example: Ford Pinto: 1975}
\begin{figure}[h]
\centering
\includegraphics[width=200pt]{./burntoutpinto.png}
% burntoutpinto.png: 376x250 pixel, 72dpi, 13.26x8.82 cm, bb=0 0 376 250
\caption{Burnt Out Pinto}
\label{fig:burntoutpinto}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{PFMEA Example: Ford Pinto: 1975}
{
\begin{table}[ht]
\caption{FMEA Calculations} % title of Table
%\centering % used for centering table
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
ruptured f.tank & & & allow & \\ \hline
rear end crash & $1$ & $11$ & fatal fire & 11.0 \\
ruptured f.tank & & & fix tank & \\ \hline
\hline
\end{tabular}
\end{table}
}
http://www.youtube.com/watch?v=rcNeorjXMrE
\end{frame}
\section{FMECA - Failure Modes Effects and Criticallity Analysis}
\begin{frame}
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
Very similar to PFMEA, but instead of cost, a criticallity or
seriousness factor is ascribed to putative top level incidents.
FMECA has three probability factors for component failures.
\textbf{FMECA ${\lambda}_{p}$ value.}
This is the overall failure rate of a base component.
This will typically be the failure rate per million ($10^6$) or
billion ($10^9$) hours of operation.
\textbf{FMECA $\alpha$ value.}
The failure mode probability, usually dentoted by $\alpha$ is the probability of
is the probability of a particular failure
mode occuring within a component.
%, should it fail.
%A component with N failure modes will thus have
%have an $\alpha$ value associated with each of those modes.
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
\end{frame}
\begin{frame}
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
\textbf{FMECA $\beta$ value.}
The second probability factor $\beta$, is the probability that the failure mode
will cause a given system failure.
This corresponds to `Baysian' probability, given a particular
component failure mode, the probability of a given system level failure.
\textbf{FMECA `t' Value}
The time that a system will be operating for, or the working life time of the product is
represented by the variable $t$.
%for probability of failure on demand studies,
%this can be the number of operating cycles or demands expected.
\textbf{Severity `s' value}
A weighting factor to indicate the seriousness of the putative system level error.
%Typical classifications are as follows:~\cite{fmd91}
\begin{equation}
C_m = {\beta} . {\alpha} . {{\lambda}_p} . {t} . {s}
\end{equation}
Highest $C_m$ values would be at the top of a `to~do' list
for a project manager.
\end{frame}
\section{FMEDA - Failure Modes Effects and Diagnostic Analysis}
\section{FMEA - Criticism}
\begin{frame}
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
FMEDA is the methodology behind statistical (safety integrity level)
type standards (EN61508/IOC5108).
It provides a statistical overall level of safety
and allows diagnostic mitigation for self checking etc.
\end{frame}
\section{FMEA - General Criticism}
\begin{frame}
\frametitle{FMEA - General Criticism}
\begin{itemize}
\pause \item Reasoning Distance - component failure to system level symptom
\pause \item State explosion - impossible to perform rigorously
\pause \item
\pause \item
\pause \item Difficult to re-use previous analysis work
\pause \item FMEA type methodologies were designed for simple electro-mechanical systems of the 1940's to 1960's.
\end{itemize}
FMEDA is an extension of FMEA, in that it will give higher ratings
for self checking. It
\end{frame}
@ -252,14 +431,14 @@ we must compare each failure mode against the two other components (the `$fgn-1$
For the one `zero' level FMMD case we are doing the same thing as FMEA type analysis
(but on a very simple small sub-system).
We are looking at how each failure~mode can effect the system/top level.
We can use equation~\ref{eqn:fmea_state_exp} to represent
We can use equation~\ref{eqn:fmea_state_exp44} to represent
the number of checks to rigorously perform FMEA, where $N$ is the total
number of components in the system, and $cfm$ is the number of failures per component.
Where $N=3$ and $cfm=3$ we can see that the number of checks for this simple functional
group is the same for equation~\ref{eqn:fmea_state_exp}
group is the same for equation~\ref{eqn:fmea_state_exp22}
and equation~\ref{eqn:anscen}.
\clearpage
@ -272,7 +451,7 @@ will require 81 base level components.
$$
%\begin{equation}
\label{eqn:fmea_state_exp}
\label{eqn:fmea_state_exp22}
81.(81-1).3 = 19440 % \\
%(N^2 - N).cfm
%\end{equation}

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB