PFMEA with ford pinto
This commit is contained in:
parent
9b837086d4
commit
ecb417232d
BIN
presentations/fmea/ad_ford_pinto_mpg_red_3_1975.jpg
Normal file
BIN
presentations/fmea/ad_ford_pinto_mpg_red_3_1975.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 632 KiB |
BIN
presentations/fmea/burntoutpinto.png
Normal file
BIN
presentations/fmea/burntoutpinto.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 154 KiB |
@ -90,6 +90,12 @@ to do this completely (all failure modes against all components).
|
||||
This is represented in equation~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$cfm$ is the number of failure modes per component.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single}
|
||||
@ -125,6 +131,42 @@ double failure scenarios (for burner lock-out scenarios).
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{FMEA used for Saftey Critical Aprovals}
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
Experts from Approval House and Equipement Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Meeting notes or minutes only.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{PFMEA - Production FMEA : 1940's to present}
|
||||
|
||||
\begin{frame}
|
||||
@ -145,6 +187,34 @@ will return most cost benefit.
|
||||
\begin{frame}
|
||||
% benign example of PFMEA in CARS - make something up.
|
||||
\frametitle{PFMEA Example}
|
||||
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
% rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
% ruptured f.tank & & & & \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
%Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: $200,000 per death, $67,000 per injury, $700 per vehicle.
|
||||
%Total Benefit: 180 X ($200,000) + 180 X ($67,000) + $2,100 X ($700) = $49.5 million.
|
||||
%COSTS
|
||||
%Sales: 11 million cars, 1.5 million light trucks.
|
||||
%Unit Cost: $11 per car, $11 per truck.
|
||||
%Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = $137 million.
|
||||
|
||||
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -152,25 +222,134 @@ will return most cost benefit.
|
||||
%\subsection{Production FMEA : Example Ford Pinto : 1975}
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./ad_ford_pinto_mpg_red_3_1975.jpg}
|
||||
% ad_ford_pinto_mpg_red_3_1975.jpg: 720x933 pixel, 96dpi, 19.05x24.69 cm, bb=0 0 540 700
|
||||
\caption{Ford Pinto Advert}
|
||||
\label{fig:fordpintoad}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./burntoutpinto.png}
|
||||
% burntoutpinto.png: 376x250 pixel, 72dpi, 13.26x8.82 cm, bb=0 0 376 250
|
||||
\caption{Burnt Out Pinto}
|
||||
\label{fig:burntoutpinto}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
ruptured f.tank & & & allow & \\ \hline
|
||||
|
||||
rear end crash & $1$ & $11$ & fatal fire & 11.0 \\
|
||||
ruptured f.tank & & & fix tank & \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
|
||||
http://www.youtube.com/watch?v=rcNeorjXMrE
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
Very similar to PFMEA, but instead of cost, a criticallity or
|
||||
seriousness factor is ascribed to putative top level incidents.
|
||||
FMECA has three probability factors for component failures.
|
||||
|
||||
\textbf{FMECA ${\lambda}_{p}$ value.}
|
||||
This is the overall failure rate of a base component.
|
||||
This will typically be the failure rate per million ($10^6$) or
|
||||
billion ($10^9$) hours of operation.
|
||||
|
||||
\textbf{FMECA $\alpha$ value.}
|
||||
The failure mode probability, usually dentoted by $\alpha$ is the probability of
|
||||
is the probability of a particular failure
|
||||
mode occuring within a component.
|
||||
%, should it fail.
|
||||
%A component with N failure modes will thus have
|
||||
%have an $\alpha$ value associated with each of those modes.
|
||||
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\textbf{FMECA $\beta$ value.}
|
||||
The second probability factor $\beta$, is the probability that the failure mode
|
||||
will cause a given system failure.
|
||||
This corresponds to `Baysian' probability, given a particular
|
||||
component failure mode, the probability of a given system level failure.
|
||||
|
||||
\textbf{FMECA `t' Value}
|
||||
The time that a system will be operating for, or the working life time of the product is
|
||||
represented by the variable $t$.
|
||||
%for probability of failure on demand studies,
|
||||
%this can be the number of operating cycles or demands expected.
|
||||
|
||||
\textbf{Severity `s' value}
|
||||
A weighting factor to indicate the seriousness of the putative system level error.
|
||||
%Typical classifications are as follows:~\cite{fmd91}
|
||||
|
||||
\begin{equation}
|
||||
C_m = {\beta} . {\alpha} . {{\lambda}_p} . {t} . {s}
|
||||
\end{equation}
|
||||
|
||||
Highest $C_m$ values would be at the top of a `to~do' list
|
||||
for a project manager.
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\section{FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
|
||||
\section{FMEA - Criticism}
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
FMEDA is the methodology behind statistical (safety integrity level)
|
||||
type standards (EN61508/IOC5108).
|
||||
It provides a statistical overall level of safety
|
||||
and allows diagnostic mitigation for self checking etc.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\section{FMEA - General Criticism}
|
||||
\begin{frame}
|
||||
\frametitle{FMEA - General Criticism}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Reasoning Distance - component failure to system level symptom
|
||||
\pause \item State explosion - impossible to perform rigorously
|
||||
\pause \item
|
||||
\pause \item
|
||||
\pause \item Difficult to re-use previous analysis work
|
||||
\pause \item FMEA type methodologies were designed for simple electro-mechanical systems of the 1940's to 1960's.
|
||||
\end{itemize}
|
||||
|
||||
FMEDA is an extension of FMEA, in that it will give higher ratings
|
||||
for self checking. It
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
@ -252,14 +431,14 @@ we must compare each failure mode against the two other components (the `$fgn-1$
|
||||
For the one `zero' level FMMD case we are doing the same thing as FMEA type analysis
|
||||
(but on a very simple small sub-system).
|
||||
We are looking at how each failure~mode can effect the system/top level.
|
||||
We can use equation~\ref{eqn:fmea_state_exp} to represent
|
||||
We can use equation~\ref{eqn:fmea_state_exp44} to represent
|
||||
the number of checks to rigorously perform FMEA, where $N$ is the total
|
||||
number of components in the system, and $cfm$ is the number of failures per component.
|
||||
|
||||
|
||||
|
||||
Where $N=3$ and $cfm=3$ we can see that the number of checks for this simple functional
|
||||
group is the same for equation~\ref{eqn:fmea_state_exp}
|
||||
group is the same for equation~\ref{eqn:fmea_state_exp22}
|
||||
and equation~\ref{eqn:anscen}.
|
||||
\clearpage
|
||||
|
||||
@ -272,7 +451,7 @@ will require 81 base level components.
|
||||
|
||||
$$
|
||||
%\begin{equation}
|
||||
\label{eqn:fmea_state_exp}
|
||||
\label{eqn:fmea_state_exp22}
|
||||
81.(81-1).3 = 19440 % \\
|
||||
%(N^2 - N).cfm
|
||||
%\end{equation}
|
||||
|
BIN
presentations/fmea/tech_meeting.png
Normal file
BIN
presentations/fmea/tech_meeting.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 69 KiB |
Loading…
Reference in New Issue
Block a user