.
This commit is contained in:
parent
b6ae7ffeff
commit
ea108b30a6
@ -113,7 +113,7 @@ For the sake of example, let our temperature environment
|
||||
for the SYSTEM be ${{0}\oc}$ to ${{125}\oc}$, but let the component
|
||||
type `K' have a de-graded performance
|
||||
\footnote{A real world example of
|
||||
degraded performace with temperature is the isolating opto coupler.
|
||||
degraded performance with temperature is the isolating opto coupler.
|
||||
These can typically only cope with lower baud rate ranges
|
||||
at high temperatures \cite{tlp181}.}
|
||||
failure mode between
|
||||
@ -149,7 +149,7 @@ The UML model shows the relationships between data types (or classes) that
|
||||
are used in the FMMD process.
|
||||
The purpose of failure mode analysis, is to tie SYSTEM level failures
|
||||
to their possible causes in the base components.
|
||||
By doing this accurate statistics can be obtained for SYSTEM level
|
||||
By doing this, accurate statistics can be obtained for SYSTEM level
|
||||
failures, and an insight into how we can make the system safer
|
||||
can be determined.
|
||||
In order to do this, we need to be able to trace the component
|
||||
@ -157,7 +157,7 @@ failure modes from the functional groups, to the symptoms
|
||||
they cause, and to the failure modes in the {\dcs}.
|
||||
We can use graph theory to represent this.
|
||||
As it would make no sense for a derived component to
|
||||
derive failure modes form itsself, we can apply an acyclic constraint
|
||||
derive failure modes from itself, we can apply an acyclic constraint
|
||||
to the graph. This means the graph must be a Directed Acylic
|
||||
Graph (DAG).
|
||||
|
||||
@ -174,7 +174,7 @@ Graph (DAG).
|
||||
|
||||
Consider the SYSTEM environment with its temperature range of ${{0}\oc}$ to ${{125}\oc}$.
|
||||
We must check this against all components used.
|
||||
For our example, we component `K' which has an extra
|
||||
For our example, component `K' which has an extra
|
||||
failure mode for degraded performance `d'. Thus applying the function $fm$
|
||||
to component type `K' under these temperature range conditions
|
||||
gives the following failure modes, $fm(K) =\{ K^0_a, K^0_b, K^0_d \}$.
|
||||
@ -691,7 +691,7 @@ This is shown in the DAG in figure \ref{fig:dag3}.
|
||||
\node[annot,right of=s](dcl) {Derived Component};
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing failure modes and symptoms $FG^0_1 \rightarrow C^1_1$ and $FG^0_2 \rightarrow C^1_2$}
|
||||
\caption{DAG representing failure modes and symptoms $FG^0_1 \rightarrow C^1_1$, $FG^0_2 \rightarrow C^1_2$ and $FG^0_3 \rightarrow C^1_3$}
|
||||
\label{fig:dag3}
|
||||
\end{figure}
|
||||
|
||||
@ -734,6 +734,7 @@ TO RACE BACK DOWN THE DAG
|
||||
|
||||
|
||||
|
||||
\def\layersep{2.0cm}
|
||||
|
||||
|
||||
\begin{figure}
|
||||
@ -863,13 +864,55 @@ TO RACE BACK DOWN THE DAG
|
||||
\path (s8) edge (DC-3);
|
||||
|
||||
|
||||
\node[failure, right of=DC-1] (as1) {$a_{s1}$};
|
||||
\node[failure, below of=as1] (as2) {$a_{s2}$}; % will this overwrite ?
|
||||
\node[failure] (as1) at (\layersep*4,-2) {$a_{s1}$};
|
||||
\node[failure] (bs2) at (\layersep*4,-3) {$b_{s2}$};
|
||||
\path (DC-1) edge (as1);
|
||||
\path (DC-1) edge (as2);
|
||||
\path (DC-1) edge (bs2);
|
||||
|
||||
\node[failure, above of=DC-2] (as3) {$a_{s3}$}; % will this overwrite ?
|
||||
\node[failure] (as3) at (\layersep*4,-5) {$a_{s3}$};
|
||||
\node[failure] (bs4) at (\layersep*4,-6) {$b_{s3}$};
|
||||
\node[failure] (cs5) at (\layersep*4,-7) {$c_{s3}$};
|
||||
\path (DC-2) edge (as3);
|
||||
\path (DC-2) edge (bs4);
|
||||
\path (DC-2) edge (cs5);
|
||||
|
||||
\node[failure] (as6) at (\layersep*4,-12) {$a_{s6}$};
|
||||
\node[failure] (bs7) at (\layersep*4,-13) {$b_{s7}$};
|
||||
\node[failure] (cs8) at (\layersep*4,-14) {$c_{s8}$};
|
||||
\path (DC-3) edge (as6);
|
||||
\path (DC-3) edge (bs7);
|
||||
\path (DC-3) edge (cs8);
|
||||
|
||||
|
||||
\node[symptom] (s9) at (\layersep*5,-5) {s9};
|
||||
\node[symptom] (s10) at (\layersep*5,-10) {s10};
|
||||
\node[symptom] (s11) at (\layersep*5,-13) {s11};
|
||||
|
||||
\path (bs2) edge (s9);
|
||||
|
||||
|
||||
\path (as1) edge (s10);
|
||||
\path (as3) edge (s10);
|
||||
\path (bs4) edge (s10);
|
||||
\path (as6) edge (s10);
|
||||
\path (bs7) edge (s10);
|
||||
|
||||
% Single component failures causing same error in tree
|
||||
\path (cs5) edge (s11);
|
||||
\path (cs8) edge (s11);
|
||||
|
||||
\node[component,right of=s10] (DC2-1) {$C^2_1$};
|
||||
\path (s9) edge (DC2-1);
|
||||
\path (s10) edge (DC2-1);
|
||||
\path (s11) edge (DC2-1);
|
||||
|
||||
\node[failure] (as9) at (\layersep*7,-9) {$a_{s9}$};
|
||||
\node[failure] (as10) at (\layersep*7,-10) {$b_{s12}$};
|
||||
\node[failure] (as11) at (\layersep*7,-11) {$c_{s11}$};
|
||||
|
||||
\path (DC2-1) edge (as9);
|
||||
\path (DC2-1) edge (as10);
|
||||
\path (DC2-1) edge (as11);
|
||||
|
||||
% Connect every node in the hidden layer with the output layer
|
||||
%\foreach \source in {1,...,5}
|
||||
@ -879,10 +922,15 @@ TO RACE BACK DOWN THE DAG
|
||||
\node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
|
||||
\node[annot,left of=hl] {Base Components};
|
||||
\node[annot,right of=hl](s) {Symptoms};
|
||||
\node[annot,right of=s](dcl) {Derived Component};
|
||||
\node[annot,right of=s](dcl) {Derived Components};
|
||||
\node[annot,right of=dcl](dcf) {Derived Component Failure Modes};
|
||||
\node[annot,right of=dcf](S2s) {Symptoms};
|
||||
\node[annot,right of=S2s](DC2) {Derived Components};
|
||||
\node[annot,right of=DC2](dc2f) {Derived Component Failure Modes};
|
||||
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing failure modes and symptoms $FG^0_1 \rightarrow C^1_1$ and $FG^0_2 \rightarrow C^1_2$}
|
||||
\caption{DAG representing failure modes and symptoms $FG^1_1 \rightarrow C^2_1$}
|
||||
\label{fig:dag3}
|
||||
\end{figure}
|
||||
|
||||
@ -893,9 +941,26 @@ Show how the hierarchy can be represented as a DAG
|
||||
|
||||
draw a dag
|
||||
|
||||
\subsection{Inhibit Conditions represented in the DAG}
|
||||
|
||||
Inhibit node type. Octagon (to follow example from FTA).
|
||||
|
||||
a -> OCT
|
||||
|
||||
inhibitcond--
|
||||
|
||||
|
||||
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
||||
|
||||
White filled node with an \& in it.
|
||||
|
||||
\subsection{Traversing the datamodel}
|
||||
|
||||
Show how we can find multiple causes for a SYSTEM level error
|
||||
Show how we can find multiple causes for a SYSTEM level error.
|
||||
Constrast this to the bottom-up approaches of FMEA, FMECA and FMEDA where
|
||||
without necessarily knowing complex interactions between
|
||||
functionally adjacent components, we must take each component failure
|
||||
mode and tie to to a SYSTEM level failure.
|
||||
|
||||
\subsubsection{Common mode failure detection}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user