Added euler diagrams as graphs
This commit is contained in:
parent
3a66d2b7b4
commit
e7722cb1b1
24
eulerg/Makefile
Normal file
24
eulerg/Makefile
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
|
||||||
|
#
|
||||||
|
# Make the propositional logic diagram a paper
|
||||||
|
#
|
||||||
|
SOURCE = eulerg.tex
|
||||||
|
|
||||||
|
paper: paper.tex eulerg_paper.tex $(SOURCE)
|
||||||
|
#cat introduction.tex | sed s/chapter/paper/ > introduction.tex
|
||||||
|
#latex paper.tex
|
||||||
|
#dvipdf paper pdflatex cannot use eps ffs
|
||||||
|
pdflatex paper.tex
|
||||||
|
mv paper.pdf eulerg_paper.pdf
|
||||||
|
okular eulerg_paper.pdf
|
||||||
|
|
||||||
|
|
||||||
|
# Remove the need for referncing graphics in subdirectories
|
||||||
|
#
|
||||||
|
eulerg_paper.tex: eulerg.tex paper.tex $(SOURCE)
|
||||||
|
cat eulerg.tex | sed 's/eulerg\///' > eulerg_paper.tex
|
||||||
|
|
||||||
|
|
||||||
|
bib: $(SOURCE)
|
||||||
|
bibtex paper
|
||||||
|
|
162
eulerg/eulerg.tex
Normal file
162
eulerg/eulerg.tex
Normal file
@ -0,0 +1,162 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{paper}}
|
||||||
|
{
|
||||||
|
\abstract{
|
||||||
|
This paper discusses representing Euler Diagrams as graphs, or sets of relationships.
|
||||||
|
By representing Euler diagrams in this way,
|
||||||
|
algorithms to invesigate properties of the diagrams, are possible, without
|
||||||
|
having to resort
|
||||||
|
to CPU expensive area operations on the concrete diagrams.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{ %% Introduction
|
||||||
|
\section{Introduction}
|
||||||
|
This paper discusses representing Euler Diagrams as graphs, or sets of relationships.
|
||||||
|
By representing Euler diagrams in this way,
|
||||||
|
algorithms to invesigate properties of the diagrams, are possible, without
|
||||||
|
having to resort
|
||||||
|
to CPU expensive area operations on the concrete diagrams.
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction : Euler Diagram }
|
||||||
|
|
||||||
|
Classical Euler diagrams consist of closed curves in the plane which are used to represent sets.
|
||||||
|
The spaitial relationship between the curves defines the set theoretic relationships, as defined below.
|
||||||
|
\begin{itemize}
|
||||||
|
\item Intersection - if the curves defining the area within curves overlap
|
||||||
|
\item Sub-set - if a curve is enclosed by another
|
||||||
|
\item disjoint - if the curves are separate
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Defining `pure intersection' and `enclosure'}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=200pt,keepaspectratio=true]{./eulerg1.jpg}
|
||||||
|
% eulerg1.jpg: 513x215 pixel, 72dpi, 18.10x7.58 cm, bb=0 0 513 215
|
||||||
|
\caption{An Euler Diagram showing enclosure and Pure Intersection}
|
||||||
|
\label{fig:eulerg1}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The set theory term `intersection' can apply to both the curves overlapping and to the sub-set case.
|
||||||
|
For instance in diagram \ref{fig:eulerg1} the intersection between
|
||||||
|
$A$ and $B$ exists.
|
||||||
|
|
||||||
|
$$ A \cup B \neq \emptyset $$
|
||||||
|
|
||||||
|
as does the intersection $D$ and $E$
|
||||||
|
|
||||||
|
$$ D \cup E \neq \emptyset $$
|
||||||
|
|
||||||
|
Clearly though these intersections are different, because
|
||||||
|
in the $A$, $B$ case
|
||||||
|
$$ A \backslash B = \emptyset \wedge B \backslash A \neq \emptyset $$
|
||||||
|
This is not the case for $D$, $E$ where:
|
||||||
|
$$ D \backslash E \neq \emptyset \wedge E \backslash D \neq \emptyset $$
|
||||||
|
|
||||||
|
\paragraph{Enclosure}
|
||||||
|
To distinguish between these we can term the $A$, $B$ case to be
|
||||||
|
$A$ `enclosed' by $B$. We can express this as a directed relationship.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Pure Intersection}
|
||||||
|
In the $D$, $E$ case we have
|
||||||
|
|
||||||
|
We can say that where the areas defined by the curves intersect but no one curve encloses the
|
||||||
|
other, we can term this `pure intersection'.
|
||||||
|
We can express this as a non directed relationship.
|
||||||
|
|
||||||
|
$$ D \pin E $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Mutual exclusivity of `pure intersection' and `enclosure'}
|
||||||
|
|
||||||
|
Clearly these two properties are mutually exclusive. No
|
||||||
|
contour can be both purely intersected and enclosed with the same contour.
|
||||||
|
Also enclosure, is transitive. That is to say if B encloses A, and A encloses C
|
||||||
|
then B encloses C, see figure \ref{fig:eulerg_enc}.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=200pt,keepaspectratio=true]{./eulerg_enc.jpg}
|
||||||
|
% eulerg_enc.jpg: 315x269 pixel, 72dpi, 11.11x9.49 cm, bb=0 0 315 269
|
||||||
|
\caption{Enclosure, a transitive relationship}
|
||||||
|
\label{fig:eulerg_enc}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
$$ B {\enc} A \wedge A {\enc} C \implies B {\enc} C $$
|
||||||
|
|
||||||
|
\section{Representing Euler Diagrams as sets of relationships}
|
||||||
|
|
||||||
|
The diagram in figure \ref{fig:eulerg1} can be represented by the foillowing relationships.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
$$ D {\pin} E $$
|
||||||
|
|
||||||
|
|
||||||
|
The diagram in figure \ref{fig:eulerg_enc} can be represented by the following relationships.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
$$ A {\enc} C $$
|
||||||
|
|
||||||
|
|
||||||
|
\section{The Pure Intersection chain}
|
||||||
|
|
||||||
|
Contours may be connected via `pure intersection' relationships to form
|
||||||
|
`chains' of contours reachable by pure intersection.
|
||||||
|
|
||||||
|
Figure \ref{fig:eulerg_pic} shows a pure intersection chain consisting of contours $M,N,O,P$ and $Q$.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=300pt,keepaspectratio=true]{./eulerg_pic.jpg}
|
||||||
|
% eulerg_pic.jpg: 955x286 pixel, 72dpi, 33.69x10.09 cm, bb=0 0 955 286
|
||||||
|
\caption{Pure Intersection Chain with Enclosure}
|
||||||
|
\label{fig:eulerg_pic}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\textbf{rule:}
|
||||||
|
If any contour in a pure intersection chain is enclosed by any contour not belonging to the chain,
|
||||||
|
all the countours within the
|
||||||
|
pure intersection chain will be enclosed by it. This is because a contour
|
||||||
|
enclosing which bisects(????) another contour in a pure intersection chain
|
||||||
|
becomes part of the pure~intersection~chain. Hmmmm thats true but a better way to say it ????
|
||||||
|
|
||||||
|
|
||||||
|
%The diagram in figure \ref{fig:eulerg_enc} can be represented by the following relationships.
|
||||||
|
|
||||||
|
|
||||||
|
The diagram in figure \ref{fig:eulerg_pic} can be represented by the following relationships.
|
||||||
|
|
||||||
|
|
||||||
|
$$ M {\pin} N $$
|
||||||
|
$$ N {\pin} O $$
|
||||||
|
$$ O {\pin} P $$
|
||||||
|
$$ O {\pin} Q $$
|
||||||
|
$$ Q {\enc} P $$
|
||||||
|
$$ A {\enc} M $$
|
||||||
|
$$ A {\enc} N $$
|
||||||
|
$$ A {\enc} O $$
|
||||||
|
$$ A {\enc} P $$
|
||||||
|
$$ A {\enc} Q $$
|
||||||
|
|
||||||
|
|
||||||
|
To form the pure intersection chain we can follow
|
||||||
|
reachable pure intersection relationships.
|
||||||
|
|
||||||
|
$ M {\pin} N {\pin} O {\pin} P $ are part of the same chain.
|
||||||
|
following from $O$, $O {\pin} Q$.
|
||||||
|
Thus by the definition of being reachable by pure instersection relationships,$M,N,O,P,Q$
|
||||||
|
are in the same pure intersection chain, even though $Q$ encloses $P$.
|
||||||
|
Contour $A$, by virtue of not bisecting any contour in the pure instersection
|
||||||
|
chain, does not belong to it. Because it encloses one of the contours, it
|
||||||
|
encloses all contours in the chain. Knowing this can save on unecessary area operations on the concrete diagram.
|
||||||
|
|
||||||
|
|
||||||
|
\vspace{40pt}
|
||||||
|
|
119
eulerg/eulerg.tex.backup
Normal file
119
eulerg/eulerg.tex.backup
Normal file
@ -0,0 +1,119 @@
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{paper}}
|
||||||
|
{
|
||||||
|
\abstract{
|
||||||
|
This paper discusses representing Euler Diagrams as graphs, or sets of relationships.
|
||||||
|
By representing Euler diagrams in this way,
|
||||||
|
algorithms to invesigate properties of the diagrams, are possible, without
|
||||||
|
having to resort
|
||||||
|
to CPU expensive area operations on the concrete diagrams.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
{ %% Introduction
|
||||||
|
\section{Introduction}
|
||||||
|
This paper discusses representing Euler Diagrams as graphs, or sets of relationships.
|
||||||
|
By representing Euler diagrams in this way,
|
||||||
|
algorithms to invesigate properties of the diagrams, are possible, without
|
||||||
|
having to resort
|
||||||
|
to CPU expensive area operations on the concrete diagrams.
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction : Euler Diagram }
|
||||||
|
|
||||||
|
Classical Euler diagrams consist of closed curves in the plane which are used to represent sets.
|
||||||
|
The spaitial relationship between the curves defines the set theoretic relationships, as defined below.
|
||||||
|
\begin{itemize}
|
||||||
|
\item Intersection - if the curves defining the area within curves overlap
|
||||||
|
\item Sub-set - if a curve is enclosed by another
|
||||||
|
\item disjoint - if the curves are separate
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Defining `pure intersection' and `enclosure'}
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=200pt,keepaspectratio=true]{./eulerg1.jpg}
|
||||||
|
% eulerg1.jpg: 513x215 pixel, 72dpi, 18.10x7.58 cm, bb=0 0 513 215
|
||||||
|
\caption{An Euler Diagram showing enclosure and Pure Intersection}
|
||||||
|
\label{fig:eulerg1}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The set theory term `intersection' can apply to both the curves overlapping and to the sub-set case.
|
||||||
|
For instance in diagram \ref{fig:euler1} the intersection between
|
||||||
|
$A$ and $B$ exists.
|
||||||
|
|
||||||
|
$$ A \cup B \neq \emptyset $$
|
||||||
|
|
||||||
|
as does the intersection $D$ and $E$
|
||||||
|
|
||||||
|
$$ D \cup E \neq \emptyset $$
|
||||||
|
|
||||||
|
Clearly though these intersections are different, because
|
||||||
|
in the $A$, $B$ case
|
||||||
|
$$ A \backslash B = \emptyset \wedge B \backslash A \neq \emptyset $$.
|
||||||
|
This is not the case for $D$, $E$ where:
|
||||||
|
$$ D \backslash E \neq \emptyset \wedge E \backslash D \neq \emptyset $$
|
||||||
|
|
||||||
|
\paragraph{Enclosure}
|
||||||
|
To distinguish between these we can term the $A$, $B$ case to be
|
||||||
|
$A$ `enclosed' by $B$. We can express this as a directed relationship.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Pure Intersection}
|
||||||
|
In the $D$, $E$ case we have
|
||||||
|
|
||||||
|
We can say that where the areas defined by the curves intersect but no one curve encloses the
|
||||||
|
other, we can term this `pure intersection'.
|
||||||
|
We can express this as a non directed relationship.
|
||||||
|
|
||||||
|
$$ D \pin E $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{Mutual exclusivity of `pure intersection' and `enclosure'}
|
||||||
|
|
||||||
|
Clearly these two properties are mutually exclusive. No
|
||||||
|
contour can be both purely intersected and enclosed with the same contour.
|
||||||
|
Also enclosure, is transitive. That is to say if B encloses A, and A encloses C
|
||||||
|
then B encloses C, see figure \ref{fig:eulerg_enc}.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=200pt,keepaspectratio=true]{./eulerg_enc.jpg}
|
||||||
|
% eulerg_enc.jpg: 315x269 pixel, 72dpi, 11.11x9.49 cm, bb=0 0 315 269
|
||||||
|
\caption{Enclosure, a transitive relationship}
|
||||||
|
\label{fig:eulerg_enc}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
$$ B {\enc} A \wedge A {\enc} C \implies B {\enc} C $$
|
||||||
|
|
||||||
|
\section{Representing Euler Diagrams as sets of relationships}
|
||||||
|
|
||||||
|
The diagram in figure \ref{fig:eulerg1} can be represented by the foillowing relationships.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
$$ D {\pin} E $$
|
||||||
|
|
||||||
|
|
||||||
|
The diagram in figure \ref{fig:eulerg_enc} can be represented by the following relationships.
|
||||||
|
|
||||||
|
$$ B {\enc} A $$
|
||||||
|
$$ A {\enc} C $$
|
||||||
|
|
||||||
|
|
||||||
|
\section{The Pure Intersection chain}
|
||||||
|
|
||||||
|
Contours may be connected via `pure intersection' relationships to form
|
||||||
|
`chains' of contours reachable by pure intersection.
|
||||||
|
|
||||||
|
Figure \ref{fig:eulerg_pic} shows a pure intersection chain consisting of contours $M,N,O,P$ and $Q$.
|
||||||
|
|
||||||
|
|
||||||
|
\textbf{rule:}
|
||||||
|
If any contour in a pure intersection chain is enclosed by any contour, all countours within the
|
||||||
|
pure intersection chain will be enclosed by it.
|
||||||
|
|
BIN
eulerg/eulerg1.dia
Normal file
BIN
eulerg/eulerg1.dia
Normal file
Binary file not shown.
BIN
eulerg/eulerg1.jpg
Normal file
BIN
eulerg/eulerg1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
eulerg/eulerg_enc.dia
Normal file
BIN
eulerg/eulerg_enc.dia
Normal file
Binary file not shown.
BIN
eulerg/eulerg_enc.jpg
Normal file
BIN
eulerg/eulerg_enc.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
eulerg/eulerg_pic.dia
Normal file
BIN
eulerg/eulerg_pic.dia
Normal file
Binary file not shown.
BIN
eulerg/eulerg_pic.jpg
Normal file
BIN
eulerg/eulerg_pic.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
35
eulerg/paper.tex
Normal file
35
eulerg/paper.tex
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
|
||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{amsfonts,amsmath,amsthm}
|
||||||
|
\usepackage{algorithm}
|
||||||
|
\usepackage{algorithmic}
|
||||||
|
\usepackage{ifthen}
|
||||||
|
\newboolean{paper}
|
||||||
|
\setboolean{paper}{true} % boolvar=true or false
|
||||||
|
|
||||||
|
\input{../style}
|
||||||
|
|
||||||
|
%\newtheorem{definition}{Definition:}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
|
||||||
|
%\outerhead{{\small\bf Symptom Extraction Process}}
|
||||||
|
%\innerfoot{{\small\bf R.P. Clark } }
|
||||||
|
% numbers at outer edges
|
||||||
|
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||||
|
\author{R.P.Clark}
|
||||||
|
\title{Euler Diagrams as Graphs}
|
||||||
|
\maketitle
|
||||||
|
\input{eulerg_paper}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\bibliography{../vmgbibliography,../mybib}
|
||||||
|
|
||||||
|
\today
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
@ -74,6 +74,8 @@
|
|||||||
\newcommand{\dcs}{\em derived~components}
|
\newcommand{\dcs}{\em derived~components}
|
||||||
\newcommand{\bc}{\em base~component}
|
\newcommand{\bc}{\em base~component}
|
||||||
\newcommand{\bcs}{\em base~components}
|
\newcommand{\bcs}{\em base~components}
|
||||||
|
\newcommand{\enc}{\ensuremath{\stackrel{enc}{\longrightarrow}}}
|
||||||
|
\newcommand{\pin}{\ensuremath{\stackrel{pi}{\longleftrightarrow}}}
|
||||||
%----- Display example text (#1) in typewriter font
|
%----- Display example text (#1) in typewriter font
|
||||||
|
|
||||||
%\newcommand{\example}[1]{\\ \smallskip\hspace{1in}{\tt #1}\hfil\\
|
%\newcommand{\example}[1]{\\ \smallskip\hspace{1in}{\tt #1}\hfil\\
|
||||||
|
@ -86,6 +86,7 @@
|
|||||||
\chapter {Software as PLDs}
|
\chapter {Software as PLDs}
|
||||||
\input{sw_as_plds/sw_as_plds}
|
\input{sw_as_plds/sw_as_plds}
|
||||||
|
|
||||||
|
|
||||||
\typeout{ ---------------- Mechanical Sub-systems as PLDs}
|
\typeout{ ---------------- Mechanical Sub-systems as PLDs}
|
||||||
\chapter {Common Mechanical Sub-systems as PLDs}
|
\chapter {Common Mechanical Sub-systems as PLDs}
|
||||||
%\input{mech_as_plds/mech_as_plds}
|
%\input{mech_as_plds/mech_as_plds}
|
||||||
@ -136,8 +137,11 @@ for incorrect temperature.
|
|||||||
reference the MSC document and describe the Java extension classes.
|
reference the MSC document and describe the Java extension classes.
|
||||||
Software documentation for fmmd tool.
|
Software documentation for fmmd tool.
|
||||||
|
|
||||||
|
\typeout{ ---------------- Euler Diagrams represented as graphs}
|
||||||
|
\chapter {Euler Diagrams Represented as graphs}
|
||||||
|
\input{eulerg/eulerg}
|
||||||
|
|
||||||
\chapter{Algorithms and Mathematical Relationships Discovered}
|
\chapter{Fast Zone Discrimination Algorithm}
|
||||||
\input{fzd/fzd}
|
\input{fzd/fzd}
|
||||||
|
|
||||||
\chapter{Milli Volt Amp with Safety Resistor}
|
\chapter{Milli Volt Amp with Safety Resistor}
|
||||||
|
Loading…
Reference in New Issue
Block a user