...
This commit is contained in:
parent
526cee6384
commit
e3a27047ea
@ -15,7 +15,14 @@
|
|||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\pagestyle{fancy}
|
\pagestyle{fancy}
|
||||||
|
\fancyhf{}
|
||||||
|
%\renewcommand{\chaptermark}[1]{\markboth{ \emph{#1}}{}}
|
||||||
|
\fancyhead[LO]{}
|
||||||
|
\fancyhead[RE]{\leftmark}
|
||||||
|
%\fancyfoot[LE,RO]{\thepage}
|
||||||
|
\cfoot{Page \thepage\ of \pageref{LastPage}}
|
||||||
|
\rfoot{\today}
|
||||||
|
\lhead{A survey of failure mode analysis methodologies for safety critical systems}
|
||||||
%\outerhead{{\small\bf Survey of Safety Critical Static Analysis Methods}}
|
%\outerhead{{\small\bf Survey of Safety Critical Static Analysis Methods}}
|
||||||
%\innerfoot{{\small\bf R.P. Clark } }
|
%\innerfoot{{\small\bf R.P. Clark } }
|
||||||
% numbers at outer edges
|
% numbers at outer edges
|
||||||
|
@ -88,6 +88,100 @@ trees can be derived. Maintainability and consistency cannot therefore be automa
|
|||||||
\item No possibility to model base component level double failure modes.
|
\item No possibility to model base component level double failure modes.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection {FTA Example}
|
||||||
|
|
||||||
|
Fault tree Analysis
|
||||||
|
Show how it works, top down,
|
||||||
|
|
||||||
|
FROM INTERBET HISTORY OF FTA
|
||||||
|
|
||||||
|
% A simple fault tree
|
||||||
|
% Author: Zhang Long, Mail: zhangloong[at]gmail.com
|
||||||
|
%\def\pgfsysdriver{pgfsys-dvipdfm.def}
|
||||||
|
%\documentclass{minimal}
|
||||||
|
%\usepackage{tikz}
|
||||||
|
%\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
|
||||||
|
%\begin{document}
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\begin{tikzpicture}[
|
||||||
|
% Gates and symbols style
|
||||||
|
and/.style={and gate US,thick,draw,fill=blue!40,rotate=90,
|
||||||
|
anchor=east,xshift=-1mm},
|
||||||
|
or/.style={or gate US,thick,draw,fill=blue!40,rotate=90,
|
||||||
|
anchor=east,xshift=-1mm},
|
||||||
|
be/.style={circle,thick,draw,fill=white!60,anchor=north,
|
||||||
|
minimum width=0.7cm},
|
||||||
|
tr/.style={buffer gate US,thick,draw,fill=white!60,rotate=90,
|
||||||
|
anchor=east,minimum width=0.8cm},
|
||||||
|
% Label style
|
||||||
|
label distance=3mm,
|
||||||
|
every label/.style={blue},
|
||||||
|
% Event style
|
||||||
|
event/.style={rectangle,thick,draw,fill=yellow!20,text width=2cm,
|
||||||
|
text centered,font=\sffamily,anchor=north},
|
||||||
|
% Children and edges style
|
||||||
|
edge from parent/.style={very thick,draw=black!70},
|
||||||
|
edge from parent path={(\tikzparentnode.south) -- ++(0,-1.05cm)
|
||||||
|
-| (\tikzchildnode.north)},
|
||||||
|
level 1/.style={sibling distance=7cm,level distance=1.4cm,
|
||||||
|
growth parent anchor=south,nodes=event},
|
||||||
|
level 2/.style={sibling distance=7cm},
|
||||||
|
level 3/.style={sibling distance=6cm},
|
||||||
|
level 4/.style={sibling distance=3cm}
|
||||||
|
%% For compatability with PGF CVS add the absolute option:
|
||||||
|
% absolute
|
||||||
|
]
|
||||||
|
%% Draw events and edges
|
||||||
|
\node (g1) [event] {No flow to receiver}
|
||||||
|
child{node (g2) {No flow from Component B}
|
||||||
|
child {node (g3) {No flow into Component B}
|
||||||
|
child {node (g4) {No flow from Component A1}
|
||||||
|
child {node (t1) {No flow from source1}}
|
||||||
|
child {node (b2) {Component A1 blocks flow}}
|
||||||
|
}
|
||||||
|
child {node (g5) {No flow from Component A2}
|
||||||
|
child {node (t2) {No flow from source2}}
|
||||||
|
child {node (b3) {Component A2 blocks flow}}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
child {node (b1) {Component B blocks flow}}
|
||||||
|
};
|
||||||
|
%% Place gates and other symbols
|
||||||
|
%% In the CVS version of PGF labels are placed differently than in PGF 2.0
|
||||||
|
%% To render them correctly replace '-20' with 'right' and add the 'absolute'
|
||||||
|
%% option to the tikzpicture environment. The absolute option makes the
|
||||||
|
%% node labels ignore the rotation of the parent node.
|
||||||
|
\node [or] at (g2.south) [label=-20:G02] {};
|
||||||
|
\node [and] at (g3.south) [label=-20:G03] {};
|
||||||
|
\node [or] at (g4.south) [label=-20:G04] {};
|
||||||
|
\node [or] at (g5.south) [label=-20:G05] {};
|
||||||
|
\node [be] at (b1.south) [label=below:B01] {};
|
||||||
|
\node [be] at (b2.south) [label=below:B02] {};
|
||||||
|
\node [be] at (b3.south) [label=below:B03] {};
|
||||||
|
\node [tr] at (t1.south) [label=below:T01] {};
|
||||||
|
\node [tr] at (t2.south) [label=below:T02] {};
|
||||||
|
%% Draw system flow diagram
|
||||||
|
% \begin{scope}[xshift=-7.5cm,yshift=-5cm,very thick,
|
||||||
|
% node distance=1.6cm,on grid,>=stealth',
|
||||||
|
% block/.style={rectangle,draw,fill=cyan!20},
|
||||||
|
% comp/.style={circle,draw,fill=orange!40}]
|
||||||
|
% \node [block] (re) {Receiver};
|
||||||
|
% \node [comp] (cb) [above=of re] {B} edge [->] (re);
|
||||||
|
% \node [comp] (ca1) [above=of cb,xshift=-0.8cm] {A1} edge [->] (cb);
|
||||||
|
% \node [comp] (ca2) [right=of ca1] {A2} edge [->] (cb);
|
||||||
|
% \node [block] (s1) [above=of ca1] {Source1} edge [->] (ca1);
|
||||||
|
% \node [block] (s2) [right=of s1] {Source2} edge [->] (ca2);
|
||||||
|
% \end{scope}
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{Example FTA for a Gas Supply with two Shutoff Valves}
|
||||||
|
\end{figure}
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
\subsection { FMEA }
|
\subsection { FMEA }
|
||||||
|
|
||||||
\label{pfmea}
|
\label{pfmea}
|
||||||
@ -149,7 +243,7 @@ The results of FMECA are similar to FMEA, in that component errors are
|
|||||||
listed according to importance, based on
|
listed according to importance, based on
|
||||||
probability of occurrence and criticallity.
|
probability of occurrence and criticallity.
|
||||||
% to prevent the SYSTEM fault of given criticallity.
|
% to prevent the SYSTEM fault of given criticallity.
|
||||||
Again this essentially produces a prioritised `todo' list.
|
Again this essentially produces a prioritised `to~do~list'.
|
||||||
|
|
||||||
%%-WIKI- Failure mode, effects, and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA).
|
%%-WIKI- Failure mode, effects, and criticality analysis (FMECA) is an extension of failure mode and effects analysis (FMEA).
|
||||||
%%-WIKI- FMEA is a a bottom-up, inductive analytical method which may be performed at either the functional or
|
%%-WIKI- FMEA is a a bottom-up, inductive analytical method which may be performed at either the functional or
|
||||||
@ -470,97 +564,6 @@ Reducing FIT with detecting a fraction of the faults within an interval. Give fo
|
|||||||
|
|
||||||
OK for EN61508, not OK for nuclear industry find refs.
|
OK for EN61508, not OK for nuclear industry find refs.
|
||||||
|
|
||||||
|
|
||||||
\section {FTA}
|
|
||||||
|
|
||||||
Fault tree Analysis
|
|
||||||
Show how it works, top down,
|
|
||||||
|
|
||||||
FROM INTERBET HISTORY OF FTA
|
|
||||||
|
|
||||||
% A simple fault tree
|
|
||||||
% Author: Zhang Long, Mail: zhangloong[at]gmail.com
|
|
||||||
%\def\pgfsysdriver{pgfsys-dvipdfm.def}
|
|
||||||
%\documentclass{minimal}
|
|
||||||
%\usepackage{tikz}
|
|
||||||
%\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
|
|
||||||
%\begin{document}
|
|
||||||
|
|
||||||
\begin{figure}
|
|
||||||
\begin{tikzpicture}[
|
|
||||||
% Gates and symbols style
|
|
||||||
and/.style={and gate US,thick,draw,fill=blue!40,rotate=90,
|
|
||||||
anchor=east,xshift=-1mm},
|
|
||||||
or/.style={or gate US,thick,draw,fill=blue!40,rotate=90,
|
|
||||||
anchor=east,xshift=-1mm},
|
|
||||||
be/.style={circle,thick,draw,fill=white!60,anchor=north,
|
|
||||||
minimum width=0.7cm},
|
|
||||||
tr/.style={buffer gate US,thick,draw,fill=white!60,rotate=90,
|
|
||||||
anchor=east,minimum width=0.8cm},
|
|
||||||
% Label style
|
|
||||||
label distance=3mm,
|
|
||||||
every label/.style={blue},
|
|
||||||
% Event style
|
|
||||||
event/.style={rectangle,thick,draw,fill=yellow!20,text width=2cm,
|
|
||||||
text centered,font=\sffamily,anchor=north},
|
|
||||||
% Children and edges style
|
|
||||||
edge from parent/.style={very thick,draw=black!70},
|
|
||||||
edge from parent path={(\tikzparentnode.south) -- ++(0,-1.05cm)
|
|
||||||
-| (\tikzchildnode.north)},
|
|
||||||
level 1/.style={sibling distance=7cm,level distance=1.4cm,
|
|
||||||
growth parent anchor=south,nodes=event},
|
|
||||||
level 2/.style={sibling distance=7cm},
|
|
||||||
level 3/.style={sibling distance=6cm},
|
|
||||||
level 4/.style={sibling distance=3cm}
|
|
||||||
%% For compatability with PGF CVS add the absolute option:
|
|
||||||
% absolute
|
|
||||||
]
|
|
||||||
%% Draw events and edges
|
|
||||||
\node (g1) [event] {No flow to receiver}
|
|
||||||
child{node (g2) {No flow from Component B}
|
|
||||||
child {node (g3) {No flow into Component B}
|
|
||||||
child {node (g4) {No flow from Component A1}
|
|
||||||
child {node (t1) {No flow from source1}}
|
|
||||||
child {node (b2) {Component A1 blocks flow}}
|
|
||||||
}
|
|
||||||
child {node (g5) {No flow from Component A2}
|
|
||||||
child {node (t2) {No flow from source2}}
|
|
||||||
child {node (b3) {Component A2 blocks flow}}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
child {node (b1) {Component B blocks flow}}
|
|
||||||
};
|
|
||||||
%% Place gates and other symbols
|
|
||||||
%% In the CVS version of PGF labels are placed differently than in PGF 2.0
|
|
||||||
%% To render them correctly replace '-20' with 'right' and add the 'absolute'
|
|
||||||
%% option to the tikzpicture environment. The absolute option makes the
|
|
||||||
%% node labels ignore the rotation of the parent node.
|
|
||||||
\node [or] at (g2.south) [label=-20:G02] {};
|
|
||||||
\node [and] at (g3.south) [label=-20:G03] {};
|
|
||||||
\node [or] at (g4.south) [label=-20:G04] {};
|
|
||||||
\node [or] at (g5.south) [label=-20:G05] {};
|
|
||||||
\node [be] at (b1.south) [label=below:B01] {};
|
|
||||||
\node [be] at (b2.south) [label=below:B02] {};
|
|
||||||
\node [be] at (b3.south) [label=below:B03] {};
|
|
||||||
\node [tr] at (t1.south) [label=below:T01] {};
|
|
||||||
\node [tr] at (t2.south) [label=below:T02] {};
|
|
||||||
%% Draw system flow diagram
|
|
||||||
% \begin{scope}[xshift=-7.5cm,yshift=-5cm,very thick,
|
|
||||||
% node distance=1.6cm,on grid,>=stealth',
|
|
||||||
% block/.style={rectangle,draw,fill=cyan!20},
|
|
||||||
% comp/.style={circle,draw,fill=orange!40}]
|
|
||||||
% \node [block] (re) {Receiver};
|
|
||||||
% \node [comp] (cb) [above=of re] {B} edge [->] (re);
|
|
||||||
% \node [comp] (ca1) [above=of cb,xshift=-0.8cm] {A1} edge [->] (cb);
|
|
||||||
% \node [comp] (ca2) [right=of ca1] {A2} edge [->] (cb);
|
|
||||||
% \node [block] (s1) [above=of ca1] {Source1} edge [->] (ca1);
|
|
||||||
% \node [block] (s2) [right=of s1] {Source2} edge [->] (ca2);
|
|
||||||
% \end{scope}
|
|
||||||
\end{tikzpicture}
|
|
||||||
\caption{Example FTA for a Gas Supply with two Shutoff Valves}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
|
|
||||||
\subsection{Bayes Theorm in Relation to Failure Modes}
|
\subsection{Bayes Theorm in Relation to Failure Modes}
|
||||||
|
|
||||||
\paragraph{Conditional Probability}
|
\paragraph{Conditional Probability}
|
||||||
@ -598,8 +601,10 @@ $$ P(B) P(B|S) = P(S \cap B) $$
|
|||||||
|
|
||||||
As for one being the cause of the other, both equations must be equal,
|
As for one being the cause of the other, both equations must be equal,
|
||||||
we can state,
|
we can state,
|
||||||
|
\begin{equation}
|
||||||
$$ P(B) P(B|S) = P(S \cap B) = P(S) P(S|B). $$
|
\label{eqn:bayes0}
|
||||||
|
P(B) P(B|S) = P(S \cap B) = P(S) P(S|B).
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
We can now re-arrange the equation~\cite{probstat} to remove the intersection $P(S \cap B)$ term
|
We can now re-arrange the equation~\cite{probstat} to remove the intersection $P(S \cap B)$ term
|
||||||
thus
|
thus
|
||||||
@ -614,6 +619,26 @@ This equation gives us the probability that if event B has occurred, of
|
|||||||
the event S occurring.
|
the event S occurring.
|
||||||
In the context of failure mode analysis, the event B would
|
In the context of failure mode analysis, the event B would
|
||||||
be the occurance of a component failure mode, and S would be a system level error.
|
be the occurance of a component failure mode, and S would be a system level error.
|
||||||
|
|
||||||
|
We can redefine $P(B)$ using equation \ref{eqn:bayes0}
|
||||||
|
|
||||||
|
|
||||||
|
$$ S = \bigcup_{i=1}^{i=N} S \cap B_n $$
|
||||||
|
|
||||||
|
now to find the probabilities we can express this as
|
||||||
|
|
||||||
|
$$ P(S) = P \big( \bigcup_{i=1}^{i=N} S \cap B_n \big) = \sum_{i=1}^{i=N} P(B|S) P(B) $$
|
||||||
|
and
|
||||||
|
$$ P(S) = P \big( \bigcup_{i=1}^{i=N} S \cap B_n \big) = \sum_{i=1}^{i=N} P(S|B) P(S) $$
|
||||||
|
|
||||||
|
|
||||||
|
We can express bayes theorem thus
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eqn:bayes2}
|
||||||
|
P(S|B) = \frac{P(S) P(B|S)} { \sum_{i=1}^{i=N} P(S|B) P(S) } .
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
%
|
%
|
||||||
|
|
||||||
%Equation \ref{eqn:bayes1} means, given the event $B$ what is the probability it was caused by $S$.
|
%Equation \ref{eqn:bayes1} means, given the event $B$ what is the probability it was caused by $S$.
|
||||||
@ -629,37 +654,13 @@ be the occurance of a component failure mode, and S would be a system level erro
|
|||||||
|
|
||||||
Typically a system level failure will have a number of possible causes,
|
Typically a system level failure will have a number of possible causes,
|
||||||
or base component failure
|
or base component failure
|
||||||
modes. Some base component failure modes may not be able to cause given system failures.
|
modes.
|
||||||
We can represent the the base component failure modes as a partioned set~\cite{nucfta}[fig VI-7], and overlay
|
For probability we are interested in these failure modes occuring, or rather
|
||||||
|
the event of the failure modes becoming active.
|
||||||
|
|
||||||
|
We can represent the the base component failure mode events as a partioned set~\cite{nucfta}[fig VI-7], and overlay
|
||||||
a given system failure mode on it.
|
a given system failure mode on it.
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=350pt,keepaspectratio=true]{./survey/partition.jpg}
|
|
||||||
% partition.jpg: 510x264 pixel, 72dpi, 17.99x9.31 cm, bb=0 0 510 264
|
|
||||||
\caption{Base Component Failure Modes represented as partitioned sets}
|
|
||||||
\label{fig:partitionbcfm}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
|
|
||||||
Figure \ref{fig:partitionbcfm} represents a small theoretical system
|
|
||||||
with nine base component failure modes. These are represented as partitions
|
|
||||||
in a set theoretic model of the systems possible failure mode causes.
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
|
||||||
\centering
|
|
||||||
\includegraphics[width=350pt,keepaspectratio=true]{./survey/partition2.jpg}
|
|
||||||
% partition.jpg: 510x264 pixel, 72dpi, 17.99x9.31 cm, bb=0 0 510 264
|
|
||||||
\caption{Base Component Failure Modes with Overlaid System Error}
|
|
||||||
\label{fig:partitionbcfm2}
|
|
||||||
\end{figure}
|
|
||||||
|
|
||||||
Figure \ref{fig:partitionbcfm2} represents the case where we are looking at a particular
|
|
||||||
system level failure $S_k$. Looking at the diagram we can see that this system failure
|
|
||||||
could be, but is not necessarily caused by base component failure modes $B_1, B_2 \; or \; B_4$.
|
|
||||||
Should any other base component failure mode (causation event occur) according to the diagram
|
|
||||||
it will not be able to cause the system failure $S_k$.
|
|
||||||
|
|
||||||
\paragraph{Bayes Theorem}
|
\paragraph{Bayes Theorem}
|
||||||
|
|
||||||
Consider a SYSTEM error that has several potential base component causes.
|
Consider a SYSTEM error that has several potential base component causes.
|
||||||
@ -671,19 +672,49 @@ say the iprobability od $S_k$ occuring with no information about possible cause
|
|||||||
base component `potential cause' events as $B_n$ where $n$ is an index.
|
base component `potential cause' events as $B_n$ where $n$ is an index.
|
||||||
Our sample space $SS$, for investigating the system failure mode/symptom
|
Our sample space $SS$, for investigating the system failure mode/symptom
|
||||||
$S_k$ is thus $ SS = \{B_1 ... B_n\} $.
|
$S_k$ is thus $ SS = \{B_1 ... B_n\} $.
|
||||||
Thus if B is any event, we can apply bayes theorem
|
We can apply bayes theorem
|
||||||
to determine the statistical likelihood that a given failure mode $B_n$
|
to determine the statistical likelihood that a given failure mode $B_n$
|
||||||
will cause the system level error $S_k$
|
will cause the system level error $S_k$ useing equation \ref{eqn:bayes1}.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=350pt,keepaspectratio=true]{./survey/partition.jpg}
|
||||||
|
% partition.jpg: 510x264 pixel, 72dpi, 17.99x9.31 cm, bb=0 0 510 264
|
||||||
|
\caption{Base Component Failure Modes represented as partitioned sets}
|
||||||
|
\label{fig:partitionbcfm}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
Figure \ref{fig:partitionbcfm} represents a small theoretical system
|
||||||
|
with nine events.
|
||||||
|
representing
|
||||||
|
failure mode events.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=350pt,keepaspectratio=true]{./survey/partition2.jpg}
|
||||||
|
% partition.jpg: 510x264 pixel, 72dpi, 17.99x9.31 cm, bb=0 0 510 264
|
||||||
|
\caption{Base Component Failure Modes with Overlaid System Error}
|
||||||
|
\label{fig:partitionbcfm2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
Some base component failure modes may not be able to cause given system failures.
|
||||||
|
Figure \ref{fig:partitionbcfm2} represents the case where we are looking at a particular
|
||||||
|
system level failure $S_k$. Looking at the diagram we can see that this system failure
|
||||||
|
could be, but is not necessarily caused by base component failure modes $B_1, B_2 \; or \; B_4$.
|
||||||
|
Should any other base component failure mode (causation event occur) according to the diagram
|
||||||
|
it will not be able to cause the system failure $S_k$.
|
||||||
|
|
||||||
|
|
||||||
%IN ENGLEEEESH Inverse causality.....
|
%IN ENGLEEEESH Inverse causality.....
|
||||||
%Prob $B_n$ caused $S_k$ is the prob $S_k$ caused by $B_n$ divided by prob of $B_n$
|
%Prob $B_n$ caused $S_k$ is the prob $S_k$ caused by $B_n$ divided by prob of $B_n$
|
||||||
|
|
||||||
$$
|
%%% \begin{equation}
|
||||||
P(S_k|B_n) = \frac{P(S_k) \; P(B_n | S_k) }{P(B_n)}
|
%%% P(S_k|B_n) = \frac{P(S_k) \; P(B_n | S_k) }{P(B_n)}
|
||||||
|
%%% %alternate form of no use to MEEEEEE
|
||||||
%alternate form of no use to MEEEEEE
|
%%% %P(B_n|S_k) = \frac{P(B_n) \; P(S_k | B_n) }{P(S_k)}
|
||||||
%P(B_n|S_k) = \frac{P(B_n) \; P(S_k | B_n) }{P(S_k)}
|
%%% \end{equation}
|
||||||
$$
|
|
||||||
|
|
||||||
For example were we to have a component that has a failure mode $B_n$ with an MTTF of $10^{-7}$ hours
|
For example were we to have a component that has a failure mode $B_n$ with an MTTF of $10^{-7}$ hours
|
||||||
and its associated system failure mode $S_k$ has a MTTF of $5.10^{-8}$ hours, and given that
|
and its associated system failure mode $S_k$ has a MTTF of $5.10^{-8}$ hours, and given that
|
||||||
@ -696,6 +727,9 @@ P(S_k|B_n) = \frac{5.10^{-8} .\; 0.1 }{ 10^{-7}} = 0.05 = 5\%
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
Some base component failure modes may not be able to cause given system failures.
|
||||||
|
For instance in the diagram \ref{fig:partitionbcfm2}
|
||||||
|
events $B_5 ... B_9$ cannot cause event $S_k$.
|
||||||
Taking an example from the diagram (figure \ref{fig:partitionbcfm2}), where the base component fault cannot
|
Taking an example from the diagram (figure \ref{fig:partitionbcfm2}), where the base component fault cannot
|
||||||
lead to the system failure $S_k$.
|
lead to the system failure $S_k$.
|
||||||
Taking say $B_9$ which does not overlap with $S_k$ (i.e. $B_9 \cap S_k = \emptyset $),
|
Taking say $B_9$ which does not overlap with $S_k$ (i.e. $B_9 \cap S_k = \emptyset $),
|
||||||
@ -708,15 +742,40 @@ As $ P(S_k | B_n)$ is a factor in the numerator,
|
|||||||
the application of bayes theorem to $B_9$ being a cause for $S_k$ has a probability
|
the application of bayes theorem to $B_9$ being a cause for $S_k$ has a probability
|
||||||
of zero, as we would expect.
|
of zero, as we would expect.
|
||||||
|
|
||||||
|
|
||||||
|
%%%%
|
||||||
|
|
||||||
|
%% BAYES
|
||||||
|
|
||||||
Because we are interested in finding the probability of $S_k$ for all
|
Because we are interested in finding the probability of $S_k$ for all
|
||||||
base component failure modes, it is helpful to re-define
|
base component failure modes, it is helpful to re-define
|
||||||
$P(B_n)$.
|
$P(S_k)$.
|
||||||
|
|
||||||
|
In terms oif set intersection, we can express $S_k$ as
|
||||||
|
$$ S_k = \bigcup_{i=1}^{i=N} S_k \cap B_n .$$
|
||||||
|
|
||||||
|
now to find the probabilities we can express this as
|
||||||
|
|
||||||
|
$$ P(S_k) = P \big( \bigcup_{i=1}^{i=N} S_k \cap B_n \big) = \sum_{i=1}^{i=N} P(B_i|S_k) P(B_i) $$
|
||||||
|
and
|
||||||
|
$$ P(S_k) = P \big( \bigcup_{i=1}^{i=N} S_k \cap B_n \big) = \sum_{i=1}^{i=N} P(S_k|B_i) P(S_k) $$
|
||||||
|
|
||||||
|
|
||||||
|
We can express bayes theorem thus
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\label{eqn:bayes2}
|
||||||
|
P(S_k|B_n) = \frac{P(S_k) P(B|S_k)} {\sum_{i=1}^{i=n} P(B_i|S_k) P(B_i)} .
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
%
|
%
|
||||||
% here derive the trad version of bayes with the summation as the denominator
|
% here derive the trad version of bayes with the summation as the denominator
|
||||||
%
|
%
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
RESTRICTIONS:
|
RESTRICTIONS:
|
||||||
|
|
||||||
Because this uses conditional probability for multiple independent events
|
Because this uses conditional probability for multiple independent events
|
||||||
|
Loading…
Reference in New Issue
Block a user