Merge branch 'master' of dev:/home/robin/git/thesis
This commit is contained in:
commit
dfe8b911ad
@ -1,6 +1,6 @@
|
||||
|
||||
|
||||
PNG_DIA = circuit1_dag.png mvampcircuit.png pd.png invamp.png shared_component.png tree_abstraction_levels.png three_tree.png
|
||||
PNG_DIA = circuit1_dag.png mvampcircuit.png pd.png invamp.png shared_component.png tree_abstraction_levels.png three_tree.png blockdiagramcircuit2.png circuit2h.png
|
||||
|
||||
|
||||
|
||||
|
BIN
opamp_circuits_C_GARRETT/blockdiagramcircuit2.dia
Normal file
BIN
opamp_circuits_C_GARRETT/blockdiagramcircuit2.dia
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 175 KiB After Width: | Height: | Size: 188 KiB |
BIN
opamp_circuits_C_GARRETT/circuit2002_FIVEPOLE.png
Normal file
BIN
opamp_circuits_C_GARRETT/circuit2002_FIVEPOLE.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 196 KiB |
BIN
opamp_circuits_C_GARRETT/circuit2002_LP1.png
Normal file
BIN
opamp_circuits_C_GARRETT/circuit2002_LP1.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 188 KiB |
BIN
opamp_circuits_C_GARRETT/circuit2h.dia
Normal file
BIN
opamp_circuits_C_GARRETT/circuit2h.dia
Normal file
Binary file not shown.
@ -70,11 +70,16 @@ We can express the failure modes of a component using the function $fm$, thus fo
|
||||
|
||||
|
||||
We have two resistors in this circuit and therefore four component failure modes to consider for the potential divider.
|
||||
We can now examine what effect each of these failures will have on the {\fg}.
|
||||
We can now examine what effect each of these failures will have on the {\fg} (see table~\ref{tbl:pd}).
|
||||
|
||||
|
||||
\subsection{Analysing a potential divider in terms of failure modes}
|
||||
|
||||
|
||||
\label{potdivfmmd}
|
||||
|
||||
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./pd.png}
|
||||
@ -85,6 +90,7 @@ We can now examine what effect each of these failures will have on the {\fg}.
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Potential Divider: Sinlge failure analysis}
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Pot Div Effect} & & \textbf{Symptom} \\
|
||||
\hline
|
||||
@ -94,6 +100,7 @@ We can now examine what effect each of these failures will have on the {\fg}.
|
||||
FS4: R2 OPEN & & $LOW$ & & $PDLow$ \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:pd}
|
||||
\end{table}
|
||||
|
||||
We can now create a {\dc} for the potential divider, $PD$.
|
||||
@ -152,9 +159,10 @@ Re-using the $PD$ - potential divider works only if the input voltage is negativ
|
||||
We want if possible to have detectable errors, HIGH and LOW are better than OUTOFRANGE.
|
||||
If we can refine the operational states of the fungional group, we can obtain clearer
|
||||
symptoms.
|
||||
If we consider the input will only be positive, we can invert the potential divider.
|
||||
If we consider the input will only be positive, we can invert the potential divider (see table~\ref{tbl:pdneg}).
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Inverted Potential divider: Single failure analysis}
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Inverted Pot Div Effect} & & \textbf{Symptom} \\
|
||||
\hline
|
||||
@ -164,6 +172,7 @@ If we consider the input will only be positive, we can invert the potential divi
|
||||
FS4: R2 OPEN & & $HIGH$ & & $PDHigh$ \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:pdneg}
|
||||
\end{table}
|
||||
|
||||
We can form a {\dc} from this, and call it an inverted potential divider $INVPD$.
|
||||
@ -181,7 +190,7 @@ lead to the symptoms (i.e. the symptoms are the same but causation tree will be
|
||||
|
||||
We can use this for a more general case, because we can examine the
|
||||
effects on the circuit for each operational case (i.e. input +ve
|
||||
or input -ve). Because symptom collection is defined as surjective (from component failure modes
|
||||
or input -ve), see table~\ref{tbl:invamp}. Because symptom collection is defined as surjective (from component failure modes
|
||||
to symptoms) we cannot have a component failure mode that maps to two different symptoms (within a functional group).
|
||||
Note that here we have a more general symptom $ OUT OF RANGE $ which could mean either
|
||||
$HIGH$ or $LOW$ output.
|
||||
@ -189,6 +198,7 @@ $HIGH$ or $LOW$ output.
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{Inverting Amplifier: Single failure analysis}
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Inverted Amp Effect} & & \textbf{Symptom} \\ \hline
|
||||
\hline
|
||||
@ -213,23 +223,25 @@ $HIGH$ or $LOW$ output.
|
||||
FS4: AMP LowSlew & & $ slow output \frac{\delta V}{\delta t} $ & & $ LOW PASS $ \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:invamp}
|
||||
\end{table}
|
||||
|
||||
|
||||
$$ fm(INVAMP) = \{ OUT OF RANGE, ZERO OUTPUT, NO GAIN, LOW PASS \} $$
|
||||
|
||||
|
||||
Much more general. OUT OF RANGE symptom maps to many component failure modes.
|
||||
Observability problem... system. In fact can we get a metric of how observable
|
||||
a system is using the ratio of component failure modes X op states to a symptom ????
|
||||
Could further refine this if MTTF stats available for each component failure.
|
||||
%Much more general. OUT OF RANGE symptom maps to many component failure modes.
|
||||
%Observability problem... system. In fact can we get a metric of how observable
|
||||
%a system is using the ratio of component failure modes X op states to a symptom ????
|
||||
%Could further refine this if MTTF stats available for each component failure.
|
||||
|
||||
|
||||
\subsection{Comparison between the two approaches}
|
||||
|
||||
If the input voltage can be negative the potential divider
|
||||
becomes reversed in polarity.
|
||||
This means that detecting which failure mode has occurred from knowing the symptom, has become a more difficult task.
|
||||
This means that detecting which failure mode has occurred from knowing the symptom, has become a more difficult task; or in other words
|
||||
the observability of the causes of failure are reduced.
|
||||
|
||||
\clearpage
|
||||
\section{Op-Amp circuit 1}
|
||||
@ -250,35 +262,36 @@ We begin by identifying functional groups from the components in the circuit.
|
||||
|
||||
|
||||
\subsection{Functional Group: Potential Divider}
|
||||
For the gain setting resistors R1,R2 -- we can re-use the potential divider from section~\ref{potdivfmmd}.
|
||||
|
||||
R1 and R2 perform as a potential divider.
|
||||
Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
|
||||
$$ fm(R) = \{ OPEN, SHORT \}$$
|
||||
%R1 and R2 perform as a potential divider.
|
||||
%Resistors can fail OPEN and SHORT (according to GAS burner standard EN298 Appendix A).
|
||||
%$$ fm(R) = \{ OPEN, SHORT \}$$
|
||||
|
||||
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $R_1$ SHORT & LOW & & LowPD \\
|
||||
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
||||
TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
||||
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:pdfmea}
|
||||
\end{table}
|
||||
|
||||
By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
|
||||
component $PD$ to represent the failure mode behaviour
|
||||
of a potential divider.
|
||||
% \begin{table}[ht]
|
||||
% \caption{Potential Divider $PD$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
% \centering % used for centering table
|
||||
% \begin{tabular}{||l|c|c|l|l||}
|
||||
% \hline \hline
|
||||
% \textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{General} \\
|
||||
% \textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||
% % R & wire & res + & res - & description
|
||||
% \hline
|
||||
% \hline
|
||||
% TC1: $R_1$ SHORT & LOW & & LowPD \\
|
||||
% TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
||||
% TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
||||
% TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||
% \hline
|
||||
% \end{tabular}
|
||||
% \label{tbl:pdfmea}
|
||||
% \end{table}
|
||||
%
|
||||
% By collecting the symptoms in table~\ref{tbl:pdfmea} we can create a derived
|
||||
% component $PD$ to represent the failure mode behaviour
|
||||
% of a potential divider.
|
||||
|
||||
Thus for single failure modes, a potential divider can fail
|
||||
with $fm(PD) = \{PDHigh,PDLow\}$.
|
||||
@ -406,7 +419,7 @@ two derived components of the type $NI\_AMP$ and $SEC\_AMP$.
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
@ -463,11 +476,282 @@ wihen it becomes a V2 follower).
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./circuit2002.png}
|
||||
% circuit2002.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{circuit2}
|
||||
\caption{circuit 2}
|
||||
\label{fig:circuit2}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter.
|
||||
Starting at the input, we have a first order low pass filter buffered by an op-amp,
|
||||
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267] second order lowpass filter.
|
||||
The output of this is passed into another Sallen~Key filter -- which although it may have different values
|
||||
for its resistors/capacitors and thus have a different frequency response -- is idential from a failure mode perspective.
|
||||
Thus we can analyse the first Sallen~Key low pass filter and re-use the results.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt,keepaspectratio=true]{./blockdiagramcircuit2.png}
|
||||
% blockdiagramcircuit2.png: 689x83 pixel, 72dpi, 24.31x2.93 cm, bb=0 0 689 83
|
||||
\caption{Signal Flow though the five pole low pass filter}
|
||||
\label{fig:blockdiagramcircuit2}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\paragraph{First Order Low Pass Filter.}
|
||||
We begin with the first order low pass filter formed by $R10$ and $C10$.
|
||||
%
|
||||
This configuration (or {\fg}) is very commonly
|
||||
used in electronics to remove unwanted high frequencies/interference
|
||||
form a signal; Here it is being used as a first stage of
|
||||
a more sophisticated low pass filter.
|
||||
%
|
||||
R10 and C10 act as a potential divider, with the crucial difference between a purely resistive potential divider being
|
||||
that the impedance of the capacitor is lower for higher frequencies.
|
||||
Thus higher frquencies are attenuated at the point that we
|
||||
read its output signal.
|
||||
However, from a failure mode perspective we can analyse it in a very similar way
|
||||
to a potential divider (see section~\ref{potdivfmmd}).
|
||||
Capacitors generally fail OPEN but some types fail OPEN and SHORT.
|
||||
We will consider the latter type for this analysis.
|
||||
We analyse the first order low pass filter in table~\ref{tbl:firstorderlp}.\\
|
||||
|
||||
|
||||
\begin{table}[h+]
|
||||
\caption{FirstOrderLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\label{tbl:firstorderlp}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||
& & \textbf{Low Pass Filter} & & \\
|
||||
\hline
|
||||
FS1: R10 SHORT & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
||||
FS2: R10 OPEN & & $No Signal$ & & $LPnosignal$ \\ \hline
|
||||
FS3: C10 SHORT & & $No Signal$ & & $LPnosignal$ \\ \hline
|
||||
FS4: C10 OPEN & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
||||
|
||||
\hline
|
||||
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
We can collect the symptoms $\{ LPnofilter,LPnosignal \}$ and create a derived component
|
||||
called $FirstOrderLP$. Applying the $fm$ function yields $$ fm(FirstOrderLP) = \{ LPnofilter,LPnosignal \}.$$
|
||||
|
||||
\paragraph{Addition of Buffer Amplifier: First stage.}
|
||||
|
||||
The opamp IC1 is being used simply as a buffer. By placing it between the next stages
|
||||
on the signal path we remove the possibility of unwanted signal feedback.
|
||||
The buffer is one of the simplest op-amp configurations.
|
||||
It has no other components, and so we can now form a {\fg}
|
||||
from the $FirstOrderLP$ and the OPAMP component.
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{First Stage LP1: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\label{tbl:firststage}
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $OPAMP$ LatchUP & Output High & & LP1High \\
|
||||
TC2: $OPAMP$ LatchDown & Output Low & & LP1Low \\
|
||||
TC3: $OPAMP$ No Operation & Output Low & & LP1Low \\
|
||||
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & LP1filterincorrect \\ \hline
|
||||
TC5: $LPnofilter $ & No low pass filtering & & LP1filterincorrect \\
|
||||
TC6: $LPnosignal $ & No input signal & & LP1nosignal \\ \hline
|
||||
\hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\end{table}
|
||||
|
||||
From the table~\ref{tbl:firststage} we can see three symptoms of failure of
|
||||
the first stage of this circuit (i.e. R10,C10,IC1).
|
||||
We can create a derived component for it, lets call it $LP1$.
|
||||
|
||||
$$ fm(LP1) = \{ LP1High, LP1Low, LP1filterincorrect, LP1nosignal \} $$
|
||||
|
||||
|
||||
In terms terms of the circuit we have modelled the functional groups $FirstOrderLP$, and
|
||||
$LP1$. We can represent these on the circuit diagram by drawing contours around the components
|
||||
on the schematic as in figure~\ref{fig:circuit2002_LP1}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./circuit2002_LP1.png}
|
||||
% circuit2002_LP1.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{Circuit showing functional groups modelled so far.}
|
||||
\label{fig:circuit2002_LP1}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\paragraph{Second order Sallen Key Low Pass Filter.}
|
||||
The next two filters in the signal path are R1,R2,C2,C1,IC2 and R3,R4,C4,C3,IC3.
|
||||
From a failure mode perspective these are identical.
|
||||
We can analyse the first one and then re-use these results for the second.
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{Sallen Key Low Pass Filter SKLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $OPAMP$ LatchUP & Output High & & SKLPHigh \\
|
||||
TC2: $OPAMP$ LatchDown & Output Low & & SKLPLow \\
|
||||
TC3: $OPAMP$ No Operation & Output Low & & SKLPLow \\
|
||||
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & SKLPfilterIncorrect \\ \hline
|
||||
TC5: R1 OPEN & No input signal & & SKLPfilterIncorrect \\
|
||||
TC6: R1 SHORT & incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
||||
|
||||
TC7: R2 OPEN & No input signal & & SKLPnosignal \\
|
||||
TC8: R2 SHORT & incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
||||
|
||||
TC9: C1 OPEN & reduced/incorrect low pass filtering & & SKLPfilterIncorrect\\
|
||||
TC10: C1 SHORT & reduced/incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
||||
|
||||
TC11: C2 OPEN & reduced/incorrect low pass filtering & & SKLPfilterIncorrect \\
|
||||
TC12: C2 SHORT & No input signal, low signal & & SKLPnosignal \\ \hline
|
||||
\hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:sallenkeylp}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
We now can create a derived component to represent the Sallen Key low pass filter, which we can call $SKLP$.
|
||||
|
||||
|
||||
$$ fm ( SKLP ) = \{ SKLPHigh, SKLPLow, SKLPIncorrect, SKLPnosignal \} $$
|
||||
|
||||
|
||||
\paragraph{A failure mode model of Op-Amp Circuit 2.}
|
||||
|
||||
We now have {\dcs} representing the three stages of this filter
|
||||
and this follows the signal flow in the filter circuit (see figure~\ref{fig:blockdiagramcircuit2}).
|
||||
|
||||
|
||||
|
||||
|
||||
As the signal has to pass though each block/stage
|
||||
in order to be `five~pole' filtered, we need to bring these three blocks together into a {\fg}
|
||||
in order to get a failure mode model for the whole circuit.
|
||||
We can index the Sallen Key stages, and these are marked on the ciruit schematic in figure~\ref{fig:circuit2002_FIVEPOLE}.
|
||||
|
||||
\begin{figure}[h]+
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./circuit2002_FIVEPOLE.png}
|
||||
% circuit2002_FIVEPOLE.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{Functional Groups in Five Pole Low Pass Filter on schematic}
|
||||
\label{fig:circuit2002_FIVEPOLE}
|
||||
\end{figure}
|
||||
|
||||
\pagebreak[4]
|
||||
|
||||
So our final {\fg} will consist of the derived components $\{ LP1, SKLP_1, SKLP_2 \}$.
|
||||
We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||
|
||||
|
||||
\begin{figure}[h]+
|
||||
\centering
|
||||
\includegraphics[width=300pt]{./circuit2h.png}
|
||||
% circuit2h.png: 676x603 pixel, 72dpi, 23.85x21.27 cm, bb=0 0 676 603
|
||||
\caption{FMMD Hierarchy for five pole Low Pass Filter}
|
||||
\label{fig:circuit2h}
|
||||
\end{figure}
|
||||
|
||||
%\pagebreak[4]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%$$ fm ( SKLP ) = \{ SKLPHigh, SKLPLow, SKLPIncorrect, SKLPnosignal \} $$
|
||||
%$$ fm(LP1) = \{ LP1High, LP1Low, LP1ExtraLowPass, LP1NoLowPass \} $$
|
||||
|
||||
\begin{table}[ht]+
|
||||
\caption{Five Pole Low Pass Filter: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|l|l|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $LP1$ LP1High & signal HIGH & & HIGH \\
|
||||
TC2: $LP1$ SKLPLow & signal LOW & & LOW \\
|
||||
TC3: $LP1$ LP1filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
||||
TC4: $LP1$ LP1nosignal & no signal propogated & & NO\_SIGNAL \\ \hline
|
||||
|
||||
|
||||
|
||||
TC5: $SKLP_1$ High & signal HIGH & & HIGH \\
|
||||
TC6: $SKLP_1$ Low & signal LOW & & LOW \\
|
||||
TC7: $SKLP_1$ filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
||||
TC8: $SKLP_1$ nosignal & no signal propogated & & NO\_SIGNAL \\ \hline
|
||||
|
||||
|
||||
TC9: $SKLP_2$ High & signal HIGH & & HIGH \\
|
||||
TC10: $SKLP_2$ Low & signal LOW & & LOW \\
|
||||
TC11: $SKLP_2$ filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
||||
TC12: $SKLP_2$ nosignal & no signal propogated & & NO\_SIGNAL \\ \hline
|
||||
|
||||
\hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{tbl:fivepole}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
We now can create a {\dc} to represent the circuit in figure~\ref{fig:circuit2}, we can call it
|
||||
$FivePoleLP$ and applying the $fm$ function to it (see table~\ref{tbl:fivepole}) yields $fm(FivePoleLP) = \{ HIGH, LOW, FilterIncorrect, NO\_SIGNAL \}$.
|
||||
|
||||
|
||||
\pagebreak[4]
|
||||
|
||||
The failure modes for the low pass filters are very similar, and the propogation of the signal
|
||||
is simple (as it is never inverted). The circuit under analysis is -- as shown in the block diagram (see figure~\ref{fig:blockdiagramcircuit2}) --
|
||||
three opamp driven non-inverting low pass filter elements; It is not suprising therefore that they have very similar failure modes.
|
||||
From a safety point of view, the failure modes $LOW$, $HIGH$ and $NO\_SIGNAL$
|
||||
could be easily detected; the failure symptom $FilterIncorrect$ may be less observable.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\clearpage
|
||||
\section{Op-Amp circuit 3}
|
||||
|
||||
@ -478,8 +762,9 @@ wihen it becomes a V2 follower).
|
||||
\caption{Circuit 3}
|
||||
\label{fig:circuit3}
|
||||
\end{figure}
|
||||
\clearpage
|
||||
\section{Standard Non-inverting OP AMP}
|
||||
|
||||
%\clearpage
|
||||
%\section{Standard Non-inverting OP AMP}
|
||||
|
||||
|
||||
\clearpage
|
||||
@ -501,6 +786,8 @@ The main concept of FMMD is to build a hierarchy of failure behaviour from the {
|
||||
level up to the top, or system level, with analysis stages between each
|
||||
transition to a higher level in the hierarchy.
|
||||
|
||||
|
||||
|
||||
The first stage is to choose
|
||||
{\bcs} that interact and naturally form {\fgs}. The initial {\fgs} are collections of base components.
|
||||
%These parts all have associated fault modes. A module is a set fault~modes.
|
||||
@ -679,6 +966,17 @@ This is a natural process. When we have complicated systems
|
||||
they always have a small number of system failure modes in comparison to
|
||||
the number of failure modes in its sub-systems/components..
|
||||
|
||||
|
||||
\section{Examples of Derived Component like concepts in safety literature}
|
||||
|
||||
Idea stage on this section
|
||||
\begin{itemize}
|
||||
\item Look at OPAMP circuits, pick one (say $\mu$741)
|
||||
\item examine number of components and failure modes
|
||||
\item outline a proposed FMMD analysis
|
||||
\item Show FMD-91 OPAMP failure modes -- compare with FMMD
|
||||
\end{itemize}
|
||||
|
||||
\clearpage
|
||||
\section{Side Effects: A Problem for FMMD analysis}
|
||||
A problem with modularising according to functionality is that we can have component failures that would
|
||||
@ -844,7 +1142,7 @@ Rigorous FMEA (RFMEA).
|
||||
\centering
|
||||
\includegraphics[width=400pt,keepaspectratio=true]{./three_tree.png}
|
||||
% three_tree.png: 851x385 pixel, 72dpi, 30.02x13.58 cm, bb=0 0 851 385
|
||||
\caption{FMMD Hierarchy with $(|fg| = 3) \wedge (|fm(c)| = 3)$}
|
||||
\caption{FMMD Hierarchy with $(|fg| = 3)$ } % \wedge (|fm(c)| = 3)$}
|
||||
\label{fig:three_tree}
|
||||
\end{figure}
|
||||
|
||||
@ -942,9 +1240,11 @@ $$
|
||||
%\end{equation}
|
||||
$$
|
||||
|
||||
\subsection{Exponential squared to Exponential}
|
||||
|
||||
can I say that ?
|
||||
% \subsection{Exponential squared to Exponential}
|
||||
%
|
||||
% can I say that ?
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{../vmgbibliography,../mybib}
|
||||
|
||||
|
||||
\end{document}
|
||||
|
BIN
related_papers_books/3A.SILs.pdf
Normal file
BIN
related_papers_books/3A.SILs.pdf
Normal file
Binary file not shown.
@ -657,7 +657,7 @@ safety, as it can miss unexpected effects due to `unexpected' component interact
|
||||
|
||||
The Statistical Analysis methodology is the core philosophy
|
||||
of the Safety Integrity Levels (SIL) embodied in EN61508 \cite{en61508}
|
||||
and its international analog standard IOC5108.
|
||||
and its international analog is standard IOC5108.
|
||||
|
||||
|
||||
|
||||
@ -669,6 +669,7 @@ and its international analog standard IOC5108.
|
||||
\item No possibility to model base component level double failure modes.
|
||||
\item As with all failure mode methodologies based on FMEA, does not model component failure modes
|
||||
that may cause more than one type of SYSTEM failure.
|
||||
\item Because FMEDA is based on one entry per component failure mode, top level symptoms are not grouped, and will be listed in a fragmented way, and may not have the same description.
|
||||
\end{itemize}
|
||||
%AND then how we can solve all there problems
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user