CH5 pencil and edit session
This commit is contained in:
parent
fa5821e8f3
commit
d45b60d8aa
Binary file not shown.
@ -20,7 +20,7 @@ hybrids.
|
||||
%using an op-amp and two resistors;
|
||||
this demonstrates re-use of a potential divider {\dc} from section~\ref{subsec:potdiv}.
|
||||
This amplifier is analysed twice, using different compositions of {\fgs}.
|
||||
The two approaches, i.e. choice of membership for {\fgs}, are then discussed.
|
||||
The two approaches, i.e. effects of choice of membership for {\fgs} are then discussed.
|
||||
%
|
||||
\item Section~\ref{sec:diffamp} analyses a circuit where two op-amps are used
|
||||
to create a differencing amplifier.
|
||||
@ -31,7 +31,7 @@ not in the second.
|
||||
%
|
||||
\item Section~\ref{sec:fivepolelp} analyses a Sallen-Key based five pole low pass filter.
|
||||
It demonstrates re-use of the first Sallen-Key analysis, %encountered as a {\dc}
|
||||
increasing test efficiency. This example also serves to show a deep hierarchy of {\dcs}.
|
||||
increasing test efficiency. This example also serves to show a deeper hierarchy of {\dcs}.
|
||||
%
|
||||
\item Section~\ref{sec:bubba} shows FMMD applied to a
|
||||
loop topology---using a `Bubba' oscillator---demonstrating how FMMD differs from fault diagnosis techniques.
|
||||
@ -266,7 +266,7 @@ and analyse it as such; see table~\ref{tbl:pdneg}.
|
||||
%
|
||||
We assume a valid range for the output value of this circuit.
|
||||
Thus negative or low voltages can be considered as LOW
|
||||
and voltages higher than this range considered as HIGH.
|
||||
and voltages higher than a given threshold considered as HIGH.
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{Inverted Potential divider: Single failure analysis}
|
||||
@ -461,7 +461,8 @@ We can now express the failure modes for the {\dc} $INVAMP$ thus;
|
||||
$$ fm(INVAMP) = \{ HIGH, LOW, LOW PASS \} .$$
|
||||
We can draw a DAG representing the failure mode behaviour of
|
||||
this amplifier (see figure~\ref{fig:invdag1}). Note that this allows us
|
||||
to traverse from system level, or top failure modes to base component failure modes.
|
||||
to trace failure symptoms back to causes, i.e.
|
||||
to traverse from system level or top failure modes to base component failure modes.
|
||||
%%%%% 12DEC 2012 UP to here in notes from AF email.
|
||||
%
|
||||
\clearpage
|
||||
@ -913,7 +914,7 @@ This FMMD analysis also revealed an undetectable failure mode, $DiffAMPIncorrec
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{CH5_Examples/circuit2002.png}
|
||||
\includegraphics[width=300pt]{CH5_Examples/circuit2002.png}
|
||||
% circuit2002.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{Five Pole Low Pass Filter, using two Sallen~Key stages and three op-amps.
|
||||
An example of FMMD applied to a multi-stage but linear signal path topology. }
|
||||
@ -1038,9 +1039,10 @@ on the schematic as in figure~\ref{fig:circuit2002_LP1}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{CH5_Examples/circuit2002_LP1.png}
|
||||
\includegraphics[width=300pt,keepaspectratio=true]{CH5_Examples/circuit2002_LP1.png}
|
||||
% circuit2002_LP1.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{Circuit showing {\fgs} modelled so far.}
|
||||
\caption{Five Pole Sallen Key Filter: Circuit showing the first two {\fgs} modelled.
|
||||
Shown as an Euler diagram super-imposed onto the electrical schematic.} % so far.}
|
||||
\label{fig:circuit2002_LP1}
|
||||
\end{figure}
|
||||
|
||||
@ -1107,21 +1109,21 @@ As the signal has to pass through each block/stage
|
||||
in order to be `five~pole' filtered, we need to bring these three blocks together into a {\fg}
|
||||
in order to get a failure mode model for the whole circuit.
|
||||
We can index the Sallen Key stages, and these are marked on the circuit schematic in figure~\ref{fig:circuit2002_FIVEPOLE}.
|
||||
|
||||
%
|
||||
\begin{figure}[h]+
|
||||
\centering
|
||||
\includegraphics[width=200pt]{CH5_Examples/circuit2002_FIVEPOLE.png}
|
||||
\includegraphics[width=300pt]{CH5_Examples/circuit2002_FIVEPOLE.png}
|
||||
% circuit2002_FIVEPOLE.png: 575x331 pixel, 72dpi, 20.28x11.68 cm, bb=0 0 575 331
|
||||
\caption{Functional Groupings in Five Pole Low Pass Filter: shown as an Euler diagram super-imposed onto the electrical schematic.}
|
||||
\caption{Functional Groupings in Five Pole Low Pass Filter. Shown as an Euler diagram super-imposed onto the electrical schematic.}
|
||||
\label{fig:circuit2002_FIVEPOLE}
|
||||
\end{figure}
|
||||
|
||||
%
|
||||
\pagebreak[4]
|
||||
|
||||
%
|
||||
So our final {\fg} will consist of the derived components $\{ LP1, SKLP_1, SKLP_2 \}$.
|
||||
We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
% HTR 20OCT2012 \begin{figure}[h]+
|
||||
% HTR 20OCT2012 \centering
|
||||
% HTR 20OCT2012 \includegraphics[width=300pt]{CH5_Examples/circuit2h.png}
|
||||
@ -1137,18 +1139,18 @@ We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||
is an abstract version of figure~\ref{fig:circuit2002_FIVEPOLE}}.
|
||||
\label{fig:circuit2h}
|
||||
\end{figure}
|
||||
|
||||
%
|
||||
%\pagebreak[4]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%$$ fm ( SKLP ) = \{ SKLPHigh, SKLPLow, SKLPIncorrect, SKLPnosignal \} $$
|
||||
%$$ fm(LP1) = \{ LP1High, LP1Low, LP1ExtraLowPass, LP1NoLowPass \} $$
|
||||
|
||||
%
|
||||
\begin{table}[ht]+
|
||||
\caption{Five Pole Low Pass Filter: Failure Mode Effects Analysis($FivePoleLP$): Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
@ -1185,43 +1187,39 @@ We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
||||
\end{tabular}
|
||||
\label{tbl:fivepole}
|
||||
\end{table}
|
||||
|
||||
%
|
||||
We now can create a {\dc} to represent the circuit in figure~\ref{fig:circuit2}, we call this
|
||||
$FivePoleLP$: applying the $fm$ function (see table~\ref{tbl:fivepole})
|
||||
yields $$fm(FivePoleLP) = \{ HIGH, LOW, FilterIncorrect, NO\_SIGNAL \}.$$
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%\pagebreak[4]
|
||||
|
||||
%
|
||||
The failure modes for the low pass filters are very similar, and the propagation of the signal
|
||||
is simple (as it is never inverted). The circuit under analysis is -- as shown in the block diagram (see figure~\ref{fig:blockdiagramcircuit2}) --
|
||||
three op-amp driven non-inverting low pass filter elements. It is not surprising therefore that they have very similar failure modes.
|
||||
From a safety point of view, the failure modes $LOW$, $HIGH$ and $NO\_SIGNAL$
|
||||
could be easily detected; the failure symptom $FilterIncorrect$ may be less observable.
|
||||
|
||||
could be easily detected; the failure symptom $FilterIncorrect$ may be less detectable.
|
||||
%
|
||||
\subsection{Conclusion}
|
||||
This example shows the analysis of a linear signal path circuit with three easily identifiable
|
||||
{\fgs} and re-use of the Sallen-Key {\dc}.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
\clearpage
|
||||
%
|
||||
% BUBBAOSC
|
||||
%
|
||||
|
||||
%
|
||||
\section{Quad Op-Amp Oscillator}
|
||||
\label{sec:bubba}
|
||||
|
||||
%
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{CH5_Examples/circuit3003.png}
|
||||
\includegraphics[width=300pt]{CH5_Examples/circuit3003.png}
|
||||
% circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326
|
||||
\caption{Circuit diagram for the Quad Op-Amp `Bubba' Oscillator}
|
||||
\label{fig:circuit3}
|
||||
@ -1325,10 +1323,11 @@ Initially we use the first identified {\fgs} to create our model without further
|
||||
|
||||
\subsection{FMMD Analysis using initially identified {\fgs}}
|
||||
\label{sec:bubba1}
|
||||
Our {\fg} for this analysis can be expressed thus:
|
||||
By indexing the re-used {\dcs}
|
||||
the {\fg} for this analysis can be expressed thus:
|
||||
%
|
||||
%$$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0_3 PHS45^1_4, INVAMP^1_0 \} ,$$
|
||||
$$ G = \{ PHS45, NIBUFF, PHS45, NIBUFF, PHS45, NIBUFF PHS45, INVAMP \} ,$$
|
||||
$$ G = \{ PHS45_1, NIBUFF_1, PHS45_2, NIBUFF_2, PHS45_3, NIBUFF_3, PHS45_4, INVAMP \} ,$$
|
||||
or in Euler diagram format as in figure~\ref{fig:bubbaeuler1}.
|
||||
% HTR 23SEP2012 \begin{figure}[h+]
|
||||
% HTR 23SEP2012 \centering
|
||||
@ -1566,7 +1565,7 @@ The following example is used to demonstrate FMMD analysis of a mixed analogue a
|
||||
%
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=300pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
|
||||
\includegraphics[width=350pt,keepaspectratio=true]{./CH5_Examples/sigma_delta_block.png}
|
||||
% sigma_delta_block.png: 828x367 pixel, 72dpi, 29.21x12.95 cm, bb=0 0 828 367
|
||||
\caption{Electrical signal path Block diagram: \sd} % Analogue to Digital Converter }
|
||||
\label{fig:sigmadeltablock}
|
||||
@ -1643,12 +1642,12 @@ The feedback voltage for the ADC is supplied via $R1$, we term this voltage as $
|
||||
%The input voltage is supplied via $R2$ and we term this voltage as $V_{in}$.
|
||||
$R2$ and $R1$ form a summing junction to IC1: they balance the integrator provided
|
||||
by the capacitor C1 and the opamp IC1.
|
||||
This can be our first {\fg} and we analyse it in table~\ref{detail:SUMJINT}%{tbl:sumjint}.
|
||||
This can be our first {\fg} and we analyse it in table~\ref{detail:SUMJINT}: %{tbl:sumjint}.
|
||||
%For the symptoms, we have to think in terms of the effect
|
||||
%on its performance as a summing junction and not be
|
||||
%distracted by the integrator formed by $C_1$ and $IC1$.
|
||||
%
|
||||
$$FG = \{R1, R2, IC1, C1 \}$$
|
||||
$$FG = \{R1, R2, IC1, C1 \} .$$
|
||||
|
||||
That is, the failure modes (see FMMD analysis at~\ref{detail:SUMJINT}) of our new {\dc}
|
||||
$SUMJINT$ are $$\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
@ -1662,20 +1661,24 @@ This presents a high impedance to the circuit driving it.
|
||||
This prevents electrical loading, and thus interference with, the SUMJINT stage.
|
||||
This is simply an op-amp
|
||||
with the input connected to the +ve input and the -ve input grounded.
|
||||
It therefore has the failure modes of an Op-amp.
|
||||
|
||||
%% \end{table}
|
||||
%
|
||||
%
|
||||
This is an OpAmp in a signal buffer configuration
|
||||
and therefore simply has the failure modes of an Op-amp.
|
||||
%
|
||||
%
|
||||
% \end{tabular}
|
||||
% \end{table}
|
||||
This is an OpAmp in a signal buffer configuration.
|
||||
%
|
||||
%
|
||||
As it is performing one particular function
|
||||
we may consider it as a derived component, that of a High Impedance Signal Buffer (HISB).
|
||||
This is analysed using FMMD in section~\ref{detail:HISB}.
|
||||
%
|
||||
We create the {\dc} $HISB$ and its failure modes may be stated as $$fm(HISB) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}.$$
|
||||
We create the {\dc} $HISB$ and its failure modes may be stated as: $$fm(HISB) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}.$$
|
||||
|
||||
\subsubsection{Digital level to analogue level conversion ($DL2AL$).}
|
||||
The integrator is implemented in digital electronics, but the output from the D type flip flop is a digital signal.
|
||||
The integrator is implemented in analogue electronics, but the output from the D type flip flop is a digital signal.
|
||||
A conversion stage is required to interface these stages.
|
||||
Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4.
|
||||
The potential divider provides a mid rail reference voltage
|
||||
@ -1714,27 +1717,27 @@ $$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
||||
|
||||
The digital element of the {\sd}, is a `one~bit~memory', or D type flip flop. This
|
||||
buffers the feedback result and provides the output bit stream.
|
||||
We create a {\fg} from the CLOCK and IC4 to model this digital buffer.
|
||||
|
||||
$$FG = \{ IC4, CLOCK \}$$
|
||||
|
||||
|
||||
We create a {\fg} from the CLOCK and IC4 to model this digital buffer,
|
||||
%
|
||||
$$FG = \{ IC4, CLOCK \} . $$
|
||||
%
|
||||
%
|
||||
%% DIGBUF --- Digital Buffer
|
||||
|
||||
%
|
||||
We now analyse this {\fg} (see section~\ref{detail:DIGBUF}).
|
||||
%in table~\ref{tbl:digbuf}.
|
||||
|
||||
|
||||
We can now derive a new component to represent the digital buffer and call it $DIGBUF$.
|
||||
|
||||
|
||||
$$ fm (DIGBUF) = \{ LOW, STOPPED \} $$
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
We can now derive a new component to represent the digital buffer and call it $DIGBUF$, .
|
||||
%
|
||||
%
|
||||
$$ fm (DIGBUF) = \{ LOW, STOPPED \} . $$
|
||||
%
|
||||
%
|
||||
%%% END DIGBUF
|
||||
|
||||
%
|
||||
\subsection{First {\fgs} analysed}
|
||||
|
||||
%
|
||||
We have analysed the initial {\fgs} and
|
||||
have created our first {\dcs}. %and can now take stock of the situation
|
||||
%and see what is now required.
|
||||
@ -1752,11 +1755,11 @@ These {\dcs} follow the signal path shown in figure~\ref{fig:sigmadeltablock}.
|
||||
We now use these {\dcs} to create higher level {\fgs}.
|
||||
%to represent the failure mode
|
||||
%behaviour of the $\Sigma \Delta ADC$.
|
||||
We represent this
|
||||
in the Euler diagram in figure~\ref{fig:eulersd}.
|
||||
The next stage is to create {\fgs} from these initial {\dcs}
|
||||
and make a complete failure mode for the {\sd}.
|
||||
|
||||
We represent these in the Euler diagram in figure~\ref{fig:eulersd}.
|
||||
%
|
||||
They are later used to create {\fgs} to %from these initial {\dcs}
|
||||
make a complete failure mode for the {\sd}.
|
||||
%
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/eulersd.png}
|
||||
@ -1764,7 +1767,7 @@ and make a complete failure mode for the {\sd}.
|
||||
\caption{Euler diagram showing the initial {\dcs} used to model the $\Sigma \Delta ADC$}
|
||||
\label{fig:eulersd}
|
||||
\end{figure}
|
||||
|
||||
%
|
||||
%
|
||||
% \begin{figure}[h+]
|
||||
% \centering
|
||||
@ -1773,14 +1776,14 @@ and make a complete failure mode for the {\sd}.
|
||||
% \caption{First stage of FMMD analysis: Sigma delta Converter}
|
||||
% \label{fig:sigdel1}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%\clearpage
|
||||
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%
|
||||
\subsubsection{Buffered Integrating Summing Junction (BISJ): {\fg} of $HISB$ and $SUMJINT$}
|
||||
|
||||
%
|
||||
We now form a {\fg} with the two derived components $HISB$ and $SUMJINT$.
|
||||
This forms a buffered integrating summing junction. We analyse this using FMMD
|
||||
(see section~\ref{detail:BISJ}).
|
||||
@ -1792,31 +1795,28 @@ Using the $fm$ function we define the failure modes of
|
||||
our derived component BISJ thus:
|
||||
%
|
||||
$$ fm(BISJ) = \{ OUTPUT STUCK , REDUCED\_INTEGRATION \} . $$
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
%
|
||||
\subsubsection{Flip Flop Buffer (FFB): {\fg} of $DL2AL$ and $DIGBUF$}
|
||||
|
||||
%
|
||||
%$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_SLEW \} $$
|
||||
%$$ fm ( CD4013B) = \{ HIGH, LOW, NOOP \} $$
|
||||
|
||||
%
|
||||
The {\fg} formed by $DIGBUF$ and $DL2AL$ takes the flip flop clocked and buffered
|
||||
value, and outputs it at analogue voltage levels for the summing junction.
|
||||
|
||||
%
|
||||
$ FG = \{ DIGBUF, DL2AL \} $
|
||||
|
||||
%
|
||||
We analyse the buffered flip flop circuitry (see table~\ref{detail:FFB})
|
||||
and create a {\dc} $FFB$,
|
||||
where $$fm (FFB) = \{OUTPUT STUCK, LOW\_SLEW\}$$.
|
||||
where $$fm (FFB) = \{OUTPUT STUCK, LOW\_SLEW\} .$$
|
||||
%\clearpage
|
||||
\subsection{Final, top level {\fg} for sigma delta Converter}
|
||||
|
||||
|
||||
%
|
||||
%
|
||||
We now have two {\dcs}, $FFB$ and $BISJ$.
|
||||
These together represent all base components within this circuit.
|
||||
We form a final {\fg} with these:
|
||||
@ -1827,10 +1827,10 @@ We analyse the buffered {\sd} circuit using FMMD (see section~\ref{detail:SDADC}
|
||||
% FFB^3 $\{OUTPUT STUCK, LOW\_SLEW\}$
|
||||
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
|
||||
%
|
||||
We now have a {\dc} $SDADC$ which provides a failure mode model for the \sd.
|
||||
$$fm(SSDADC) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||
We now have a {\dc} $SDADC$ which provides a failure mode model for the \sd:
|
||||
$$fm(SSDADC) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\} . $$
|
||||
We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
||||
|
||||
%
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/eulersdfinal.png}
|
||||
@ -1845,7 +1845,7 @@ We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
||||
% \caption{FMMD Analysis hierarchy for the {\sd}}
|
||||
% \label{fig:sdadc}
|
||||
% \end{figure}
|
||||
|
||||
%
|
||||
%\clearpage
|
||||
% ]
|
||||
% into
|
||||
@ -1866,9 +1866,11 @@ We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
||||
% and IC3.
|
||||
% The output from this is sent to the summing integrator as the signal summed with the input.
|
||||
\subsection{Conclusion}
|
||||
The {\sd} example, shows that FMMD can be applied to mixed digital and analogue circuitry.
|
||||
|
||||
|
||||
The {\sd} example, shows that FMMD can be applied to mixed digital and analogue circuitry:
|
||||
which means the analogue/digital interface is also achieved. This
|
||||
leads onto interfacing to software and digital~systems in the next chapter.
|
||||
%
|
||||
%
|
||||
%\clearpage
|
||||
\section{Pt100 Analysis: FMMD and Double Failure Mode Analysis}
|
||||
\label{sec:Pt100}
|
||||
@ -1897,7 +1899,7 @@ Applying FMMD lets us look at this circuit in a fresh light.
|
||||
We analyse this for both single and double failures,
|
||||
in addition it demonstrates FMMD coping with component parameter tolerances.
|
||||
%
|
||||
The circuit is described traditionally and then analysed using the FMMD methodology.
|
||||
The circuit is described from a conventional safety perspective and then analysed using the FMMD methodology.
|
||||
|
||||
|
||||
%A derived component, representing this circuit is then presented.
|
||||
@ -2017,24 +2019,32 @@ expected voltages for failure mode and temperature reading purposes.
|
||||
V_{out} = V_{in}.\frac{Z2}{Z2+Z1}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Safety case for 4 wire circuit}
|
||||
|
||||
This sub-section looks at the behaviour of the $Pt100$ four wire circuit
|
||||
for the effects of component failures.
|
||||
All components have a set of known `failure modes'.
|
||||
In other words we know that a given component can fail in several distinct ways.
|
||||
Studies have been published which list common component types
|
||||
and their sets of failure modes~\cite{fmd91}, often with MTTF statistics~\cite{mil1991}.
|
||||
Thus for each component, an analysis is made for each of its failure modes,
|
||||
with respect to its effect on the
|
||||
circuit. Each one of these scenarios is termed a `test case'.
|
||||
The resultant circuit behaviour for each of these test cases is noted.
|
||||
The worst case for this type of
|
||||
analysis would be a fault that we cannot detect.
|
||||
Where this occurs a circuit re-design is probably the only sensible course of action.
|
||||
|
||||
\subsection{Safety case for 4 wire circuit: Detailed calculations}
|
||||
%
|
||||
The following analysis of the Pt100 circuit
|
||||
firstly presents an FMEA analysis which is then supported by
|
||||
detail and calculations of the type that would be submitted to an approval agency.
|
||||
%
|
||||
Detailed potential divider calculations and the effect of component tolerances
|
||||
are factored for each test case in the FMEA table~\ref{sec:singlePt100FMEA}.
|
||||
The next section~\ref{sec:Pt100d}, extends this analysis for double failure scenarios.
|
||||
%{sec:Pt100d}
|
||||
% This sub-section looks at the behaviour of the $Pt100$ four wire circuit
|
||||
% for the effects of component failures.
|
||||
% All components have a set of known `failure modes'.
|
||||
% In other words we know that a given component can fail in several distinct ways.
|
||||
% Studies have been published which list common component types
|
||||
% and their sets of failure modes~\cite{fmd91}, often with MTTF statistics~\cite{mil1991}.
|
||||
% Thus for each component, an analysis is made for each of its failure modes,
|
||||
% with respect to its effect on the
|
||||
% circuit. Each one of these scenarios is termed a `test case'.
|
||||
% The resultant circuit behaviour for each of these test cases is noted.
|
||||
% The worst case for this type of
|
||||
% analysis would be a fault that we cannot detect.
|
||||
% Where this occurs a circuit re-design is probably the only sensible course of action.
|
||||
%
|
||||
\fmodegloss
|
||||
|
||||
%
|
||||
\paragraph{Single Fault FMEA Analysis of $Pt100$ Four wire circuit.}
|
||||
\label{sec:singlePt100FMEA}
|
||||
%\label{fmea}
|
||||
|
Loading…
Reference in New Issue
Block a user