TODO:
Diagrams 3 of them to Euler in CH5 Check Sigma delta analysis
This commit is contained in:
parent
42763b4522
commit
c185284d39
@ -376,7 +376,10 @@ that we got from FMD-91, listed in equation~\ref{eqn:opampfms}.
|
|||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{LM358: EN298 Open and shorted pin failure symptom determination technique}
|
\caption{LM358: EN298 Open and shorted pin failure symptom determination technique}
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{Amplifier Effect} & & \textbf{Symptom(s)} \\
|
%\textbf{Failure Scenario} & & \textbf{Amplifier Effect} & & \textbf{Symptom(s)} \\
|
||||||
|
\textbf{Failure} & & \textbf{Amplifier Effect} & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{ } & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
& & & & \\ \hline
|
& & & & \\ \hline
|
||||||
@ -663,7 +666,10 @@ We can now form a {\fg} from the OP-AMP and the $INVPD$
|
|||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{Inverting Amplifier: Single failure analysis}
|
\caption{Inverting Amplifier: Single failure analysis}
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{Inverted Amp Effect} & & \textbf{Symptom} \\ \hline
|
%\textbf{Failure Scenario} & & \textbf{Inverted Amp Effect} & & \textbf{Symptom} \\ \hline
|
||||||
|
\textbf{Failure} & & \textbf{Inverted Amp. Effect} & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{ } & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: INVPD LOW & & NEGATIVE on -input & & $ HIGH $ \\
|
FS1: INVPD LOW & & NEGATIVE on -input & & $ HIGH $ \\
|
||||||
FS2: INVPD HIGH & & Positive on -input & & $ LOW $ \\
|
FS2: INVPD HIGH & & Positive on -input & & $ LOW $ \\
|
||||||
@ -805,7 +811,10 @@ derived component.
|
|||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{Inverting Amplifier: Single failure analysis: 3 components}
|
\caption{Inverting Amplifier: Single failure analysis: 3 components}
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{Inverted Amp Effect} & & \textbf{Symptom} \\ \hline
|
%\textbf{Failure Scenario} & & \textbf{Inverted Amp Effect} & & \textbf{Symptom} \\ \hline
|
||||||
|
\textbf{Failure} & & \textbf{Inverting Amp. Effect} & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{ } & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: R1 SHORT & & NEGATIVE out of range & & $ HIGH $ \\
|
FS1: R1 SHORT & & NEGATIVE out of range & & $ HIGH $ \\
|
||||||
% FS1: R1 SHORT -ve in & & POSITIVE out of range & & $ OUT OF RANGE $ \\ \hline
|
% FS1: R1 SHORT -ve in & & POSITIVE out of range & & $ OUT OF RANGE $ \\ \hline
|
||||||
@ -955,17 +964,20 @@ a functional group we can analyse its failure mode behaviour.
|
|||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
|
\textbf{Failure} & & \textbf{Amplifier Effect} & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{ } & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
|
TC1: $OPAMP$ LatchUP & & Output High & & AMPHigh \\
|
||||||
TC2: $OPAMP$ LatchDown & Output Low : Low gain& & AMPLow \\ \hline
|
TC2: $OPAMP$ LatchDown & & Output Low : Low gain& & AMPLow \\ \hline
|
||||||
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
|
TC3: $OPAMP$ No Operation & & Output Low & & AMPLow \\
|
||||||
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
|
TC4: $OPAMP$ Low Slew & & Low pass filtering & & LowPass \\ \hline
|
||||||
TC5: $PD$ LowPD & Output High & & AMPHigh \\ \hline
|
TC5: $PD$ LowPD & & Output High & & AMPHigh \\ \hline
|
||||||
TC6: $PD$ HighPD & Output Low : Low Gain& & AMPLow \\ \hline
|
TC6: $PD$ HighPD & & Output Low : Low Gain& & AMPLow \\ \hline
|
||||||
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
@ -1065,24 +1077,27 @@ Here it is more intuitive to model the resistors not as a potential divider, but
|
|||||||
\begin{table}[ht]
|
\begin{table}[ht]
|
||||||
\caption{Second Amplifier $SEC\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{Second Amplifier $SEC\_AMP$: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symtom Description} \\
|
||||||
|
\textbf{Failure} & \textbf{$SEC\_AMP$} & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Amplifier Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $OPAMP$ LatchUP & Output High & & AMPHigh \\
|
TC1: $OPAMP$ LatchUP & Output High & AMPHigh \\
|
||||||
TC2: $OPAMP$ LatchDown & Output Low : Low gain & & AMPLow \\ \hline
|
TC2: $OPAMP$ LatchDown & Output Low : Low gain & AMPLow \\ \hline
|
||||||
TC3: $OPAMP$ No Operation & Output Low & & AMPLow \\
|
TC3: $OPAMP$ No Operation & Output Low & AMPLow \\
|
||||||
TC4: $OPAMP$ Low Slew & Low pass filtering & & LowPass \\ \hline
|
TC4: $OPAMP$ Low Slew & Low pass filtering & LowPass \\ \hline
|
||||||
TC5: $R3\_open$ & +V2 follower & & AMPIncorrectOutput\\ \hline
|
TC5: $R3\_open$ & +V2 follower & AMPIncorrectOutput\\ \hline
|
||||||
TC6: $R3\_short$ & Undefined & & AMPIncorrectOutput \\
|
TC6: $R3\_short$ & Undefined & AMPIncorrectOutput \\
|
||||||
& (impedance of IC1 vs +V2) & & \\ \hline
|
& (impedance of IC1 vs +V2) & \\ \hline
|
||||||
TC5: $R4\_open$ & High or Low output & & AMPIncorrectOutput \\
|
TC5: $R4\_open$ & High or Low output & AMPIncorrectOutput \\
|
||||||
& +V2$>$+V1 $\mapsto$ High & & \\
|
& +V2$>$+V1 $\mapsto$ High & \\
|
||||||
& +V1$>$+V2 $\mapsto$ Low & & \\ \hline
|
& +V1$>$+V2 $\mapsto$ Low & \\ \hline
|
||||||
TC6: $R4\_short$ & +V2 follower & & AMPIncorrectOutput \\ \hline
|
TC6: $R4\_short$ & +V2 follower & AMPIncorrectOutput \\ \hline
|
||||||
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
@ -1114,19 +1129,22 @@ two derived components of the type $NI\_AMP$ and $SEC\_AMP$.
|
|||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|c|l|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Dual Amplifier} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
\textbf{Failure} & \textbf{$DiffAMP$} & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $NI\_AMP$ AMPHigh & opamp 2 driven high & & DiffAMPLow \\
|
TC1: $NI\_AMP$ AMPHigh & opamp 2 driven high & DiffAMPLow \\
|
||||||
TC2: $NI\_AMP$ AMPLow & opamp 2 driven low & & DiffAMPHigh \\
|
TC2: $NI\_AMP$ AMPLow & opamp 2 driven low & DiffAMPHigh \\
|
||||||
TC3: $NI\_AMP$ LowPass & opamp 2 driven with lag & & DiffAMP\_LP \\ \hline
|
TC3: $NI\_AMP$ LowPass & opamp 2 driven with lag & DiffAMP\_LP \\ \hline
|
||||||
TC4: $SEC\_AMP$ AMPHigh & Diff amplifier high & & DiffAMPHigh\\
|
TC4: $SEC\_AMP$ AMPHigh & Diff amplifier high & DiffAMPHigh\\
|
||||||
TC5: $SEC\_AMP$ AMPLow & Diff amplifier low & & DiffAMPLow \\
|
TC5: $SEC\_AMP$ AMPLow & Diff amplifier low & DiffAMPLow \\
|
||||||
TC6: $SEC\_AMP$ LowPass & Diff amplifier lag/lowpass & & DiffAMP\_LP \\ \hline
|
TC6: $SEC\_AMP$ LowPass & Diff amplifier lag/lowpass & DiffAMP\_LP \\ \hline
|
||||||
TC7: $SEC\_AMP$ IncorrectOutput & Output voltage & & DiffAMPIncorrect \\
|
TC7: $SEC\_AMP$ IncorrectOutput & Output voltage & DiffAMPIncorrect \\
|
||||||
TC7: $SEC\_AMP$ & $ \neg (V2 - V1) $ & & \\ \hline
|
TC7: $SEC\_AMP$ & $ \neg (V2 - V1) $ & \\ \hline
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\label{ampfmea}
|
\label{ampfmea}
|
||||||
@ -1229,14 +1247,18 @@ We analyse the first order low pass filter in table~\ref{tbl:firstorderlp}.\\
|
|||||||
\caption{FirstOrderLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{FirstOrderLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\label{tbl:firstorderlp}
|
\label{tbl:firstorderlp}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||||
& & \textbf{Low Pass Filter} & & \\
|
% & & \textbf{Low Pass Filter} & & \\
|
||||||
|
|
||||||
|
\textbf{Failure} & \textbf{First Order} & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Low Pass Filter} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: R10 SHORT & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
FS1: R10 SHORT & $No Filtering$ & $LPnofilter$ \\ \hline
|
||||||
FS2: R10 OPEN & & $No Signal$ & & $LPnosignal$ \\ \hline
|
FS2: R10 OPEN & $No Signal$ & $LPnosignal$ \\ \hline
|
||||||
FS3: C10 SHORT & & $No Signal$ & & $LPnosignal$ \\ \hline
|
FS3: C10 SHORT & $No Signal$ & $LPnosignal$ \\ \hline
|
||||||
FS4: C10 OPEN & & $No Filtering$ & & $LPnofilter$ \\ \hline
|
FS4: C10 OPEN & $No Filtering$ & $LPnofilter$ \\ \hline
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
@ -1259,19 +1281,22 @@ from the $FirstOrderLP$ and the OP-AMP component.
|
|||||||
\caption{First Stage LP1: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{First Stage LP1: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\label{tbl:firststage}
|
\label{tbl:firststage}
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
\textbf{Failure} & \textbf{First stage LP1} & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $OPAMP$ LatchUP & Output High & & LP1High \\
|
TC1: $OPAMP$ LatchUP & Output High & LP1High \\
|
||||||
TC2: $OPAMP$ LatchDown & Output Low & & LP1Low \\
|
TC2: $OPAMP$ LatchDown & Output Low & LP1Low \\
|
||||||
TC3: $OPAMP$ No Operation & Output Low & & LP1Low \\
|
TC3: $OPAMP$ No Operation & Output Low & LP1Low \\
|
||||||
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & LP1filterincorrect \\ \hline
|
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & LP1filterincorrect \\ \hline
|
||||||
TC5: $LPnofilter $ & No low pass filtering & & LP1filterincorrect \\
|
TC5: $LPnofilter $ & No low pass filtering & LP1filterincorrect \\
|
||||||
TC6: $LPnosignal $ & No input signal & & LP1nosignal \\ \hline
|
TC6: $LPnosignal $ & No input signal & LP1nosignal \\ \hline
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
@ -1307,28 +1332,31 @@ We can analyse the first one and then re-use these results for the second.
|
|||||||
\begin{table}[ht]
|
\begin{table}[ht]
|
||||||
\caption{Sallen Key Low Pass Filter SKLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{Sallen Key Low Pass Filter SKLP: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|c|l|l||}
|
\begin{tabular}{||l|c|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
\textbf{Failure} & \textbf{SKLP} & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $OPAMP$ LatchUP & Output High & & SKLPHigh \\
|
TC1: $OPAMP$ LatchUP & Output High & SKLPHigh \\
|
||||||
TC2: $OPAMP$ LatchDown & Output Low & & SKLPLow \\
|
TC2: $OPAMP$ LatchDown & Output Low & SKLPLow \\
|
||||||
TC3: $OPAMP$ No Operation & Output Low & & SKLPLow \\
|
TC3: $OPAMP$ No Operation & Output Low & SKLPLow \\
|
||||||
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & & SKLPfilterIncorrect \\ \hline
|
TC4: $OPAMP$ Low Slew & Unwanted Low pass filtering & SKLPfilterIncorrect \\ \hline
|
||||||
TC5: R1 OPEN & No input signal & & SKLPfilterIncorrect \\
|
TC5: R1 OPEN & No input signal & SKLPfilterIncorrect \\
|
||||||
TC6: R1 SHORT & incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
TC6: R1 SHORT & incorrect low pass filtering & SKLPfilterIncorrect \\ \hline
|
||||||
|
|
||||||
TC7: R2 OPEN & No input signal & & SKLPnosignal \\
|
TC7: R2 OPEN & No input signal & SKLPnosignal \\
|
||||||
TC8: R2 SHORT & incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
TC8: R2 SHORT & incorrect low pass filtering & SKLPfilterIncorrect \\ \hline
|
||||||
|
|
||||||
TC9: C1 OPEN & reduced/incorrect low pass filtering & & SKLPfilterIncorrect\\
|
TC9: C1 OPEN & reduced/incorrect low pass filtering & SKLPfilterIncorrect\\
|
||||||
TC10: C1 SHORT & reduced/incorrect low pass filtering & & SKLPfilterIncorrect \\ \hline
|
TC10: C1 SHORT & reduced/incorrect low pass filtering & SKLPfilterIncorrect \\ \hline
|
||||||
|
|
||||||
TC11: C2 OPEN & reduced/incorrect low pass filtering & & SKLPfilterIncorrect \\
|
TC11: C2 OPEN & reduced/incorrect low pass filtering & SKLPfilterIncorrect \\
|
||||||
TC12: C2 SHORT & No input signal, low signal & & SKLPnosignal \\ \hline
|
TC12: C2 SHORT & No input signal, low signal & SKLPnosignal \\ \hline
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
@ -1393,32 +1421,35 @@ We represent the desired FMMD hierarchy in figure~\ref{fig:circuit2h}.
|
|||||||
%$$ fm(LP1) = \{ LP1High, LP1Low, LP1ExtraLowPass, LP1NoLowPass \} $$
|
%$$ fm(LP1) = \{ LP1High, LP1Low, LP1ExtraLowPass, LP1NoLowPass \} $$
|
||||||
|
|
||||||
\begin{table}[ht]+
|
\begin{table}[ht]+
|
||||||
\caption{Five Pole Low Pass Filter: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{Five Pole Low Pass Filter: Failure Mode Effects Analysis($FivePoleLP$): Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
\begin{tabular}{||l|c|l|l|l||}
|
\begin{tabular}{||l|c|l||}
|
||||||
\hline \hline
|
\hline \hline
|
||||||
\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
%\textbf{Test} & \textbf{Circuit} & \textbf{ } & \textbf{General} \\
|
||||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
%\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Symptom Description} \\
|
||||||
|
\textbf{Failure} & \textbf{$FivePoleLP$ } & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
TC1: $LP1$ LP1High & signal HIGH & & HIGH \\
|
TC1: $LP1$ LP1High & signal HIGH & HIGH \\
|
||||||
TC2: $LP1$ SKLPLow & signal LOW & & LOW \\
|
TC2: $LP1$ SKLPLow & signal LOW & LOW \\
|
||||||
TC3: $LP1$ LP1filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
TC3: $LP1$ LP1filterIncorrect & filtering incorrect & FilterIncorrect \\
|
||||||
TC4: $LP1$ LP1nosignal & no signal propagated & & NO\_SIGNAL \\ \hline
|
TC4: $LP1$ LP1nosignal & no signal propagated & NO\_SIGNAL \\ \hline
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
TC5: $SKLP_1$ High & signal HIGH & & HIGH \\
|
TC5: $SKLP_1$ High & signal HIGH & HIGH \\
|
||||||
TC6: $SKLP_1$ Low & signal LOW & & LOW \\
|
TC6: $SKLP_1$ Low & signal LOW & LOW \\
|
||||||
TC7: $SKLP_1$ filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
TC7: $SKLP_1$ filterIncorrect & filtering incorrect & FilterIncorrect \\
|
||||||
TC8: $SKLP_1$ nosignal & no signal propagated & & NO\_SIGNAL \\ \hline
|
TC8: $SKLP_1$ nosignal & no signal propagated & NO\_SIGNAL \\ \hline
|
||||||
|
|
||||||
|
|
||||||
TC9: $SKLP_2$ High & signal HIGH & & HIGH \\
|
TC9: $SKLP_2$ High & signal HIGH & HIGH \\
|
||||||
TC10: $SKLP_2$ Low & signal LOW & & LOW \\
|
TC10: $SKLP_2$ Low & signal LOW & LOW \\
|
||||||
TC11: $SKLP_2$ filterIncorrect & filtering incorrect & & FilterIncorrect \\
|
TC11: $SKLP_2$ filterIncorrect & filtering incorrect & FilterIncorrect \\
|
||||||
TC12: $SKLP_2$ nosignal & no signal propagated & & NO\_SIGNAL \\ \hline
|
TC12: $SKLP_2$ nosignal & no signal propagated & NO\_SIGNAL \\ \hline
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
@ -1509,15 +1540,18 @@ Our functional group for the phase shifter consists of a resistor and a capacito
|
|||||||
\caption{PhaseShift: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{PhaseShift: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\label{tbl:firstorderlp}
|
\label{tbl:firstorderlp}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
% \textbf{Failure Scenario} & & \textbf{First Order} & & \textbf{Symptom} \\
|
||||||
& & \textbf{Low Pass Filter} & & \\
|
% & & \textbf{Low Pass Filter} & & \\
|
||||||
|
\textbf{Failure} & \textbf{$PHS45$ } & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: R SHORT & & 0 degree's of phase shift & & $0\_phaseshift$ \\ \hline
|
FS1: R SHORT & 0 degree's of phase shift & $0\_phaseshift$ \\ \hline
|
||||||
% 90 degree's of phase shift & & $90\_phaseshift$ \\ \hline
|
% 90 degree's of phase shift & & $90\_phaseshift$ \\ \hline
|
||||||
FS2: R OPEN & & No Signal & & $nosignal$ \\ \hline
|
FS2: R OPEN & No Signal & $nosignal$ \\ \hline
|
||||||
FS3: C SHORT & & Grounded,No Signal & & $nosignal$ \\ \hline
|
FS3: C SHORT & Grounded,No Signal & $nosignal$ \\ \hline
|
||||||
FS4: C OPEN & & 0 degree's of phase shift & & $0\_phaseshift$ \\ \hline
|
FS4: C OPEN & 0 degree's of phase shift & $0\_phaseshift$ \\ \hline
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
@ -1580,8 +1614,12 @@ or in Euler diagram format as in figure~\ref{fig:bubbaeuler1}.
|
|||||||
\label{tbl:bubbalargefg}
|
\label{tbl:bubbalargefg}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
|
% \textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
|
||||||
& & \textbf{Oscillator} & & \\
|
% & & \textbf{Oscillator} & & \\
|
||||||
|
|
||||||
|
\textbf{Failure} & & \textbf{$BubbaOscillator$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
|
|
||||||
@ -1683,7 +1721,7 @@ We should be able to determine smaller {\fgs} and refine the model further.
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
%
|
%
|
||||||
We take the $NIBUFF$ and $PHS45$
|
We take the pre-analysed $NIBUFF$ and $PHS45$
|
||||||
{\dcs} into a {\fg} giving the {\dc} $BUFF45$.
|
{\dcs} into a {\fg} giving the {\dc} $BUFF45$.
|
||||||
$BUFF45$ is a {\dc} representing an actively buffered $45^{\circ}$ phase shifter.
|
$BUFF45$ is a {\dc} representing an actively buffered $45^{\circ}$ phase shifter.
|
||||||
and with those three, form a $PHS135BUFFERED$
|
and with those three, form a $PHS135BUFFERED$
|
||||||
@ -1713,8 +1751,11 @@ Finally we can merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see fig
|
|||||||
\label{tbl:buff45}
|
\label{tbl:buff45}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$BUFF45$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
|
||||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
||||||
@ -1745,8 +1786,12 @@ We can now combine three $BUFF45$ {\dcs} and create a $PHS135BUFFERED$ {\dc}.
|
|||||||
\label{tbl:phs135buffered}
|
\label{tbl:phs135buffered}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$PHS135BUFFERED$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
|
||||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
||||||
@ -1778,15 +1823,19 @@ $$
|
|||||||
%
|
%
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\circ}$ of phase shift).
|
The $PHS225AMP$ consists of a $PHS45$, providing $45^{\circ}$ of phase shift, and an
|
||||||
|
$INVAMP$, providing $180^{\circ}$ giving a total of $225^{\circ}$.
|
||||||
%
|
%
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:phs225amp}
|
\label{tbl:phs225amp}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
|
||||||
& & \textbf{Oscillator} & & \\
|
% & & \textbf{Oscillator} & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$PHS225AMP$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $180\_phaseshift$ \\
|
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $180\_phaseshift$ \\
|
||||||
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
|
||||||
@ -1814,15 +1863,19 @@ The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\cir
|
|||||||
%
|
%
|
||||||
%
|
%
|
||||||
To complete the analysis we now bring the derived components $PHS135BUFFERED$ and $PHS225AMP$ together
|
To complete the analysis we now bring the derived components $PHS135BUFFERED$ and $PHS225AMP$ together
|
||||||
and perform FMEA with these.
|
and perform FMEA with these, to obtain a model for the Bubba Oscillator.
|
||||||
%
|
%
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:bubba2}
|
\label{tbl:bubba2}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
|
||||||
|
\textbf{Failure} & & \textbf{$BUBBAOSC$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
%FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
%FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
|
||||||
FS1: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
FS1: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
|
||||||
@ -1976,12 +2029,16 @@ $$G^0_1 = \{R1, R2 \}$$
|
|||||||
|
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\center
|
\center
|
||||||
\caption{ Summing Junction Integrator: Failure Mode Effects Analysis} % title of Table
|
\caption{ Summing Junction Integrator($SUMJINT$): Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:sumjint}
|
\label{tbl:sumjint}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$SUMJINT$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline\hline
|
\hline\hline
|
||||||
FS1: $R1$ $OPEN$ & & $V_{in}$ dominates input & & $V_{in} DOM$ \\
|
FS1: $R1$ $OPEN$ & & $V_{in}$ dominates input & & $V_{in} DOM$ \\
|
||||||
FS2: $R1$ $SHORT$ & & $V_{fb}$ dominates input & & $V_{fb} DOM$ \\ \hline
|
FS2: $R1$ $SHORT$ & & $V_{fb}$ dominates input & & $V_{fb} DOM$ \\ \hline
|
||||||
@ -2070,8 +2127,11 @@ It therefore has the failure modes of an Op-amp.
|
|||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
|
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{failure result} & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$HISB$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline\hline
|
\hline\hline
|
||||||
|
|
||||||
FS5: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
|
FS5: $IC2$ $HIGH$ & & output perm. high & & HIGH \\
|
||||||
@ -2125,8 +2185,12 @@ We now analyse the {\fg} $G^1$ in table~\ref{tbl:DS2AS}.
|
|||||||
\label{tbl:DS2AS}
|
\label{tbl:DS2AS}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$DS2AL$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline \hline
|
\hline \hline
|
||||||
FS1: $PD^1$ $HIGH$ & & output perm. low & & LOW \\
|
FS1: $PD^1$ $HIGH$ & & output perm. low & & LOW \\
|
||||||
FS2: $PD^1$ $LOW$ & & output perm. low & & HIGH \\ \hline
|
FS2: $PD^1$ $LOW$ & & output perm. low & & HIGH \\ \hline
|
||||||
@ -2214,12 +2278,17 @@ $$ G^1_0 = \{ BFINT^1, SUMJ^1 \} $$
|
|||||||
%$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
|
%$$ fm(SUMJ) = \{ V_{in} DOM, V_{fb} DOM \} .$$
|
||||||
|
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{ $BFINT^1, SUMJ^1$ buffered integrating summing junction: Failure Mode Effects Analysis} % title of Table
|
\caption{ $BFINT^1, SUMJ^1$ buffered integrating summing junction($BISJ$): Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:DS2AS}
|
\label{tbl:DS2AS}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
% \textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$BISJ$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline \hline
|
\hline \hline
|
||||||
FS1: $SUMJ^1$ $V_{in} DOM$ & & output integral of $V_{in}$ & & $OUTPUT STUCK$ \\
|
FS1: $SUMJ^1$ $V_{in} DOM$ & & output integral of $V_{in}$ & & $OUTPUT STUCK$ \\
|
||||||
FS2: $SUMJ^1$ $V_{fb} DOM$ & & output integral of $V_{fb}$ & & $OUTPUT STUCK$ \\ \hline
|
FS2: $SUMJ^1$ $V_{fb} DOM$ & & output integral of $V_{fb}$ & & $OUTPUT STUCK$ \\ \hline
|
||||||
@ -2261,20 +2330,25 @@ $ G^2_1 = \{ IC4^0, DL2AL^2, CLOCK\} $
|
|||||||
We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
|
We analyse the buffered flip flop circuitry in table~\ref{tbl:FFB}.
|
||||||
|
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{ $IC4^0,DL2AL^2$ flip flop buffered: Failure Mode Effects Analysis} % title of Table
|
\caption{ $IC4^0,DL2AL^2$ flip flop buffered($FFB$): Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:FFB}
|
\label{tbl:FFB}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$FFB$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline \hline
|
\hline \hline
|
||||||
FS1: $IC4^0$ $HIGH$ & & output stuck high & & $OUTPUT STUCK$ \\
|
FS1: $IC4^0$ $HIGH$ & & output stuck high & & $OUTPUT STUCK$ \\
|
||||||
FS2: $IC4^0$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\
|
FS2: $IC4^0$ $LOW$ & & output stuck low & & $OUTPUT STUCK$ \\
|
||||||
FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||||
%\hline
|
%\hline
|
||||||
FS4: $DL2AL^2$ $LOW$ & & output perm. high & & $OUTPUT STUCK$ \\
|
FS4: $DL2AL^2$ $LOW$ & & output perm. high & & $OUTPUT STUCK$ \\
|
||||||
FS5: $DL2AL^2$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
FS5: $DL2AL^2$ $HIGH$ & & output perm. low & & $OUTPUT STUCK$ \\ \hline
|
||||||
FS6: $DL2AL^2$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
|
FS6: $DL2AL^2$ $LOW\_SLEW$ & & no current drive & & $LOW\_SLEW$ \\
|
||||||
|
|
||||||
FS7: $CLOCK^0$ $STOPPED$ & & output stuck & & $OUTPUT STUCK$ \\
|
FS7: $CLOCK^0$ $STOPPED$ & & output stuck & & $OUTPUT STUCK$ \\
|
||||||
\hline
|
\hline
|
||||||
@ -2297,12 +2371,16 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
|||||||
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
|
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
|
||||||
%
|
%
|
||||||
\begin{table}[h+]
|
\begin{table}[h+]
|
||||||
\caption{ $FFB^3, BISJ^2$ \sd : Failure Mode Effects Analysis} % title of Table
|
\caption{ $FFB^3, BISJ^2$ \sd ($SDADC$): Failure Mode Effects Analysis} % title of Table
|
||||||
\label{tbl:sd}
|
\label{tbl:sd}
|
||||||
|
|
||||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||||
\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||||
& & & & \\
|
% & & & & \\
|
||||||
|
% & & & & \\
|
||||||
|
\textbf{Failure} & & \textbf{$FFB$ } & & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
\hline \hline
|
\hline \hline
|
||||||
FS1: $FFB^3$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
FS1: $FFB^3$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||||
FS2: $FFB^3$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
|
FS2: $FFB^3$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
|
||||||
@ -2320,7 +2398,7 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
|||||||
We now collect the symptoms for the \sd $ \;
|
We now collect the symptoms for the \sd $ \;
|
||||||
\{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$.
|
\{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$.
|
||||||
We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$.
|
We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$.
|
||||||
$$fm(SADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
$$fm(SSDADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||||
We now show the final hierarchy in figure~\ref{fig:sdadc}.
|
We now show the final hierarchy in figure~\ref{fig:sdadc}.
|
||||||
|
|
||||||
|
|
||||||
@ -2507,7 +2585,7 @@ in effect a failure mode of `one of its components'.
|
|||||||
\paragraph{Mapping contract `post-condition' violations to symptoms.}
|
\paragraph{Mapping contract `post-condition' violations to symptoms.}
|
||||||
|
|
||||||
A post condition is a definition of correct behaviour by a function.
|
A post condition is a definition of correct behaviour by a function.
|
||||||
A violated post condition is a symptom of failure of a function.
|
A violated post condition is a symptom of failure, or derived failure mode, of a function.
|
||||||
Post conditions could be either actions performed (i.e. the state of hardware changed) or an output value of a function.
|
Post conditions could be either actions performed (i.e. the state of hardware changed) or an output value of a function.
|
||||||
|
|
||||||
\paragraph{Mapping contract `invariant' violations to symptoms and failure modes.}
|
\paragraph{Mapping contract `invariant' violations to symptoms and failure modes.}
|
||||||
@ -2642,7 +2720,8 @@ Its job is to select the correct channel (ADC multiplexer) and then to initiate
|
|||||||
conversion by setting an ADC 'go' bit (see code sample in figure~\ref{fig:code_read_ADC}).
|
conversion by setting an ADC 'go' bit (see code sample in figure~\ref{fig:code_read_ADC}).
|
||||||
%
|
%
|
||||||
It takes the raw ADC reading and converts it into a
|
It takes the raw ADC reading and converts it into a
|
||||||
floating point\footnote{the type, `double' or `double precision', is a standard C language floating point type~\cite{DBLP:books/ph/KernighanR88}.}
|
floating point\footnote{the type, `double' or `double precision', is a
|
||||||
|
standard C language floating point type~\cite{DBLP:books/ph/KernighanR88}.}
|
||||||
voltage value.
|
voltage value.
|
||||||
|
|
||||||
|
|
||||||
@ -2762,9 +2841,15 @@ With these failure modes, we can analyse our first functional group, see table~\
|
|||||||
\label{tbl:cmatv}
|
\label{tbl:cmatv}
|
||||||
|
|
||||||
\begin{tabular}{|| l | c | l ||} \hline
|
\begin{tabular}{|| l | c | l ||} \hline
|
||||||
\textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
%\textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
||||||
\textbf{Scenario} & \textbf{effect} & \textbf{ADC } \\ \hline
|
%\textbf{Scenario} & \textbf{effect} & \textbf{ADC } \\ \hline
|
||||||
\hline
|
% & & & & \\
|
||||||
|
|
||||||
|
\textbf{Failure} & \textbf{Failure } & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
|
\hline \hline
|
||||||
1: $R_{OPEN}$ & resistor open, & $HIGH$ \\
|
1: $R_{OPEN}$ & resistor open, & $HIGH$ \\
|
||||||
& voltage on pin high & \\ \hline
|
& voltage on pin high & \\ \hline
|
||||||
|
|
||||||
@ -2847,8 +2932,13 @@ We now analyse this hardware/software combined {\fg}.
|
|||||||
\label{tbl:radc}
|
\label{tbl:radc}
|
||||||
|
|
||||||
\begin{tabular}{|| l | c | l ||} \hline
|
\begin{tabular}{|| l | c | l ||} \hline
|
||||||
\textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
% \textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
||||||
\textbf{Scenario} & \textbf{effect} & \textbf{RADC } \\ \hline
|
% \textbf{Scenario} & \textbf{effect} & \textbf{RADC } \\ \hline
|
||||||
|
|
||||||
|
\textbf{Failure} & \textbf{Failure } & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
1: ${CHAN\_NO}$ & wrong voltage & $VV\_ERR$ \\
|
1: ${CHAN\_NO}$ & wrong voltage & $VV\_ERR$ \\
|
||||||
& read & \\ \hline
|
& read & \\ \hline
|
||||||
@ -2917,8 +3007,13 @@ software component $read\_4\_20\_input$, i.e. $G_3 = \{read\_4\_20\_input, RADC\
|
|||||||
\label{tbl:r420i}
|
\label{tbl:r420i}
|
||||||
|
|
||||||
\begin{tabular}{|| l | c | l ||} \hline
|
\begin{tabular}{|| l | c | l ||} \hline
|
||||||
\textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
% \textbf{Failure} & \textbf{failure} & \textbf{Symptom} \\
|
||||||
\textbf{Scenario} & \textbf{effect} & \textbf{RADC } \\ \hline
|
% \textbf{Scenario} & \textbf{effect} & \textbf{RADC } \\ \hline
|
||||||
|
\hline
|
||||||
|
\textbf{Failure} & \textbf{Failure } & \textbf{Derived Component} \\
|
||||||
|
\textbf{cause} & \textbf{Effect} & \textbf{Failure Mode} \\
|
||||||
|
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
1: $RI_{VRGE}$ & voltage & $OUT\_OF\_$ \\
|
1: $RI_{VRGE}$ & voltage & $OUT\_OF\_$ \\
|
||||||
& outside range & $RANGE$ \\ \hline
|
& outside range & $RANGE$ \\ \hline
|
||||||
@ -3012,7 +3107,9 @@ With this analysis
|
|||||||
we have a complete `reasoning~path' linking the failures modes from the
|
we have a complete `reasoning~path' linking the failures modes from the
|
||||||
electronics to those in the software.
|
electronics to those in the software.
|
||||||
Each functional group to {\dc} transition represents a
|
Each functional group to {\dc} transition represents a
|
||||||
reasoning stage. AEach reasoning stage will have an associated analysis report.
|
reasoning stage.
|
||||||
|
%
|
||||||
|
Each reasoning stage will have an associated analysis report.
|
||||||
%
|
%
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user