Comparison complexity results.
Very good for Bubba Oscillator
This commit is contained in:
parent
83a297a193
commit
bb2fce91a9
17
mybib.bib
17
mybib.bib
@ -924,6 +924,23 @@ strength of materials, the causes of boiler explosions",
|
|||||||
year = "2000"
|
year = "2000"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Manual{lm358,
|
||||||
|
title = {Datasheet: Low-Power dual operation amplifiers LM158,LM258,LM358: Doc ID 2163 Rev 10},
|
||||||
|
key = {Doc ID 2163 Rev 10},
|
||||||
|
author = {ST Microelecronics.},
|
||||||
|
OPTorganization = {},
|
||||||
|
address = {http://www.st.com/},
|
||||||
|
OPTedition = {},
|
||||||
|
OPTmonth = {},
|
||||||
|
year = {2012},
|
||||||
|
OPTnote = {},
|
||||||
|
OPTannote = {},
|
||||||
|
OPTurl = {},
|
||||||
|
OPTdoi = {},
|
||||||
|
OPTissn = {},
|
||||||
|
OPTlocalfile = {},
|
||||||
|
OPTabstract = {},
|
||||||
|
}
|
||||||
|
|
||||||
@Manual{tlp181,
|
@Manual{tlp181,
|
||||||
title = {TLP 181 Datasheet},
|
title = {TLP 181 Datasheet},
|
||||||
|
BIN
related_papers_books/LM358_CD00000464.pdf
Normal file
BIN
related_papers_books/LM358_CD00000464.pdf
Normal file
Binary file not shown.
@ -901,10 +901,10 @@ when it becomes a V2 follower).
|
|||||||
|
|
||||||
The {\fm} $DiffAMPIncorrect$ may seem like a vague {\fm}---however, this {\fm} is impossible to detect in this circuit---
|
The {\fm} $DiffAMPIncorrect$ may seem like a vague {\fm}---however, this {\fm} is impossible to detect in this circuit---
|
||||||
in fault finding terminology~\cite{garrett}~\cite{maikowski} this {\fm} is said to be unobservable, and in EN61508~\cite{en61508}
|
in fault finding terminology~\cite{garrett}~\cite{maikowski} this {\fm} is said to be unobservable, and in EN61508~\cite{en61508}
|
||||||
terminology is called an undetectable fault.
|
terminology is an `undetectable~fault'.
|
||||||
%
|
%
|
||||||
Were this failure to have safety implications, this FMMD analysis will have revealed
|
Were this failure to have safety implications, this FMMD analysis will have revealed
|
||||||
the un-observability and would likely prompt re-design of this
|
this un-observability condition; this would likely prompt re-design of this
|
||||||
circuit. A typical way to solve an un-observability such as this is
|
circuit. A typical way to solve an un-observability such as this is
|
||||||
to periodically switch in test signals in place of the input signal.
|
to periodically switch in test signals in place of the input signal.
|
||||||
%\footnote{A typical way to solve an un-observability such as this is
|
%\footnote{A typical way to solve an un-observability such as this is
|
||||||
@ -1211,9 +1211,19 @@ could be easily detected; the failure symptom $FilterIncorrect$ may be less obs
|
|||||||
This example shows the analysis of a linear signal path circuit with three easily identifiable
|
This example shows the analysis of a linear signal path circuit with three easily identifiable
|
||||||
{\fgs} and re-use of the Sallen-Key {\dc}.
|
{\fgs} and re-use of the Sallen-Key {\dc}.
|
||||||
|
|
||||||
\clearpage
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
%
|
||||||
|
% BUBBAOSC
|
||||||
|
%
|
||||||
|
|
||||||
\section{Quad Op-Amp Oscillator}
|
\section{Quad Op-Amp Oscillator}
|
||||||
\label{sec:bubba}
|
\label{sec:bubba}
|
||||||
|
|
||||||
@ -1221,7 +1231,7 @@ This example shows the analysis of a linear signal path circuit with three easil
|
|||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt]{CH5_Examples/circuit3003.png}
|
\includegraphics[width=200pt]{CH5_Examples/circuit3003.png}
|
||||||
% circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326
|
% circuit3003.png: 503x326 pixel, 72dpi, 17.74x11.50 cm, bb=0 0 503 326
|
||||||
\caption{Circuit 3}
|
\caption{Circuit diagram for the Quad Op-Amp `Bubba' Oscillator}
|
||||||
\label{fig:circuit3}
|
\label{fig:circuit3}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
@ -1233,8 +1243,8 @@ The circuit implements an oscillator using four 45 degree phase shifts, and an i
|
|||||||
gain and the final 180 degrees of phase shift (making a total of 360). % degrees of phase shift).
|
gain and the final 180 degrees of phase shift (making a total of 360). % degrees of phase shift).
|
||||||
The circuit provides two outputs with a quadrature phase relationship.
|
The circuit provides two outputs with a quadrature phase relationship.
|
||||||
%
|
%
|
||||||
From a fault finding perspective this circuit cannot be decomposed
|
From a fault finding perspective this circuit cannot be decomposed,
|
||||||
because the whole circuit is enclosed within a feedback loop,
|
as the whole circuit is enclosed within a feedback loop,
|
||||||
hence a fault anywhere in the loop is likely to affect all stages.
|
hence a fault anywhere in the loop is likely to affect all stages.
|
||||||
%
|
%
|
||||||
However, this is not a problem for FMMD, as {\fgs} are readily identifiable.
|
However, this is not a problem for FMMD, as {\fgs} are readily identifiable.
|
||||||
@ -1314,7 +1324,7 @@ Initially we use the first identified {\fgs} to create our model without further
|
|||||||
|
|
||||||
|
|
||||||
\subsection{FMMD Analysis using initially identified functional groups}
|
\subsection{FMMD Analysis using initially identified functional groups}
|
||||||
|
\label{sec:bubba1}
|
||||||
Our {\fg} for this analysis can be expressed thus:
|
Our {\fg} for this analysis can be expressed thus:
|
||||||
%
|
%
|
||||||
%$$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0_3 PHS45^1_4, INVAMP^1_0 \} ,$$
|
%$$ G^1_0 = \{ PHS45^1_1, NIBUFF^0_1, PHS45^1_2, NIBUFF^0_2, PHS45^1_3, NIBUFF^0_3 PHS45^1_4, INVAMP^1_0 \} ,$$
|
||||||
@ -1368,7 +1378,7 @@ we may also discover new derived components that may be of use for other analyse
|
|||||||
\clearpage
|
\clearpage
|
||||||
|
|
||||||
\subsection{FMMD Analysis of Bubba Oscillator using a finer grained modular approach (i.e. more hierarchical stages)}
|
\subsection{FMMD Analysis of Bubba Oscillator using a finer grained modular approach (i.e. more hierarchical stages)}
|
||||||
|
\label{sec:bubba2}
|
||||||
The example above---from the initial {\fgs}---used one very large functional group to model the circuit.
|
The example above---from the initial {\fgs}---used one very large functional group to model the circuit.
|
||||||
%This mean a quite large comparison complexity for this final stage.
|
%This mean a quite large comparison complexity for this final stage.
|
||||||
We should be able to determine smaller {\fgs} and refine the model further.
|
We should be able to determine smaller {\fgs} and refine the model further.
|
||||||
@ -1415,6 +1425,10 @@ A PHS45 {\dc} and an inverting amplifier\footnote{Inverting amplifiers apply a
|
|||||||
form a {\fg}
|
form a {\fg}
|
||||||
providing an amplified $225^{\circ}$ phase shift, analysed in table~\ref{tbl:phs225amp}
|
providing an amplified $225^{\circ}$ phase shift, analysed in table~\ref{tbl:phs225amp}
|
||||||
resulting in the {\dc} $PHS225AMP$.
|
resulting in the {\dc} $PHS225AMP$.
|
||||||
|
Applying FMMD we create a derived component $PHS225AMP$ which has the following failure modes:
|
||||||
|
$$
|
||||||
|
fm (PHS225AMP) = \{ 180\_phaseshift, NO\_signal .\} % 270\_phaseshift,
|
||||||
|
$$
|
||||||
%
|
%
|
||||||
%---with the remaining $PHS45$ and the $INVAMP$ (re-used from section~\ref{sec:invamp})in a second group $PHS225AMP$---
|
%---with the remaining $PHS45$ and the $INVAMP$ (re-used from section~\ref{sec:invamp})in a second group $PHS225AMP$---
|
||||||
Finally we form a final {\fg} with $PHS135BUFFERED$ and $PHS225AMP$.
|
Finally we form a final {\fg} with $PHS135BUFFERED$ and $PHS225AMP$.
|
||||||
@ -1485,9 +1499,12 @@ $$
|
|||||||
% Our total comparison complexity is $58$, this contrasts with $468$ for traditional `flat' FMEA,
|
% Our total comparison complexity is $58$, this contrasts with $468$ for traditional `flat' FMEA,
|
||||||
% and $250$ for our first stage functional groups analysis.
|
% and $250$ for our first stage functional groups analysis.
|
||||||
% This has meant a drastic reduction in the number of failure-modes to check against components.
|
% This has meant a drastic reduction in the number of failure-modes to check against components.
|
||||||
It has %also
|
%It has %also
|
||||||
given us five {\dcs}, building blocks, which could potentially be re-used for similar circuitry
|
This more de-composed approach has
|
||||||
to analyse in the future.
|
given us five {\dcs}, building blocks, which could %
|
||||||
|
be re-used in other projects.
|
||||||
|
%potentially be re-used for similar circuitry
|
||||||
|
%to analyse in the future.
|
||||||
%
|
%
|
||||||
%
|
%
|
||||||
\subsection{Comparing both approaches}
|
\subsection{Comparing both approaches}
|
||||||
@ -1512,6 +1529,8 @@ However, it involves a large reasoning distance, the final stage
|
|||||||
having 24 failure modes to consider against each of the other seven {\dcs}.
|
having 24 failure modes to consider against each of the other seven {\dcs}.
|
||||||
A finer grained approach produces more potentially re-usable {\dcs} and
|
A finer grained approach produces more potentially re-usable {\dcs} and
|
||||||
involves several stages with lower reasoning distances.
|
involves several stages with lower reasoning distances.
|
||||||
|
The lower reasoning distances, or complexity comparision figures are given in the metrics chapter~\ref{sec:chap7}
|
||||||
|
at section~\ref{sec:bubbaCC}.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -1552,7 +1571,7 @@ The following example is used to demonstrate FMMD analysis of a mixed analogue a
|
|||||||
|
|
||||||
|
|
||||||
\paragraph{How the circuit works.}
|
\paragraph{How the circuit works.}
|
||||||
A detailed description of \sd may be found in~\cite{mixedsignaldsp}[pp.69-80].
|
A detailed description of {\sd} may be found in~\cite{mixedsignaldsp}[pp.69-80].
|
||||||
The diagram in~\ref{fig:sigmadeltablock} shows the signal path used
|
The diagram in~\ref{fig:sigmadeltablock} shows the signal path used
|
||||||
by this configuration for a \sd.
|
by this configuration for a \sd.
|
||||||
%
|
%
|
||||||
|
@ -365,6 +365,8 @@ $$
|
|||||||
\sum_{n=0}^{3} {3}^{n}.3.3.(2) = 720
|
\sum_{n=0}^{3} {3}^{n}.3.3.(2) = 720
|
||||||
%\end{equation}
|
%\end{equation}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
%\clearpage
|
||||||
\subsection{Complexity Comparison applied to previous FMMD Examples}
|
\subsection{Complexity Comparison applied to previous FMMD Examples}
|
||||||
|
|
||||||
All the FMMD examples in chapters \ref{sec:chap5} and \ref{sec:chap6} showed a marked reduction in comparison
|
All the FMMD examples in chapters \ref{sec:chap5} and \ref{sec:chap6} showed a marked reduction in comparison
|
||||||
@ -372,14 +374,18 @@ complexity compared to the RFMEA worst case figures.
|
|||||||
%
|
%
|
||||||
|
|
||||||
%
|
%
|
||||||
A table of complexity comparison vs. RFMEA is presented below.
|
Complexity comparison vs. RFMEA for the first three examples
|
||||||
|
are presented in table~\ref{tbl:firstcc}.
|
||||||
|
|
||||||
%\usepackage{multirow}
|
%\usepackage{multirow}
|
||||||
|
\begin{table}
|
||||||
|
\label{tbl:firstcc}
|
||||||
|
|
||||||
\begin{tabular}{ |l|l|l| }
|
\begin{tabular}{ |c|l|l|c| }
|
||||||
\hline
|
\hline
|
||||||
\textbf{Hierarchy} & \textbf{Analysis object} & \textbf{Complexity} \\
|
\textbf{Hierarchy} & \textbf{Derived} & \textbf{Complexity} & $|fm(c)|$: \textbf{number} \\
|
||||||
\textbf{Level} & \textbf{Description} & \textbf{Comparison} \\
|
\textbf{Level} & \textbf{Component} & \textbf{Comparison} & \textbf{of derived} \\
|
||||||
|
& & & \textbf{failure modes} \\
|
||||||
%\hline \hline
|
%\hline \hline
|
||||||
%\multicolumn{3}{ |c| }{Complexity Comparison against RFMEA for examples in Chapter~\ref{sec:chap5}} \\
|
%\multicolumn{3}{ |c| }{Complexity Comparison against RFMEA for examples in Chapter~\ref{sec:chap5}} \\
|
||||||
%\hline \hline
|
%\hline \hline
|
||||||
@ -391,37 +397,134 @@ A table of complexity comparison vs. RFMEA is presented below.
|
|||||||
|
|
||||||
\multicolumn{3}{ |c| }{Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} \\ \hline
|
\multicolumn{3}{ |c| }{Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} \\ \hline
|
||||||
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
||||||
0 & Potential Divider & 4 \\
|
\hline
|
||||||
1 & PD + Opamp & 8 \\
|
0 & PD & 4 & 2 \\
|
||||||
& Inverting Amplifier: & FMMD 10 \\
|
1 & INVAMP & 8 & 3 \\
|
||||||
& Inverting Amplifier: & RFMEA 16 \\
|
2 & Total for INVAMP: & 10 (FMMD) & \\
|
||||||
\hline
|
0 & Total for INVAMP: & 16 (RFMEA) & \\
|
||||||
|
% & $(3-1) \times (4 + 2 +2)$ & & \\
|
||||||
|
\hline \hline
|
||||||
|
|
||||||
\multicolumn{3}{ |c| } {Inverting Amplifier One stage FMMD Hierarchy: section~\ref{sec:invamp}} \\ \hline
|
\multicolumn{3}{ |c| } {Inverting Amplifier One stage FMMD Hierarchy: section~\ref{sec:invamp}} \\ \hline
|
||||||
0 & Resistors + Opamp & 16 \\
|
0 & INVAMP & 16 & 3 \\
|
||||||
& Inverting Amplifier: & FMMD 16 \\
|
1 & Total for INVAMP: & 16 (FMMD) & \\
|
||||||
& Inverting Amplifier: & RFMEA 16 \\
|
0 & Total for INVAMP: & 16 (RFMEA) & \\
|
||||||
\hline
|
\hline
|
||||||
|
|
||||||
|
\hline
|
||||||
\multicolumn{3}{ |c| } {Differencing Amplifier One stage FMMD Hierarchy: section~\ref{sec:invamp}} \\ \hline
|
\multicolumn{3}{ |c| } {Differencing Amplifier Three stage FMMD Hierarchy: section~\ref{sec:diffamp}} \\ \hline
|
||||||
%\multirow{4}{*} {Differencing Amplifier FMMD Hierarchy: section~\ref{sec:diffamp}} & & \\
|
%\multirow{4}{*} {Differencing Amplifier FMMD Hierarchy: section~\ref{sec:diffamp}} & & \\
|
||||||
2 & Non inv Amp reused (see section~\ref{sec:noninvamp}) & 10 \\
|
2 & NonInvAMP reused~\footnote{Reused analysed of NonInvAMP: see section~\ref{sec:invamp}.} & 10 & 3 \\
|
||||||
0 & Inverting amplifier & 16 \\
|
0 & SEC\_AMP & 16 & 4 \\
|
||||||
& Differencing Amplifier: & FMMD 26 \\
|
3 & DiffAMP & 7 & 4 \\
|
||||||
& Differencing Amplifier: & RFMEA 80 \\ \hline
|
3 & Total for DiffAMP & 33 (FMMD)& \\
|
||||||
|
0 & Total for DiffAMP: & 80 (RFMEA) & \\
|
||||||
|
% & Differencing Amplifier: & RFMEA 80-16 = 74 & \\
|
||||||
|
% & & & \\
|
||||||
\hline
|
\hline
|
||||||
|
\hline
|
||||||
|
% \footnote{if we discount the comparison complexity for the pre-analysed INVAMP.}\hline
|
||||||
|
|
||||||
|
\multicolumn{3}{ |c| } {Five Pole Sallen Key Low Pass Filter: Three stage FMMD Hierarchy: section~\ref{sec:fivepolelp}} \\ \hline
|
||||||
|
%\multirow{4}{*} {Differencing Amplifier FMMD Hierarchy: section~\ref{sec:diffamp}} & & \\
|
||||||
|
0 & FirstOrderLP & 4 & 2 \\
|
||||||
|
1 & LP1 & 10 & 4 \\
|
||||||
\hline \hline
|
2 & SKLP & 48 & 4 \\
|
||||||
|
3 & FivePoleLP & 20 & 4 \\
|
||||||
|
3 & Total for FivePoleLP & 82 (FMMD)& \\
|
||||||
|
% & 20+48+10+4 & & \\
|
||||||
|
0 & Total for FivePoleLP & 384 (RFMEA) & \\
|
||||||
|
% & $(13-1) \times (3 \times 4 + 10 \times 2)$ & & \\ \hline
|
||||||
|
\hline
|
||||||
|
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
|
\caption{Comparison Complexity figures for the first three examples in Chapter~\ref{sec:chap5}.}
|
||||||
|
\end{table}
|
||||||
|
% end table
|
||||||
The complexity comparison figures for the example circuits in chapter~\ref{sec:chap5} show
|
The complexity comparison figures for the example circuits in chapter~\ref{sec:chap5} show
|
||||||
that for increasing complexity the performance benefits from FMMD become apparent.
|
that for increasing complexity the performance benefits from FMMD are apparent.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection{Comparison Complexity for the Bubba Oscillator Example.}
|
||||||
|
The Bubba oscillator example (see section~\ref{sec:bubba}) was chosen because it had a circular
|
||||||
|
signal path. It was also analysed twice, once by
|
||||||
|
{na\"{\i}vely} using the first {\fgs} identified, and secondly be de-composing
|
||||||
|
the circuit further.
|
||||||
|
We use these two analyses to compare the effect on comparison complexity (see table~\ref{tbl:bubbacc}) with that of RFMEA.
|
||||||
|
%
|
||||||
|
\begin{table}
|
||||||
|
\label{tbl:bubbacc}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{tabular}{ |c|l|l|c| }
|
||||||
|
\hline
|
||||||
|
\textbf{Hierarchy} & \textbf{Derived} & \textbf{Complexity} & $|fm(c)|$: \textbf{number} \\
|
||||||
|
\textbf{Level} & \textbf{Component} & \textbf{Comparison} & \textbf{of derived} \\
|
||||||
|
& & & \textbf{failure modes} \\
|
||||||
|
%\hline \hline
|
||||||
|
%\multicolumn{3}{ |c| }{Complexity Comparison against RFMEA for examples in Chapter~\ref{sec:chap5}} \\
|
||||||
|
%\hline \hline
|
||||||
|
|
||||||
|
|
||||||
|
%Goalkeeper & GK & Paul Robinson \\ \hline
|
||||||
|
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\multicolumn{3}{ |c| }{Bubba Oscillator one stage ({na\"{\i}ve}) FMMD Hierarchy: section~\ref{sec:bubba1}} \\ \hline
|
||||||
|
%\multirow{3}{*} {Inverting Amplifier Two stage FMMD Hierarchy: section~\ref{sec:invamp}} & & \\
|
||||||
|
\hline
|
||||||
|
1 & PHS45 & 4 & 2 \\
|
||||||
|
1 & INVAMP & 16 & 3 \\
|
||||||
|
0 & NIBUFF & 0 & 4 \\
|
||||||
|
%
|
||||||
|
% NIBUFF PHS45
|
||||||
|
% 8 components so LEVEL 2 (8-1) \times ( (3*4) + (4*2) + 3 ) + LEVEL 0 16 for the INVAMP
|
||||||
|
2 & Total for BUBBA: & 177 (FMMD) & \\
|
||||||
|
% R&C OPAMPS
|
||||||
|
% 14 components so 13 \times ( (10*2) (4*4) )
|
||||||
|
0 & Total for BUBBA: & 468 (RFMEA) & \\
|
||||||
|
% & $(3-1) \times (4 + 2 +2)$ & & \\
|
||||||
|
\hline \hline
|
||||||
|
|
||||||
|
\multicolumn{3}{ |c| } {Inverting Amplifier Multiple stage FMMD Hierarchy: section~\ref{sec:bubba2}} \\ \hline
|
||||||
|
1 & PHS45 & 4 & 2 \\
|
||||||
|
1 & INVAMP & 16 & 3 \\
|
||||||
|
0 & NIBUFF & 0 & 4 \\
|
||||||
|
2 & BUFF45 & 6 & 2 \\
|
||||||
|
3 & PHS135BUFFERED & 4 & 2 \\
|
||||||
|
|
||||||
|
|
||||||
|
2 & PHS225AMP & 5 & 2 \\
|
||||||
|
|
||||||
|
4 & BUBBA & 2 & 2 \\
|
||||||
|
%
|
||||||
|
%Level 1: 16 + 4 == 20
|
||||||
|
%Level 2: 6 + 5 == 11
|
||||||
|
%Level 3: 4 == 4
|
||||||
|
%Level 4: 2 == 2
|
||||||
|
%
|
||||||
|
1 & Total for BUBBA: & 37 (FMMD) & \\
|
||||||
|
0 & Total for BUBBA: & 468 (RFMEA) & \\
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\hline
|
||||||
|
|
||||||
|
\end{tabular}
|
||||||
|
\caption{Complexity Comparison figures for the Bubba Oscillator FMMD example (see section~\ref{sec:bubba}).}
|
||||||
|
\end{table}
|
||||||
|
%
|
||||||
|
The initial {na\"{\i}ve} FMMD analysis reduces the number of checks by over half, the more de-composed analysis
|
||||||
|
by more than a factor of ten.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Sigma delta Example: Comparison Complexity Results}
|
||||||
|
|
||||||
|
|
||||||
|
\label{sec:bubbaCC}
|
||||||
% \subsection{Exponential squared to Exponential}
|
% \subsection{Exponential squared to Exponential}
|
||||||
%
|
%
|
||||||
% can I say that ?
|
% can I say that ?
|
||||||
@ -430,7 +533,7 @@ that for increasing complexity the performance benefits from FMMD become apparen
|
|||||||
|
|
||||||
\section{Unitary State Component Failure Mode sets}
|
\section{Unitary State Component Failure Mode sets}
|
||||||
\label{sec:unitarystate}
|
\label{sec:unitarystate}
|
||||||
\paragraph{Design Descision/Constraint}
|
\paragraph{Design Decision/Constraint}
|
||||||
An important factor in defining a set of failure modes is that they
|
An important factor in defining a set of failure modes is that they
|
||||||
should represent the failure modes as simply and minimally as possible.
|
should represent the failure modes as simply and minimally as possible.
|
||||||
It should not be possible, for instance, for
|
It should not be possible, for instance, for
|
||||||
|
Loading…
Reference in New Issue
Block a user