..
This commit is contained in:
parent
aa9f6755f6
commit
ba38bfe6c5
@ -174,7 +174,7 @@ Graph (DAG).
|
|||||||
% \label{fig:cfg2fmmd_data}
|
% \label{fig:cfg2fmmd_data}
|
||||||
% \end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
\pagebreak[4]
|
%\pagebreak[4]
|
||||||
\subsection{Find Failure Modes}
|
\subsection{Find Failure Modes}
|
||||||
|
|
||||||
Consider the SYSTEM environment with its temperature range of ${{0}\oc}$ to ${{125}\oc}$.
|
Consider the SYSTEM environment with its temperature range of ${{0}\oc}$ to ${{125}\oc}$.
|
||||||
@ -186,7 +186,7 @@ gives the following failure modes, $fm(K) =\{ K^0_a, K^0_b, K^0_d \}$.
|
|||||||
Were our system specified for a ${{0}\oc}$ to ${{80}\oc}$ range
|
Were our system specified for a ${{0}\oc}$ to ${{80}\oc}$ range
|
||||||
we could say $fm(K) =\{ K^0_a, K^0_b \}$.
|
we could say $fm(K) =\{ K^0_a, K^0_b \}$.
|
||||||
|
|
||||||
\pagebreak[3]
|
%\pagebreak[3]
|
||||||
\paragraph{Get the failure modes from the functional groups.}
|
\paragraph{Get the failure modes from the functional groups.}
|
||||||
Applying the function $fm$ to our functional groups, with the SYSTEM environmental
|
Applying the function $fm$ to our functional groups, with the SYSTEM environmental
|
||||||
constraint applied to component type `K', yields
|
constraint applied to component type `K', yields
|
||||||
@ -408,7 +408,7 @@ We can represent $ C^1_1 $ as an addition to the DAG (see figure \ref{fig:dag1})
|
|||||||
\label{fig:dag1}
|
\label{fig:dag1}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\clearpage
|
%n\clearpage
|
||||||
\subsection{ Creating Derived components from $FG^0_2$ and $FG^0_3$ }
|
\subsection{ Creating Derived components from $FG^0_2$ and $FG^0_3$ }
|
||||||
|
|
||||||
Applying the FMMD process for $FG^0_2$ and $FG^0_3$.
|
Applying the FMMD process for $FG^0_2$ and $FG^0_3$.
|
||||||
@ -703,10 +703,10 @@ This is shown in the DAG in figure \ref{fig:dag3}.
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
\clearpage
|
%\clearpage
|
||||||
%\pagebreak[4]
|
%\pagebreak[4]
|
||||||
\subsection{Using Derived Components in Functional Groups}
|
\subsection{Using Derived Components in Functional Groups}
|
||||||
|
\label{dagexample}
|
||||||
The DAG we have in figure \ref{fig:dag3} does not yet give us SYSTEM or `top~level'
|
The DAG we have in figure \ref{fig:dag3} does not yet give us SYSTEM or `top~level'
|
||||||
failure modes.
|
failure modes.
|
||||||
We can apply $fm$ to the derived components and
|
We can apply $fm$ to the derived components and
|
||||||
@ -976,22 +976,24 @@ at low temperatures.
|
|||||||
What we have is an inhibit condition, in this case the temperature
|
What we have is an inhibit condition, in this case the temperature
|
||||||
being in range makes the particular failure mode impossible.
|
being in range makes the particular failure mode impossible.
|
||||||
|
|
||||||
|
%[regular polygon,regular polygon sides=9]
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
\tikzstyle{fmmdi}=[regular polygon,regular polygon sides=6,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
%\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
\tikzstyle{inhibit}=[fmmdi, fill=grey!20];
|
\tikzstyle{inhibit}=[fmmdi, fill=black!20];
|
||||||
\tikzstyle{conjunction}=[fmmde, fill=red!20];
|
\tikzstyle{conjunction}=[fmmde, fill=red!20];
|
||||||
\tikzstyle{annot} = [text width=4em, text centered]
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||||
\node[fmmdi] (I-1) at (\layersep,-2) {$ > 80\oc$};
|
\node[inhibit] (I-1) at (\layersep,-2) {$ > 80\oc$};
|
||||||
\path (C-1) edge (I-1);
|
\path (C-1) edge (I-1);
|
||||||
\node[failure] (f) at (\layersep*2,-2) {$a$};
|
\node[failure] (f) at (\layersep*2,-2) {$a$};
|
||||||
\path (I-1) edge (f);
|
\path (I-1) edge (f);
|
||||||
@ -1004,7 +1006,7 @@ being in range makes the particular failure mode impossible.
|
|||||||
|
|
||||||
\subsection{Conjunction}
|
\subsection{Conjunction}
|
||||||
|
|
||||||
Failure conjuction is simply considering, at the {\fg} analysis stage
|
Failure conjunction is simply considering, at the {\fg} analysis stage
|
||||||
the possibility of two components failing within the same timeframe.
|
the possibility of two components failing within the same timeframe.
|
||||||
We could for instance, looking at a fuel train to a burner/chemical~reactor;
|
We could for instance, looking at a fuel train to a burner/chemical~reactor;
|
||||||
consider both shutoff valves failing at the same time.
|
consider both shutoff valves failing at the same time.
|
||||||
@ -1044,8 +1046,8 @@ simultaneous failures may have to be considered \cite{en298}.
|
|||||||
|
|
||||||
\end{tikzpicture}
|
\end{tikzpicture}
|
||||||
% End of code
|
% End of code
|
||||||
\caption{DAG representing conjuction condition on failure modes $a \wedge b \wedge c$}
|
\caption{DAG representing conjunction condition on failure modes $a \wedge b \wedge c$}
|
||||||
\label{fig:dagconjuction}
|
\label{fig:dagconjunction}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
||||||
@ -1096,20 +1098,185 @@ Show how FMMD makes this tracable
|
|||||||
% clear the page if its a paper to keep the diagram out of the references
|
% clear the page if its a paper to keep the diagram out of the references
|
||||||
\ifthenelse {\boolean{paper}}
|
\ifthenelse {\boolean{paper}}
|
||||||
{
|
{
|
||||||
\clearpage
|
%\clearpage
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
\section{Current Static Failure Mode Methodologies}
|
\pagebreak[3]
|
||||||
\ifthenelse {\boolean{paper}}
|
\section{Failure inhibition and conjunction}
|
||||||
{
|
|
||||||
paper
|
\subsection{Inhibition}
|
||||||
}
|
Failure inhibition is where a failure can only become active given a pre-condition.
|
||||||
{
|
A component suseptible to a given temperature range
|
||||||
chapter
|
making a failure mode a possibility is an inhibit condition.
|
||||||
}
|
|
||||||
|
For instance in electronics, a semi-conductor may begin to
|
||||||
|
fail at an eleveted temperature range.
|
||||||
|
Or in mechanical engineering a rubber seal may become brittle and leak
|
||||||
|
at low temperatures.
|
||||||
|
|
||||||
|
What we have is an inhibit condition, in this case the temperature
|
||||||
|
being in range makes the particular failure mode impossible.
|
||||||
|
|
||||||
|
The component $K$ in the DAG example (see section \ref{dagexample}), has
|
||||||
|
a failure mode $d$ that is only present at an elevated temperature
|
||||||
|
range, and has been considered as a static failure possibility in that model.
|
||||||
|
|
||||||
|
Where dynamic modelling of environmental conditions is required, inhibit gates
|
||||||
|
need be used in the model.
|
||||||
|
|
||||||
|
|
||||||
|
Inhibit conditions are part of the FTA methodology.%\cite{nucfta}[IV-9].
|
||||||
|
To ensure that FMMD can produce FTA models, support for inhibit gates has been included.
|
||||||
|
Both the NASA \cite{nasafta} and the U.S. Nuclear regulatory commission\cite{nucfta}[IV-9] use
|
||||||
|
a hexagon as a symbol for an inhibit gate in thier FTA documentation. That notation has been carried forward into FMMD.
|
||||||
|
%[regular polygon,regular polygon sides=7]
|
||||||
|
|
||||||
|
% \begin{figure}
|
||||||
|
% \centering
|
||||||
|
% \begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
% \tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
% \tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
% %\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
% \tikzstyle{fmmdi}=[regular polygon,regular polygon sides=6],fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
% \tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
% \tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
% \tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
% \tikzstyle{inhibit}=[fmmdi, fill=black!20];
|
||||||
|
% \tikzstyle{conjunction}=[fmmde, fill=red!20];
|
||||||
|
% \tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
%
|
||||||
|
% \node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||||
|
% \node[fmmdi] (I-1) at (\layersep,-2) {$ > 80\oc$};
|
||||||
|
% \path (C-1) edge (I-1);
|
||||||
|
% \node[failure] (f) at (\layersep*2,-2) {$a$};
|
||||||
|
% \path (I-1) edge (f);
|
||||||
|
%
|
||||||
|
% \end{tikzpicture}
|
||||||
|
% % End of code
|
||||||
|
% \caption{DAG representing inhibit condition ($ > 80\oc$) on failure mode $a$}
|
||||||
|
% \label{fig:daginhibit}
|
||||||
|
%\end{figure}
|
||||||
|
|
||||||
|
We can also use a failure mode as an inhibit condition.
|
||||||
|
For instance if we have a failure mode $C^0_{1a}$ that when active
|
||||||
|
makes failure mode $C^0_{1b}$ possible we can link
|
||||||
|
them using an inhibit gate as shown in figure \ref{fig:inhibitf2}.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
%\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
\tikzstyle{fmmdi}=[regular polygon,regular polygon sides=6],fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{inhibit}=[fmmdi, fill=blue!20];
|
||||||
|
\tikzstyle{conjunction}=[fmmde, fill=red!20];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||||
|
\node[component] (C-2) at (0,-5) {$C^0_1$};
|
||||||
|
|
||||||
|
\node[failure] (c1a) at (\layersep*2,-2) {$a$};
|
||||||
|
|
||||||
|
\node[failure] (c2a) at (\layersep*2,-5) {$b$};
|
||||||
|
\node[failure] (c2b) at (\layersep*2,-4) {$a$};
|
||||||
|
|
||||||
|
\path (C-2) edge (c2a);
|
||||||
|
\path (C-2) edge (c2b);
|
||||||
|
|
||||||
|
\node[inhibit] (I-1) at (\layersep,-2) {Inhibit};
|
||||||
|
\path (C-1) edge (I-1);
|
||||||
|
\path (c2b) edge (I-1);
|
||||||
|
|
||||||
|
\path (I-1) edge (c1a);
|
||||||
|
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
% End of code
|
||||||
|
\caption{DAG representing inhibit of failure mode $C_{2b}$ on another failure mode $C_{1a}$}
|
||||||
|
\label{fig:daginhibit2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Conjunction}
|
||||||
|
|
||||||
|
Failure conjunction is simply considering, at the {\fg} analysis stage
|
||||||
|
the possibility of two components failing within the same timeframe.
|
||||||
|
We could for instance, looking at a fuel train to a burner/chemical~reactor;
|
||||||
|
consider both shutoff valves failing at the same time.
|
||||||
|
|
||||||
|
For high levels of safety or reliability, in critical sub-systems, all possible double
|
||||||
|
simultaneous failures may have to be considered \cite{en298}.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
%\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
\tikzstyle{fmmdi}=[regular polygon,regular polygon sides=6],fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{inhibit}=[fmmdi, fill=grey!40];
|
||||||
|
\tikzstyle{conjunction}=[fmmde, fill=red!40];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||||
|
|
||||||
|
\node[failure] (C-1a) at (\layersep,-1) {a};
|
||||||
|
\node[failure] (C-1b) at (\layersep,-2) {b};
|
||||||
|
\node[failure] (C-1c) at (\layersep,-3) {c};
|
||||||
|
|
||||||
|
\path (C-1) edge (C-1a);
|
||||||
|
\path (C-1) edge (C-1b);
|
||||||
|
\path (C-1) edge (C-1c);
|
||||||
|
|
||||||
|
\node[conjunction, right of=C-1b] (CJ) {$\&$};
|
||||||
|
|
||||||
|
\path (C-1a) edge (CJ);
|
||||||
|
\path (C-1b) edge (CJ);
|
||||||
|
\path (C-1c) edge (CJ);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
% End of code
|
||||||
|
\caption{DAG representing conjunction condition on failure modes $a \wedge b \wedge c$}
|
||||||
|
\label{fig:dagconjunction}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
||||||
|
|
||||||
|
White filled node with an \& in it.
|
||||||
|
|
||||||
|
\subsection{Inhibit Conditions represented in the DAG}
|
||||||
|
|
||||||
|
Inhibit node type. Octagon (to follow example from FTA).
|
||||||
|
|
||||||
|
a -> OCT
|
||||||
|
|
||||||
|
inhibitcond--
|
||||||
|
|
||||||
|
|
||||||
|
%\section{Current Static Failure Mode Methodologies}
|
||||||
|
%\ifthenelse {\boolean{paper}}
|
||||||
|
%{
|
||||||
|
%paper
|
||||||
|
%}
|
||||||
|
%{
|
||||||
|
%chapter
|
||||||
|
%}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -7,6 +7,7 @@
|
|||||||
\input{../style}
|
\input{../style}
|
||||||
\usepackage{ifthen}
|
\usepackage{ifthen}
|
||||||
\usepackage{lastpage}
|
\usepackage{lastpage}
|
||||||
|
\usetikzlibrary{shapes,snakes}
|
||||||
|
|
||||||
\newboolean{paper}
|
\newboolean{paper}
|
||||||
\setboolean{paper}{true} % boolvar=true or false
|
\setboolean{paper}{true} % boolvar=true or false
|
||||||
|
@ -77,7 +77,7 @@ The `undetectable' failure modes undertsandably, are the most worrying for the s
|
|||||||
EN61058, the statistically based European Norm, using ratios
|
EN61058, the statistically based European Norm, using ratios
|
||||||
of detected and undetected system failure modes to
|
of detected and undetected system failure modes to
|
||||||
classify the sytems safety levels and describes sub-clasifications
|
classify the sytems safety levels and describes sub-clasifications
|
||||||
for detected and undetected failure modes \cite{EN61508}.
|
for detected and undetected failure modes \cite{en61508}.
|
||||||
|
|
||||||
%It is these that are, generally the ones that stand out as single
|
%It is these that are, generally the ones that stand out as single
|
||||||
%failure modes.
|
%failure modes.
|
||||||
|
@ -3,6 +3,7 @@
|
|||||||
\usepackage{graphicx}
|
\usepackage{graphicx}
|
||||||
\usepackage{fancyhdr}
|
\usepackage{fancyhdr}
|
||||||
\usepackage{tikz}
|
\usepackage{tikz}
|
||||||
|
\usetikzlibrary{shapes,snakes}
|
||||||
\usepackage{subfigure}
|
\usepackage{subfigure}
|
||||||
\usepackage{amsfonts,amsmath,amsthm}
|
\usepackage{amsfonts,amsmath,amsthm}
|
||||||
\usepackage{algorithm}
|
\usepackage{algorithm}
|
||||||
|
Loading…
Reference in New Issue
Block a user