Put in skeleton CH2 and CH3
and some inmages. Next put in pencilled edits of thesis. CH4 && CH5.
This commit is contained in:
parent
a2c11cef25
commit
b69f2c977a
BIN
submission_thesis/CH2_FMEA/A10_thunderbolt.jpg
Normal file
BIN
submission_thesis/CH2_FMEA/A10_thunderbolt.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 494 KiB |
BIN
submission_thesis/CH2_FMEA/ad_ford_pinto_mpg_red_3_1975.jpg
Normal file
BIN
submission_thesis/CH2_FMEA/ad_ford_pinto_mpg_red_3_1975.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 632 KiB |
BIN
submission_thesis/CH2_FMEA/burntoutpinto.png
Normal file
BIN
submission_thesis/CH2_FMEA/burntoutpinto.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 154 KiB |
@ -1,4 +1,3 @@
|
||||
\section{Copy dot tex}
|
||||
|
||||
|
||||
EN61508:6\cite{en61508}[B.6.6]
|
||||
@ -9,27 +8,553 @@ of a system's components and determining the effects of these failures
|
||||
on the behaviour and safety of the system."
|
||||
\end{quotation}.
|
||||
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
sample text
|
||||
|
||||
\section{F.M.E.A.}
|
||||
|
||||
\subsection{FMEA}
|
||||
%\tableofcontents[currentsection]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA}
|
||||
This talk introduces Failure Mode Effects Analysis, and the different ways it is applied.
|
||||
These techniques are discussed, and then
|
||||
a refinement is proposed, which is essentially a modularisation of the FMEA process.
|
||||
%
|
||||
|
||||
\begin{itemize}
|
||||
\item Failure
|
||||
\item Mode
|
||||
\item Effects
|
||||
\item Analysis
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
% % \begin{itemize}
|
||||
% \item Failure
|
||||
% \item Mode
|
||||
% \item Effects
|
||||
% \item Analysis
|
||||
% \end{itemize}
|
||||
|
||||
|
||||
\subsection{FMEA basic concept}
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{F - Failures of given component} Consider a component in a system
|
||||
\item \textbf{M - Failure Mode} Look at one of the ways in which it can fail (i.e. determine a component `failure~mode')
|
||||
\item \textbf{E - Effects} Determine the effects this failure mode will cause to the system we are examining
|
||||
\item \textbf{A - Analysis} Analyse how much impact this symptom will have on the environment/people/the system itsself
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEA Example: Milli-volt reader}
|
||||
Example: Let us consider a system, in this case a milli-volt reader, consisting
|
||||
of instrumentation amplifiers connected to a micro-processor
|
||||
that reports its readings via RS-232.
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=175pt]{./CH2_FMEA/mvamp.png}
|
||||
% mvamp.png: 561x403 pixel, 72dpi, 19.79x14.22 cm, bb=0 0 561 403
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA Example: Milli-volt reader}
|
||||
Let us perform an FMEA and consider how one of its resistors failing could affect
|
||||
it.
|
||||
For the sake of example let us choose resistor R1 in the OP-AMP gain circuitry.
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=175pt]{./mvamp.png}
|
||||
% % mvamp.png: 561x403 pixel, 72dpi, 19.79x14.22 cm, bb=0 0 561 403
|
||||
% \end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA Example: Milli-volt reader}
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=80pt]{./mvamp.png}
|
||||
% % mvamp.png: 561x403 pixel, 72dpi, 19.79x14.22 cm, bb=0 0 561 403
|
||||
% \end{figure}
|
||||
\begin{itemize}
|
||||
\item \textbf{F - Failures of given component} The resistor (R1) could fail by going OPEN or SHORT (EN298 definition).
|
||||
\item \textbf{M - Failure Mode} Consider the component failure mode SHORT
|
||||
\item \textbf{E - Effects} This will drive the minus input LOW causing a HIGH OUTPUT/READING
|
||||
\item \textbf{A - Analysis} The reading will be out of normal range, and we will have an erroneous milli-volt reading
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Note here that we have had to look at the failure~mode
|
||||
in relation to the entire circuit.
|
||||
We have used intuition to determine the probable
|
||||
effect of this failure mode.
|
||||
We have not examined this failure mode
|
||||
against every other component in the system.
|
||||
Perhaps we should.... this would be a more rigorous and complete
|
||||
approach in looking for system failures.
|
||||
|
||||
|
||||
|
||||
\subsection{Rigorous FMEA - State Explosion}
|
||||
|
||||
\subsection{Rigorous Single Failure FMEA}
|
||||
Consider the analysis
|
||||
where we look at all the failure modes in a system, and then
|
||||
see how they can affect all other components within it.
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Rigorous Single Failure FMEA}
|
||||
We need to look at a large number of failure scenarios
|
||||
to do this completely (all failure modes against all components).
|
||||
This is represented in the equation below. %~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$f$ is the number of failure modes per component.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single}
|
||||
N.(N-1).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Rigorous Single Failure FMEA}
|
||||
This would mean an order of $N^2$ number of checks to perform
|
||||
to undertake a `rigorous~FMEA'. Even small systems have typically
|
||||
100 components, and they typically have 3 or more failure modes each.
|
||||
$100*99*3=29,700$.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Rigorous Double Failure FMEA}
|
||||
For looking at potential double failure scenarios (two components
|
||||
failing within a given time frame) and the order becomes
|
||||
$N^3$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_double}
|
||||
N.(N-1).(N-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
|
||||
$100*99*98*3=2,910,600$.
|
||||
|
||||
|
||||
.\\
|
||||
|
||||
The European Gas burner standard (EN298:2003), demands the checking of
|
||||
double failure scenarios (for burner lock-out scenarios).
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Four main Variants of FMEA}
|
||||
\begin{itemize}
|
||||
\item \textbf{PFMEA - Production} Car Manufacture etc
|
||||
\item \textbf{FMECA - Criticallity} Military/Space
|
||||
\item \textbf{FMEDA - Statistical safety} EN61508/IOC1508 Safety Integrity Levels
|
||||
\item \textbf{DFMEA - Design or static/theoretical} EN298/EN230/UL1998
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{PFMEA - Production FMEA : 1940's to present}
|
||||
|
||||
|
||||
\subsection{PFMEA}
|
||||
Production FMEA (or PFMEA), is FMEA used to prioritise, in terms of
|
||||
cost, problems to be addressed in product production.
|
||||
|
||||
It focuses on known problems, determines the
|
||||
frequency they occur and their cost to fix.
|
||||
This is multiplied together and called an RPN
|
||||
number.
|
||||
Fixing problems with the highest RPN number
|
||||
will return most cost benefit.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
% benign example of PFMEA in CARS - make something up.
|
||||
\subsection{PFMEA Example}
|
||||
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
% rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
% ruptured f.tank & & & & \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
%Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: $200,000 per death, $67,000 per injury, $700 per vehicle.
|
||||
%Total Benefit: 180 X ($200,000) + 180 X ($67,000) + $2,100 X ($700) = $49.5 million.
|
||||
%COSTS
|
||||
%Sales: 11 million cars, 1.5 million light trucks.
|
||||
%Unit Cost: $11 per car, $11 per truck.
|
||||
%Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = $137 million.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
%\subsection{Production FMEA : Example Ford Pinto : 1975}
|
||||
|
||||
\subsection{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=300pt]{./CH2_FMEA/ad_ford_pinto_mpg_red_3_1975.jpg}
|
||||
% ad_ford_pinto_mpg_red_3_1975.jpg: 720x933 pixel, 96dpi, 19.05x24.69 cm, bb=0 0 540 700
|
||||
\caption{Ford Pinto Advert}
|
||||
\label{fig:fordpintoad}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=300pt]{./CH2_FMEA/burntoutpinto.png}
|
||||
% burntoutpinto.png: 376x250 pixel, 72dpi, 13.26x8.82 cm, bb=0 0 376 250
|
||||
\caption{Burnt Out Pinto}
|
||||
\label{fig:burntoutpinto}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
ruptured f.tank & & & allow & \\ \hline
|
||||
|
||||
rear end crash & $1$ & $11$ & recall & 11.0 \\
|
||||
ruptured f.tank & & & fix tank & \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
|
||||
|
||||
http://www.youtube.com/watch?v=rcNeorjXMrE
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
%\includegraphics[width=100pt]{./military-aircraft-desktop-computer-wallpaper-missile-launch.jpg}
|
||||
\includegraphics[width=300pt]{./CH2_FMEA/A10_thunderbolt.jpg}
|
||||
% military-aircraft-desktop-computer-wallpaper-missile-launch.jpg: 1024x768 pixel, 300dpi, 8.67x6.50 cm, bb=0 0 246 184
|
||||
\caption{A10 Thunderbolt}
|
||||
\label{fig:f16missile}
|
||||
\end{figure}
|
||||
Emphasis on determining criticality of failure.
|
||||
Applies some Bayesian statistics (probabilities of component failures and those thereby causing given system level failures).
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
Very similar to PFMEA, but instead of cost, a criticality or
|
||||
seriousness factor is ascribed to putative top level incidents.
|
||||
FMECA has three probability factors for component failures.
|
||||
|
||||
\textbf{FMECA ${\lambda}_{p}$ value.}
|
||||
This is the overall failure rate of a base component.
|
||||
This will typically be the failure rate per million ($10^6$) or
|
||||
billion ($10^9$) hours of operation. reference MIL1991.
|
||||
|
||||
\textbf{FMECA $\alpha$ value.}
|
||||
The failure mode probability, usually denoted by $\alpha$ is the probability of
|
||||
a particular failure~mode occurring within a component. reference FMD-91.
|
||||
%, should it fail.
|
||||
%A component with N failure modes will thus have
|
||||
%have an $\alpha$ value associated with each of those modes.
|
||||
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
|
||||
|
||||
|
||||
|
||||
\subsection{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
\textbf{FMECA $\beta$ value.}
|
||||
The second probability factor $\beta$, is the probability that the failure mode
|
||||
will cause a given system failure.
|
||||
This corresponds to `Bayesian' probability, given a particular
|
||||
component failure mode, the probability of a given system level failure.
|
||||
|
||||
\textbf{FMECA `t' Value}
|
||||
The time that a system will be operating for, or the working life time of the product is
|
||||
represented by the variable $t$.
|
||||
%for probability of failure on demand studies,
|
||||
%this can be the number of operating cycles or demands expected.
|
||||
|
||||
\textbf{Severity `s' value}
|
||||
A weighting factor to indicate the seriousness of the putative system level error.
|
||||
%Typical classifications are as follows:~\cite{fmd91}
|
||||
|
||||
\begin{equation}
|
||||
C_m = {\beta} . {\alpha} . {{\lambda}_p} . {t} . {s}
|
||||
\end{equation}
|
||||
|
||||
Highest $C_m$ values would be at the top of a `to~do' list
|
||||
for a project manager.
|
||||
|
||||
|
||||
|
||||
|
||||
\section{FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=200pt]{./SIL.png}
|
||||
% % SIL.jpg: 350x286 pixel, 72dpi, 12.35x10.09 cm, bb=0 0 350 286
|
||||
% \caption{SIL requirements}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
\begin{itemize}
|
||||
\item \textbf{Statistical Safety} Safety Integrity Level (SIL) standards (EN61508/IOC5108).
|
||||
\item \textbf{Diagnostics} Diagnostic or self checking elements modelled
|
||||
\item \textbf{Complete Failure Mode Coverage} All failure modes of all components must be in the model
|
||||
\item \textbf{Guidelines} To system architectures and development processes
|
||||
\end{itemize}
|
||||
|
||||
FMEDA is the methodology behind statistical (safety integrity level)
|
||||
type standards (EN61508/IOC5108).
|
||||
It provides a statistical overall level of safety
|
||||
and allows diagnostic mitigation for self checking etc.
|
||||
It provides guidelines for the design and architecture
|
||||
of computer/software systems for the four levels of
|
||||
safety Integrity.
|
||||
%For Hardware
|
||||
%
|
||||
FMEDA does force the user to consider all hardware components in a system
|
||||
by requiring that a MTTF value is assigned for each failure~mode;
|
||||
the MTTF may be statistically mitigated (improved)
|
||||
if it can be shown that self-checking will detect failure modes.
|
||||
For software it provides procedural quality guidelines and constraints (such as forbidding certain
|
||||
programming languages and/or features.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Failure Mode Classifications in FMEDA.}
|
||||
\begin{itemize}
|
||||
\item \textbf{Safe or Dangerous} Failure modes are classified SAFE or DANGEROUS
|
||||
\item \textbf{Detectable failure modes} Failure modes are given the attribute DETECTABLE or UNDETECTABLE
|
||||
\item \textbf{Four attributes to Failure Modes} All failure modes may thus be Safe Detected(SD), Safe Undetected(SU), Dangerous Detected(DD), Dangerous Undetected(DU)
|
||||
\item \textbf{Four statistical properties of a system} \\
|
||||
$ \sum \lambda_{SD}$, $\sum \lambda_{SU}$, $\sum \lambda_{DD}$, $\sum \lambda_{DU}$
|
||||
\end{itemize}
|
||||
|
||||
% Failure modes are classified as Safe or Dangerous according
|
||||
% to the putative system level failure they will cause.
|
||||
% The Failure modes are also classified as Detected or
|
||||
% Undetected.
|
||||
% This gives us four level failure mode classifications:
|
||||
% Safe-Detected (SD), Safe-Undetected (SU), Dangerous-Detected (DD) or Dangerous-Undetected (DU),
|
||||
% and the probabilistic failure rate of each classification
|
||||
% is represented by lambda variables
|
||||
% (i.e. $\lambda_{SD}$, $\lambda_{SU}$, $\lambda_{DD}$, $\lambda_{DU}$).
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Diagnostic Coverage.}
|
||||
The diagnostic coverage is simply the ratio
|
||||
of the dangerous detected probabilities
|
||||
against the probability of all dangerous failures,
|
||||
and is normally expressed as a percentage. $\Sigma\lambda_{DD}$ represents
|
||||
the percentage of dangerous detected base component failure modes, and
|
||||
$\Sigma\lambda_D$ the total number of dangerous base component failure modes.
|
||||
|
||||
$$ DiagnosticCoverage = \Sigma\lambda_{DD} / \Sigma\lambda_D $$
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
The \textbf{diagnostic coverage} for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
safe detected base component failure modes,
|
||||
and $\Sigma\lambda_S$ the total number of safe base component failure modes,
|
||||
is given as
|
||||
|
||||
$$ SF = \frac{\Sigma\lambda_{SD}}{\Sigma\lambda_S} $$
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Safe Failure Fraction.}
|
||||
A key concept in FMEDA is Safe Failure Fraction (SFF).
|
||||
This is the ratio of safe and dangerous detected failures
|
||||
against all safe and dangerous failure probabilities.
|
||||
Again this is usually expressed as a percentage.
|
||||
|
||||
$$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_S + \Sigma\lambda_D \big) $$
|
||||
|
||||
SFF determines how proportionately fail-safe a system is, not how reliable it is !
|
||||
Weakness in this philosophy; adding extra safe failures (even unused ones) improves the SFF.
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
To achieve SIL levels, diagnostic coverage and SFF levels are prescribed along with
|
||||
hardware architectures and software techniques.
|
||||
The overall the aim of SIL is classify the safety of a system,
|
||||
by statistically determining how frequently it can fail dangerously.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{SIL} & \textbf{Low Demand} & \textbf{Continuous Demand} \\
|
||||
& Prob of failing on demand & Prob of failure per hour \\ \hline \hline
|
||||
4 & $ 10^{-5}$ to $< 10^{-4}$ & $ 10^{-9}$ to $< 10^{-8}$ \\ \hline
|
||||
3 & $ 10^{-4}$ to $< 10^{-3}$ & $ 10^{-8}$ to $< 10^{-7}$ \\ \hline
|
||||
2 & $ 10^{-3}$ to $< 10^{-2}$ & $ 10^{-7}$ to $< 10^{-6}$ \\ \hline
|
||||
1 & $ 10^{-2}$ to $< 10^{-1}$ & $ 10^{-6}$ to $< 10^{-5}$ \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
Table adapted from EN61508-1:2001 [7.6.2.9 p33]
|
||||
|
||||
|
||||
|
||||
\subsection{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
self checking features, and provides detailed recommendations for computer/software architecture.
|
||||
It has a simple final result, a Safety Integrity Level (SIL) from 1 to 4 (where 4 is safest).
|
||||
|
||||
%FMEA can be used as a term simple to mean Failure Mode Effects Analysis, and is
|
||||
%part of product approval for many regulated products in the EU and the USA...
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\section{FMEA used for Safety Critical Approvals}
|
||||
|
||||
|
||||
\subsection{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=300pt,keepaspectratio=true]{./CH2_FMEA/tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
Static FMEA, Design FMEA, Approvals FMEA
|
||||
|
||||
Experts from Approval House and Equipment Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
|
||||
% \begin{figure}[h]
|
||||
% \centering
|
||||
% \includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% % tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
% \caption{FMEA Meeting}
|
||||
% \label{fig:tech_meeting}
|
||||
% \end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\item Often Meeting notes or minutes only. Unusual for detailed arguments to be documented.
|
||||
\end{itemize}
|
||||
|
||||
|
BIN
submission_thesis/CH2_FMEA/mvamp.png
Normal file
BIN
submission_thesis/CH2_FMEA/mvamp.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 25 KiB |
BIN
submission_thesis/CH2_FMEA/tech_meeting.png
Normal file
BIN
submission_thesis/CH2_FMEA/tech_meeting.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 69 KiB |
@ -4,3 +4,42 @@
|
||||
\section{Reasoning Distance}
|
||||
\section{Comparison Complexity}
|
||||
|
||||
|
||||
|
||||
\section{FMEA - General Criticism}
|
||||
|
||||
\subsection{FMEA - General Criticism}
|
||||
|
||||
\begin{itemize}
|
||||
\item FMEA type methodologies were designed for simple electro-mechanical systems of the 1940's to 1960's.
|
||||
\item Reasoning Distance - component failure to system level symptom
|
||||
\item State explosion - impossible to perform rigorously
|
||||
\item Difficult to re-use previous analysis work
|
||||
\item Very Difficult to model simultaneous failures.
|
||||
|
||||
\end{itemize}
|
||||
|
||||
%
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA - Better Methodology - Wish List}
|
||||
|
||||
|
||||
\subsection{FMEA - Better Metodology - Wish List}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\item State explosion
|
||||
\item Rigorous (total coverage)
|
||||
\item Reasoning Traceable
|
||||
\item Re-useable
|
||||
\item Simultaneous failures
|
||||
% \item
|
||||
\end{itemize}
|
||||
|
||||
%FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
%self checking features, and provides detailed recommendations for computer/software architecture,
|
||||
%but
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user