Inhibit and conjuction DAG and some text
This commit is contained in:
parent
7ca6451121
commit
aa9f6755f6
@ -749,7 +749,8 @@ Thus applying $fm$ to our newly derived component $ C^2_1 $
|
||||
gives its derived failure modes thus:
|
||||
%$$ fm(C^2_1) = \{ a^1_{s9},b^1_{s10},c^1_{s11} \} .$$
|
||||
$$ fm(C^2_1) = \{ a_{s9},b_{s10},c_{s11} \} .$$
|
||||
This is represented in the DAG in figure \ref{fig:dag4}.
|
||||
We now have all the SYSTEM level failures.
|
||||
This are represented on the r.h.s. of the DAG in figure \ref{fig:dag4}.
|
||||
|
||||
NOW THINK ABOUT THIS
|
||||
|
||||
@ -960,11 +961,96 @@ TO RACE BACK DOWN THE DAG
|
||||
\end{figure}
|
||||
|
||||
|
||||
\section{Directed Acyclic Graph}
|
||||
|
||||
Show how the hierarchy can be represented as a DAG
|
||||
\section{Failure inhibition and conjunction}
|
||||
|
||||
draw a dag
|
||||
\subsection{Inhibition}
|
||||
Failure inhibition is where a failure can only become active given a pre-condition.
|
||||
A component suseptible to a given temperature range
|
||||
making a failure mode a possibility is an inhibit condition.
|
||||
for instance in electronics, a semi-conductor may begin to
|
||||
fail at an eleveted temperature range.
|
||||
Or in mechanical engineering a rubber seal may become brittle and leak
|
||||
at low temperatures.
|
||||
|
||||
What we have is an inhibit condition, in this case the temperature
|
||||
being in range makes the particular failure mode impossible.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||
\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
\tikzstyle{inhibit}=[fmmdi, fill=grey!20];
|
||||
\tikzstyle{conjunction}=[fmmde, fill=red!20];
|
||||
\tikzstyle{annot} = [text width=4em, text centered]
|
||||
|
||||
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||
\node[fmmdi] (I-1) at (\layersep,-2) {$ > 80\oc$};
|
||||
\path (C-1) edge (I-1);
|
||||
\node[failure] (f) at (\layersep*2,-2) {$a$};
|
||||
\path (I-1) edge (f);
|
||||
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing inhibit condition ($ > 80\oc$) on failure mode $a$}
|
||||
\label{fig:daginhibit}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Conjunction}
|
||||
|
||||
Failure conjuction is simply considering, at the {\fg} analysis stage
|
||||
the possibility of two components failing within the same timeframe.
|
||||
We could for instance, looking at a fuel train to a burner/chemical~reactor;
|
||||
consider both shutoff valves failing at the same time.
|
||||
|
||||
For high levels of safety or reliability, in critical sub-systems, all possible double
|
||||
simultaneous failures may have to be considered \cite{en298}.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||
\tikzstyle{fmmdi}=[rectangle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
\tikzstyle{inhibit}=[fmmdi, fill=grey!20];
|
||||
\tikzstyle{conjunction}=[fmmde, fill=red!20];
|
||||
\tikzstyle{annot} = [text width=4em, text centered]
|
||||
|
||||
\node[component] (C-1) at (0,-2) {$C^0_1$};
|
||||
|
||||
\node[failure] (C-1a) at (\layersep,-1) {a};
|
||||
\node[failure] (C-1b) at (\layersep,-2) {b};
|
||||
\node[failure] (C-1c) at (\layersep,-3) {c};
|
||||
|
||||
\path (C-1) edge (C-1a);
|
||||
\path (C-1) edge (C-1b);
|
||||
\path (C-1) edge (C-1c);
|
||||
|
||||
\node[conjunction, right of=C-1b] (CJ) {$\&$};
|
||||
|
||||
\path (C-1a) edge (CJ);
|
||||
\path (C-1b) edge (CJ);
|
||||
\path (C-1c) edge (CJ);
|
||||
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing conjuction condition on failure modes $a \wedge b \wedge c$}
|
||||
\label{fig:dagconjuction}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
||||
|
||||
White filled node with an \& in it.
|
||||
|
||||
\subsection{Inhibit Conditions represented in the DAG}
|
||||
|
||||
@ -975,11 +1061,10 @@ a -> OCT
|
||||
inhibitcond--
|
||||
|
||||
|
||||
\subsection{Failure Mode Conjuction Conditions represented in the DAG}
|
||||
\section{Traversing the datamodel: Extracting Information from the Directed Acyclic Graph}
|
||||
|
||||
White filled node with an \& in it.
|
||||
|
||||
\subsection{Traversing the datamodel}
|
||||
\section{Determining the causes of SYSTEM level Failure modes}
|
||||
|
||||
Show how we can find multiple causes for a SYSTEM level error.
|
||||
Constrast this to the bottom-up approaches of FMEA, FMECA and FMEDA where
|
||||
@ -987,6 +1072,9 @@ without necessarily knowing complex interactions between
|
||||
functionally adjacent components, we must take each component failure
|
||||
mode and tie to to a SYSTEM level failure.
|
||||
|
||||
|
||||
|
||||
|
||||
\subsubsection{Common mode failure detection}
|
||||
|
||||
Describe what a common mode failure is.
|
||||
|
@ -9,6 +9,7 @@ in our functional groups.
|
||||
We can overload this function to take a {\fg} as its range and
|
||||
a set of failure modes (being the failure modes of all the components in the {\fg})
|
||||
as its domain.
|
||||
|
||||
}
|
||||
{
|
||||
Using the overloaded function $fm$ from chapter \ref{fmdef} we can determine the failure modes
|
||||
|
Loading…
Reference in New Issue
Block a user