FFFUIUUCKKC ARRRRGGHHHHH I hate this fucking phd.
This commit is contained in:
parent
f5a7928639
commit
a7f54449a7
@ -63,16 +63,24 @@ description using UML class models.
|
|||||||
% This chapter defines the FMMD process and related concepts and calculations.
|
% This chapter defines the FMMD process and related concepts and calculations.
|
||||||
FMMD is in essence modularised FMEA. Rather than taking each component failure mode
|
FMMD is in essence modularised FMEA. Rather than taking each component failure mode
|
||||||
and extrapolating top level or system failure symptoms from it,
|
and extrapolating top level or system failure symptoms from it,
|
||||||
small groups of components are collected into {\fgs} and analysed,
|
small groups of components are collected into {\fgs} and analysed.
|
||||||
and then {\dcs} are used to represent the {\fgs}.
|
%and then {\dcs} are used to represent the {\fgs}.
|
||||||
These {\dcs} are used to then build further {\fgs} until a hierarchy of {\fgs}
|
We analyse the {\fgs} in order to determine its the failure mode behaviour.
|
||||||
|
%of the {\fg}.
|
||||||
|
With the failure mode behaviour we can obtain a set of failure modes
|
||||||
|
for the {\fg}. We can then create a new theoretical component to represent the {\fg}.
|
||||||
|
We call this a {\dc}.
|
||||||
|
This {\dc} may be used as though it were a component, and has a set of failure modes.
|
||||||
|
We then use {\dcs} to then build further {\fgs} until a hierarchy of {\fgs}
|
||||||
and {\dcs} has been built, converging to a final {\dc}
|
and {\dcs} has been built, converging to a final {\dc}
|
||||||
at the top of the hierarchy.
|
at the top of the hierarchy. The final {\dcs} failure modes
|
||||||
|
are the failure modes of the system under investigation.
|
||||||
%
|
%
|
||||||
Or in other words we take the traditional FMEA~\cite{sccs}[pp.34-38] process, and modularise it.
|
Or in other words we take the traditional FMEA~\cite{sccs}[pp.34-38] process, and modularise it from the bottom-up.
|
||||||
We break down each stage of reasoning
|
%We break down each stage of reasoning
|
||||||
into small manageable groups, and use the results of those groups, as {\dcs}
|
%into small manageable groups, and use the failure mode behaviour from them to create {\dcs}
|
||||||
to build higher level groups.
|
%to build higher level groups.
|
||||||
|
In this way we can incrementally analyse an entire system.
|
||||||
% %This has advantages of concentrating
|
% %This has advantages of concentrating
|
||||||
% %effort in where modules interact,
|
% %effort in where modules interact,
|
||||||
%A notation is then described to index and classify objects created in FMMD hierarchical models.
|
%A notation is then described to index and classify objects created in FMMD hierarchical models.
|
||||||
@ -470,7 +478,7 @@ to build higher level groups.
|
|||||||
|
|
||||||
|
|
||||||
To demonstrate the principles of FMMD, we use it to analyse a
|
To demonstrate the principles of FMMD, we use it to analyse a
|
||||||
commonly used circuit, the non-inverting op amp~\cite{aoe}[p.234], shown in figure \ref{fig:noninvamp}.
|
commonly used circuit, a non-inverting amplifier built from an op amp~\cite{aoe}[p.234] and two resistors, a circuit schematic for this is shown in figure \ref{fig:noninvamp}.
|
||||||
%
|
%
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
@ -482,7 +490,7 @@ commonly used circuit, the non-inverting op amp~\cite{aoe}[p.234], shown in fig
|
|||||||
\end{figure}
|
\end{figure}
|
||||||
%
|
%
|
||||||
The function of the resistors in this circuit is to set the amplifier gain.
|
The function of the resistors in this circuit is to set the amplifier gain.
|
||||||
They operate as a potential divider, the resistors act as a potential divider assuming the op-amp has high impedance,
|
They operate as a potential divider, the resistors act as a potential divider --- assuming the op-amp has high impedance ---
|
||||||
and program the inverting input on the op-amp
|
and program the inverting input on the op-amp
|
||||||
to balance them against the positive input, giving the voltage gain ($G_v$)
|
to balance them against the positive input, giving the voltage gain ($G_v$)
|
||||||
defined by $ G_v = 1 + \frac{R2}{R1} $ at the output.
|
defined by $ G_v = 1 + \frac{R2}{R1} $ at the output.
|
||||||
@ -532,9 +540,10 @@ and determine how they affect the operation of the potential divider.
|
|||||||
%
|
%
|
||||||
%%For this example we look at single failure modes only.
|
%%For this example we look at single failure modes only.
|
||||||
For each failure mode in our {\fg} `potential~divider',
|
For each failure mode in our {\fg} `potential~divider',
|
||||||
we can assign a {\fc} number (see table \ref{tbl:pdfmea}).
|
we can assign a %{\fc}
|
||||||
Each {\fc} is analysed to determine the `symptom'
|
number (see table \ref{tbl:pdfmea}).
|
||||||
of the potential dividers' operation. For instance
|
Each {\fc} is analysed to determine the symptom of failure in
|
||||||
|
the potential dividers' operation. For instance
|
||||||
if resistor $R_1$ were to become open, then the potential~divider would not be grounded and the
|
if resistor $R_1$ were to become open, then the potential~divider would not be grounded and the
|
||||||
voltage output from it would float high (+ve).
|
voltage output from it would float high (+ve).
|
||||||
This would mean the symptom of the failed potential divider would be voltage high output.
|
This would mean the symptom of the failed potential divider would be voltage high output.
|
||||||
@ -556,15 +565,15 @@ for it outputting a low voltage `LowPD'. % Andrew asked for this to be defined b
|
|||||||
%\textbf{Failure} & \textbf{Pot.Div} & \textbf{Symptom} \\
|
%\textbf{Failure} & \textbf{Pot.Div} & \textbf{Symptom} \\
|
||||||
%\textbf{scenario} & \textbf{Effect} & \textbf{Description} \\
|
%\textbf{scenario} & \textbf{Effect} & \textbf{Description} \\
|
||||||
|
|
||||||
\textbf{Fault} & \textbf{Pot.Div} & \textbf{Derived Component} \\ % \textbf{Symptom} \\
|
\textbf{Failure } & \textbf{Pot.Div} & \textbf{Derived Component} \\ % \textbf{Symptom} \\
|
||||||
\textbf{Mode} & \textbf{Effect} & \textbf{Failure modes} \\ %\textbf{Description} \\
|
\textbf{Cause} & \textbf{Effect} & \textbf{Failure modes} \\ %\textbf{Description} \\
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
FS1: $R_1$ SHORT & LOW & LowPD \\
|
FC1: $R_1$ SHORT & LOW & LowPD \\
|
||||||
FS2: $R_1$ OPEN & HIGH & HighPD \\ \hline
|
FC2: $R_1$ OPEN & HIGH & HighPD \\ \hline
|
||||||
FS3: $R_2$ SHORT & HIGH & HighPD \\
|
FC3: $R_2$ SHORT & HIGH & HighPD \\
|
||||||
FS4: $R_2$ OPEN & LOW & LowPD \\ \hline
|
FC4: $R_2$ OPEN & LOW & LowPD \\ \hline
|
||||||
\hline
|
\hline
|
||||||
\end{tabular}
|
\end{tabular}
|
||||||
\label{tbl:pdfmea}
|
\label{tbl:pdfmea}
|
||||||
@ -645,14 +654,14 @@ We represent the {\dc} \textbf{PD}, as a DAG in figure \ref{fig:dc1dag}.
|
|||||||
|
|
||||||
%We could represent it algebraically thus: $ \derivec(PotDiv) =
|
%We could represent it algebraically thus: $ \derivec(PotDiv) =
|
||||||
% FUCKING HELL THIS IS to be REMOVED TOO : CUNTS
|
% FUCKING HELL THIS IS to be REMOVED TOO : CUNTS
|
||||||
\begin{figure}[h+]
|
% \begin{figure}[h+]
|
||||||
\centering
|
% \centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./CH4_FMMD/dc1.png}
|
% \includegraphics[width=200pt,keepaspectratio=true]{./CH4_FMMD/dc1.png}
|
||||||
% dc1.jpg: 430x619 pixel, 72dpi, 15.17x21.84 cm, bb=0 0 430 619
|
% % dc1.jpg: 430x619 pixel, 72dpi, 15.17x21.84 cm, bb=0 0 430 619
|
||||||
\caption{From functional group to derived component, a hierarchical diagram showing how the {\fg} is analysed using the $\derivec$
|
% \caption{From functional group to derived component, a hierarchical diagram showing how the {\fg} is analysed using the $\derivec$
|
||||||
manual process and from this the {\dc} is created.}
|
% manual process and from this the {\dc} is created.}
|
||||||
\label{fig:dc1}
|
% \label{fig:dc1}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
|
|
||||||
% We can now represent the potential divider as a {\dc}.
|
% We can now represent the potential divider as a {\dc}.
|
||||||
@ -660,24 +669,24 @@ We represent the {\dc} \textbf{PD}, as a DAG in figure \ref{fig:dc1dag}.
|
|||||||
% we can treat these as the failure modes of a new {\dc}.
|
% we can treat these as the failure modes of a new {\dc}.
|
||||||
% We can represent this as a DAG (see figure \ref{fig:dc1dag}).
|
% We can represent this as a DAG (see figure \ref{fig:dc1dag}).
|
||||||
|
|
||||||
\begin{figure}[h+]
|
% \begin{figure}[h+]
|
||||||
\centering
|
% \centering
|
||||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
% \begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
% \tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
% \tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
% \tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
% \tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
% \tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
\tikzstyle{annot} = [text width=4em, text centered]
|
% \tikzstyle{annot} = [text width=4em, text centered]
|
||||||
\node[component] (PD) at (0,-0.8) {{\em PD}};
|
% \node[component] (PD) at (0,-0.8) {{\em PD}};
|
||||||
\node[symptom] (PDHIGH) at (\layersep,-0) {$PD_{HIGH}$};
|
% \node[symptom] (PDHIGH) at (\layersep,-0) {$PD_{HIGH}$};
|
||||||
\node[symptom] (PDLOW) at (\layersep,-1.6) {$PD_{LOW}$};
|
% \node[symptom] (PDLOW) at (\layersep,-1.6) {$PD_{LOW}$};
|
||||||
\path (PD) edge (PDHIGH);
|
% \path (PD) edge (PDHIGH);
|
||||||
\path (PD) edge (PDLOW);
|
% \path (PD) edge (PDLOW);
|
||||||
\end{tikzpicture}
|
% \end{tikzpicture}
|
||||||
\caption{DAG representing the {\dc} Potential Divider (PD) and its failure modes.}
|
% \caption{DAG representing the {\dc} Potential Divider (PD) and its failure modes.}
|
||||||
\label{fig:dc1dag}
|
% \label{fig:dc1dag}
|
||||||
\end{figure}
|
% \end{figure}
|
||||||
|
|
||||||
% The derived component is defined by its failure modes and
|
% The derived component is defined by its failure modes and
|
||||||
% the functional group used to derive it.
|
% the functional group used to derive it.
|
||||||
@ -689,16 +698,19 @@ as a building block for other {\fgs} in the same way as we used the base compone
|
|||||||
|
|
||||||
\paragraph{Failure Mode Analysis of a generic op-amp}
|
\paragraph{Failure Mode Analysis of a generic op-amp}
|
||||||
|
|
||||||
\clearpage
|
%\clearpage
|
||||||
Let us now consider the op-amp as a {\bc}. According to
|
Let us now consider the op-amp as a {\bc}. According to
|
||||||
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes (with assigned probabilities):
|
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes %(with assigned probabilities):
|
||||||
latch-up(12.5\%), latch-down(6\%), no-operation(31.3\%), low~slew~rate(50\%).
|
latch-up (l\_up), where the output voltage is stuck at high , % (12.5\%),
|
||||||
|
latch-down (l\_dn), where the output voltage is stuck low, %(6\%),
|
||||||
|
no-operation (noop), where the op-amp cannot drive the output, %(31.3\%),
|
||||||
|
and low~slew~rate (lowslew) where the op-amp cannot react quickly to changes on its inputs. %(50\%).
|
||||||
\nocite{mil1991}
|
\nocite{mil1991}
|
||||||
|
|
||||||
%\ifthenelse {\boolean{dag}}
|
%\ifthenelse {\boolean{dag}}
|
||||||
%{
|
%{
|
||||||
|
|
||||||
\clearpage
|
%\clearpage
|
||||||
We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
@ -733,8 +745,8 @@ We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
|||||||
%}
|
%}
|
||||||
%\clearpage
|
%\clearpage
|
||||||
%\paragraph{Modelling the OP amp with the potential divider.}
|
%\paragraph{Modelling the OP amp with the potential divider.}
|
||||||
We now collect the OP amp and the {\dc} {\em PD} to % andrew critised this sentence but it made sense to Chris and I
|
We now bring the op-amp and the {\dc} {\em PD} together to % andrew heavily critised this sentence but it made sense to Chris and I
|
||||||
form a {\fg} to represent the non-inverting amplifier.
|
form a {\fg} to represent the failure mode behaviour of the non-inverting amplifier.
|
||||||
%
|
%
|
||||||
%We have the failure modes of the {\dc} for the potential divider,
|
%We have the failure modes of the {\dc} for the potential divider,
|
||||||
%so we do not need to go back and consider the individual resistor failure modes that defined its behaviour.
|
%so we do not need to go back and consider the individual resistor failure modes that defined its behaviour.
|
||||||
@ -742,7 +754,8 @@ form a {\fg} to represent the non-inverting amplifier.
|
|||||||
%We can now create a {\fg} for the non-inverting amplifier
|
%We can now create a {\fg} for the non-inverting amplifier
|
||||||
%by bringing together the failure modes from \textbf{opamp} and \textbf{PD}.
|
%by bringing together the failure modes from \textbf{opamp} and \textbf{PD}.
|
||||||
%
|
%
|
||||||
The two components in this new {\fg} have failure modes.
|
The two components in this new {\fg}, the op-amp and the {\dc} {\em PD} have failure modes, which we use
|
||||||
|
as {\fcs} in table~\ref{tbl:ampfmea1}.
|
||||||
%Each of these failure modes will be given a {\fc} for analysis,
|
%Each of these failure modes will be given a {\fc} for analysis,
|
||||||
%and this is represented in table \ref{tbl:ampfmea1}.
|
%and this is represented in table \ref{tbl:ampfmea1}.
|
||||||
% CUNTS NOW I CANNOT USE THE TERM FAILURE SCENARIO---was first column of table below
|
% CUNTS NOW I CANNOT USE THE TERM FAILURE SCENARIO---was first column of table below
|
||||||
@ -758,28 +771,31 @@ The two components in this new {\fg} have failure modes.
|
|||||||
%%childrens version
|
%%childrens version
|
||||||
%\textbf{Failure} & \textbf{Amplifier} & \textbf{Derived component} \\ %Symptom} \\
|
%\textbf{Failure} & \textbf{Amplifier} & \textbf{Derived component} \\ %Symptom} \\
|
||||||
% \textbf{Scenario} & \textbf{Effect} & \textbf{Failure Modes} \\ %Description} \\
|
% \textbf{Scenario} & \textbf{Effect} & \textbf{Failure Modes} \\ %Description} \\
|
||||||
%%
|
%%FFor
|
||||||
\textbf{Fault} & \textbf{Amplifier} & \textbf{Derived component} \\ %Symptom} \\
|
|
||||||
\textbf{Mode} & \textbf{Effect} & \textbf{Failure Modes} \\ %Description} \\
|
%%% Undrar jag om fittan ska avstand mot failure fucking cause
|
||||||
|
%
|
||||||
|
\textbf{Failure} & \textbf{Amplifier} & \textbf{Derived component} \\ %Symptom} \\
|
||||||
|
\textbf{Cause} & \textbf{Effect} & \textbf{Failure Mode} \\ %Description} \\
|
||||||
% R & wire & res + & res - & description
|
% R & wire & res + & res - & description
|
||||||
\hline
|
\hline
|
||||||
\hline
|
\hline
|
||||||
FS1: $OPAMP$ & Output & AMPHigh \\
|
FC1: $OPAMP$ & Output & AMPHigh \\
|
||||||
LatchUP & High & \\ \hline
|
LatchUP & High & \\ \hline
|
||||||
|
|
||||||
FS2: $OPAMP$ & Output Low& AMPLow \\
|
FC2: $OPAMP$ & Output Low& AMPLow \\
|
||||||
LatchDown & Low gain & \\ \hline
|
LatchDown & Low gain & \\ \hline
|
||||||
|
|
||||||
FS3: $OPAMP$ & Output Low & AMPLow \\
|
FC3: $OPAMP$ & Output Low & AMPLow \\
|
||||||
No Operation & & \\ \hline
|
No Operation & & \\ \hline
|
||||||
|
|
||||||
FS4: $OPAMP$ & Low pass & LowPass \\
|
FC4: $OPAMP$ & Low pass & LowPass \\
|
||||||
Low Slew & filtering & \\ \hline
|
Low Slew & filtering & \\ \hline
|
||||||
|
|
||||||
FS5: {\em PD} & Output High & AMPHigh \\
|
FC5: {\em PD} & Output High & AMPHigh \\
|
||||||
LowPD & & \\ \hline
|
LowPD & & \\ \hline
|
||||||
|
|
||||||
FS6: {\em PD} & Output Low & AMPLow \\
|
FC6: {\em PD} & Output Low & AMPLow \\
|
||||||
HighPD & Low Gain & \\ \hline
|
HighPD & Low Gain & \\ \hline
|
||||||
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||||
\hline
|
\hline
|
||||||
@ -1090,7 +1106,7 @@ defines a `part' thus
|
|||||||
%
|
%
|
||||||
This definition of a `part' is useful, but consider parts, such as quad packaged op-amps:
|
This definition of a `part' is useful, but consider parts, such as quad packaged op-amps:
|
||||||
%
|
%
|
||||||
in this case, we have four op-amps on one chip. For FMEA we would consider each op-amp in the package
|
in this case, we have four op-amps on one chip. Using traditional FMEA methods~\cite{sccs}[p.34] we would consider each op-amp in the package
|
||||||
as a separate building block for a circuit. For FMMD each of these four op-amps
|
as a separate building block for a circuit. For FMMD each of these four op-amps
|
||||||
in the chip would be considered to be a separate {\bc}.
|
in the chip would be considered to be a separate {\bc}.
|
||||||
% CAN WE FIND SUPPORT FOR THIS IN LITERATURE???
|
% CAN WE FIND SUPPORT FOR THIS IN LITERATURE???
|
||||||
|
@ -18,9 +18,10 @@
|
|||||||
\usepackage{lastpage}
|
\usepackage{lastpage}
|
||||||
\usetikzlibrary{shapes,snakes}
|
\usetikzlibrary{shapes,snakes}
|
||||||
\newcommand{\tickYES}{\checkmark}
|
\newcommand{\tickYES}{\checkmark}
|
||||||
\newcommand{\fc}{fault~scenario}
|
%% FUCKING CUNTS \newcommand{\fc}{fault~scenario}
|
||||||
\newcommand{\fcs}{fault~scenarios}
|
\newcommand{\fc}{fault~cause}
|
||||||
|
%% FUCKING CUNTS \newcommand{\fcs}{fault~scenarios}
|
||||||
|
\newcommand{\fcs}{fault~causes}
|
||||||
% Page layout definitions to suit A4 paper
|
% Page layout definitions to suit A4 paper
|
||||||
\setcounter{secnumdepth}{3} \setcounter{tocdepth}{4}
|
\setcounter{secnumdepth}{3} \setcounter{tocdepth}{4}
|
||||||
\setlength{\topmargin}{0mm}
|
\setlength{\topmargin}{0mm}
|
||||||
|
Loading…
Reference in New Issue
Block a user