Shoehorned whole noninvopamp into it
This commit is contained in:
parent
cc5791f7b8
commit
a762c1db5c
@ -9,7 +9,7 @@
|
||||
\usepackage{ifthen}
|
||||
\usepackage{lastpage}
|
||||
\usetikzlibrary{shapes,snakes}
|
||||
|
||||
\newcommand{\tickYES}{\checkmark}
|
||||
|
||||
|
||||
%\newboolean{paper}
|
||||
@ -39,7 +39,14 @@ failure mode of the component or sub-system}}}
|
||||
\newcommand{\frategloss}{\glossary{name={failure rate}, description={The number of failure within a population (of size N), divided by N over a given time interval}}}
|
||||
\newcommand{\pecgloss}{\glossary{name={PEC},description={A Programmable Electronic controller, will typically consist of sensors and actuators interfaced electronically, with some firmware/software component in overall control}}}
|
||||
\newcommand{\bcfm}{base~component~failure~mode}
|
||||
\def\layersep{2.5cm}
|
||||
\def\layersep{2.0cm}
|
||||
|
||||
\newboolean{pld}
|
||||
\setboolean{pld}{false} % boolvar=true or false : draw analysis using propositional logic diagrams
|
||||
|
||||
\newboolean{dag}
|
||||
\setboolean{dag}{true} % boolvar=true or false : draw analysis using directed acylic graphs
|
||||
|
||||
|
||||
\begin{document}
|
||||
\pagestyle{fancy}
|
||||
@ -52,7 +59,7 @@ failure mode of the component or sub-system}}}
|
||||
\lhead{Developing a rigorous bottom-up modular static failure mode modelling methodology}
|
||||
% numbers at outer edges
|
||||
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||
\author{R.P.Clark$^\star$ , A.~Fish$^\dagger$ , C.~Garret$^\dagger$, J.~Howse$^\dagger$ \\
|
||||
\author{R.P.Clark$^\star$ , A.~Fish$^\dagger$ , C.~Garrett$^\dagger$, J.~Howse$^\dagger$ \\
|
||||
$^\star${\em Energy Technology Control, 25 North Street, Lewes, BN7 2PE, UK} \and $^\dagger${\em University of Brighton, UK}
|
||||
}
|
||||
|
||||
@ -390,35 +397,36 @@ Alternatively they could be self~checking sub-systems that are either in a norma
|
||||
|
||||
Operational states are conditions that apply to some functional groups, not individual components.
|
||||
|
||||
A standard non inverting op amp (from ``The Art of Electronics'' ~\cite{aoe}[pp.234]) is shown in figure \ref{fig:noninvamp}.
|
||||
|
||||
\section{Worked example: Non Inverting Operational Amplifier}
|
||||
|
||||
\subsection{FMMD analysis Example: A Voltage/Potential Divider}
|
||||
\begin{figure}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=125pt,keepaspectratio=true]{./pd.png}
|
||||
% pd.png: 364x241 pixel, 72dpi, 12.84x8.50 cm, bb=0 0 364 241
|
||||
\caption{Potential Divider Circuit}
|
||||
\label{fig:pd}
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{../../noninvopamp/noninv.png}
|
||||
% noninv.jpg: 341x186 pixel, 72dpi, 12.03x6.56 cm, bb=0 0 341 186
|
||||
\caption{Standard non inverting amplifier configuration}
|
||||
\label{fig:noninvamp}
|
||||
\end{figure}
|
||||
|
||||
We consider here an example functional group, the potential divider\footnote{A commonly used configuration in electronics to provide specific voltage levels}
|
||||
which consists of two resistors used to provide a voltage
|
||||
intermediate of its supply and ground rails.
|
||||
%It consists of two resistors.
|
||||
%
|
||||
%A functional group, is an ideally small in number collection of components,
|
||||
%that interact to provide
|
||||
%a function or task within a system.
|
||||
%As the resistors work to provide a specific function, that of a potential divider,
|
||||
%we can treat them as a functional group. i
|
||||
The potential divider `functional~group' has two members, $R1$ and $R2$.
|
||||
Using the EN298 specification for resistor failure ~\cite{en298}[App.A]
|
||||
we can assign the failure modes of $OPEN$ and $SHORT$ to each of the resistors.
|
||||
This is shown as a graph in figure \ref{fig:rdag}.
|
||||
|
||||
%\ifthenelse {\boolean{dag}}
|
||||
%{
|
||||
|
||||
The function of the resistors in this circuit is to set the amplifier gain.
|
||||
They operate as a potential divider and program the minus input on the op-amp
|
||||
to balance them against the positive input, giving the voltage gain ($G_v$)
|
||||
defined by $ G_v = 1 + \frac{R2}{R1} $ at the output.
|
||||
|
||||
|
||||
|
||||
|
||||
A functional group, is an ideally small in number collection of components,
|
||||
that interact to provide
|
||||
a function or task within a system.
|
||||
As the resistors work to provide a specific function, that of a potential divider,
|
||||
we can treat them as a functional group. This functional group has two members, $R1$ and $R2$.
|
||||
Using the EN298 specification for resistor failure ~\cite{en298}[App.A]
|
||||
we can assign failure modes of $OPEN$ and $SHORT$ to the resistors.
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
We can now represent a resistor in terms of its failure modes as a directed acyclic graph (DAG)
|
||||
(see figure \ref{fig:rdag}).
|
||||
\begin{figure}[h+]
|
||||
@ -436,27 +444,40 @@ We can now represent a resistor in terms of its failure modes as a directed acyc
|
||||
\path (R) edge (RSHORT);
|
||||
\path (R) edge (ROPEN);
|
||||
\end{tikzpicture}
|
||||
\caption{DAG representing a resistor and its failure modes}
|
||||
\caption{DAG representing a reistor and its failure modes}
|
||||
\label{fig:rdag}
|
||||
\end{figure}
|
||||
%}section
|
||||
%{
|
||||
%}
|
||||
\vbox{
|
||||
Thus or the potential divider in the circuit in figure~\ref{fig:pd},
|
||||
$R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes $\{R2\_OPEN, R2\_SHORT\}$.
|
||||
}
|
||||
{
|
||||
}
|
||||
Thus $R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes $\{R2\_OPEN, R2\_SHORT\}$.
|
||||
|
||||
|
||||
%\clearpage
|
||||
\paragraph{Failure Mode Analysis of the Potential Divider}
|
||||
\section{Failure Mode Analysis of the Potential Divider}
|
||||
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
Modelling this as a functional group, we can draw a simple closed curve
|
||||
to represent each failure mode, taken from the components R1 and R2,
|
||||
in the potential divider, shown in figure \ref{fig:fg1}.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1.png}
|
||||
% fg1.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{potential divider `functional group' failure modes}
|
||||
\label{fig:fg1}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
%\ifthenelse {\boolean{dag}}
|
||||
%{
|
||||
Modelling the two resistors as a functional group, we present this as a directed graph
|
||||
(see figure \ref{fig:fg1dag}).
|
||||
|
||||
\begin{figure}[h+]
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
Modelling this as a functional group, we can draw this as a directed graph
|
||||
failure modes, taken from the components R1 and R2,
|
||||
in the potential divider, shown in figure \ref{fig:fg1dag}.
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
@ -483,21 +504,23 @@ Modelling the two resistors as a functional group, we present this as a directed
|
||||
|
||||
% Potential divider failure modes
|
||||
%
|
||||
% \node[symptom] (PDHIGH) at (\layersep*2,-4) {$PD_{HIGH}$};
|
||||
% \node[symptom] (PDLOW) at (\layersep*2,-6) {$PD_{LOW}$};
|
||||
%
|
||||
% \path (R1OPEN) edge (PDHIGH);
|
||||
% \path (R2SHORT) edge (PDHIGH);
|
||||
%
|
||||
% \path (R2OPEN) edge (PDLOW);
|
||||
% \path (R1SHORT) edge (PDLOW);
|
||||
%\node[symptom] (PDHIGH) at (\layersep*2,-4) {$PD_{HIGH}$};
|
||||
%\node[symptom] (PDLOW) at (\layersep*2,-6) {$PD_{LOW}$};
|
||||
|
||||
%\path (R1OPEN) edge (PDHIGH);
|
||||
%\path (R2SHORT) edge (PDHIGH);
|
||||
|
||||
%\path (R2OPEN) edge (PDLOW);
|
||||
%\path (R1SHORT) edge (PDLOW);
|
||||
|
||||
\end{tikzpicture}
|
||||
|
||||
\caption{Component Failure Modes of the `Potential Divider'}
|
||||
\caption{DAG representing the functional group `Potential Divider'}
|
||||
\label{fig:fg1dag}
|
||||
\end{figure}
|
||||
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
We can now look at each of these base component failure modes,
|
||||
and determine how they will affect the operation of the potential divider.
|
||||
@ -505,10 +528,25 @@ and determine how they will affect the operation of the potential divider.
|
||||
%which is represented on the diagram, with an asterisk marking
|
||||
%which failure modes is modelling (see figure \ref{fig:fg1a}).
|
||||
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
Each labelled asterisk in the diagram represents a failure mode scenario.
|
||||
The failure mode scenarios are given test case numbers, and an example to clarify this follows
|
||||
in table~\ref{pdfmea}.
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1a.png}
|
||||
% fg1a.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{potential divider with test cases}
|
||||
\label{fig:fg1a}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
|
||||
%\ifthenelse {\boolean{dag}}
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
For this example we can look at single failure modes only.
|
||||
For each failure mode in our {\fg} `potential~divider'
|
||||
@ -518,7 +556,7 @@ on the potential dividers' operation. For instance
|
||||
were the resistor $R_1$ to go open, the circuit would not be grounded and the
|
||||
voltage output from it would be the +ve supply rail.
|
||||
This would mean the symptom of the failed potential divider, would be that it
|
||||
gives an output high voltage. We can now consider the {\fg}
|
||||
gives an output high voltage reading. We can now consider the {\fg}
|
||||
as a component in its own right, and its symptoms as its failure modes.
|
||||
|
||||
From table \ref{pdfmea} we can see that resistor
|
||||
@ -570,31 +608,65 @@ This is represented in the DAG in figure \ref{fig:fg1adag}.
|
||||
\label{fig:fg1adag}
|
||||
\end{figure}
|
||||
}
|
||||
%{
|
||||
%}
|
||||
{
|
||||
}
|
||||
|
||||
{ \small
|
||||
\begin{table}[ht]
|
||||
\caption{Potential Divider: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l|l||}
|
||||
\begin{tabular}{||l|c|c|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Pot.Div} & \textbf{ } & \textbf{Symptom} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{ } & \textbf{Description} \\
|
||||
\textbf{Test} & \textbf{Pot.Div} & \textbf{Symptom} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $R_1$ SHORT & LOW & & LowPD \\
|
||||
TC2: $R_1$ OPEN & HIGH & & HighPD \\ \hline
|
||||
TC3: $R_2$ SHORT & HIGH & & HighPD \\
|
||||
TC4: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||
TC1: $R_1$ SHORT & LOW & LowPD \\
|
||||
TC2: $R_1$ OPEN & HIGH & HighPD \\ \hline
|
||||
TC3: $R_2$ SHORT & HIGH & HighPD \\
|
||||
TC4: $R_2$ OPEN & LOW & LowPD \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{pdfmea}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
We can now collect the symptoms of failure. From the four base component failure modes, we now
|
||||
have two symptoms, where the potential divider will give an incorrect low voltage (which we can term $LowPD$)
|
||||
or an incorrect high voltage (which we can term $HighPD$).
|
||||
We can represent the collection of these symptoms by drawing connecting lines between
|
||||
the test cases and naming them (see figure \ref{fig:fg1b}).
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1b.png}
|
||||
% fg1b.jpg: 430x271 pixel, 72dpi, 15.17x9.56 cm, bb=0 0 430 271
|
||||
\caption{Collection of potential divider failure mode symptoms}
|
||||
\label{fig:fg1b}
|
||||
\end{figure}
|
||||
%\page
|
||||
|
||||
We can now make a `derived component' to represent this potential divider.
|
||||
This can be named \textbf{PD}.
|
||||
This {\dc} will have two failure modes.
|
||||
We can use the symbol $\bowtie$ to represent taking the analysed
|
||||
{\fg} and creating from it, a {\dc}.
|
||||
|
||||
%\ifthenelse {\boolean{dag}}
|
||||
%We could represent it algebraically thus: $ \bowtie(PotDiv) =
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/dc1.png}
|
||||
% dc1.jpg: 430x619 pixel, 72dpi, 15.17x21.84 cm, bb=0 0 430 619
|
||||
\caption{From functional group to derived component}
|
||||
\label{fig:dc1}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
We can now represent the potential divider as a {\dc}.
|
||||
Because have its symptoms or failure mode behaviour,
|
||||
@ -621,80 +693,384 @@ We can represent that as a DAG (see figure \ref{fig:dc1dag}).
|
||||
\end{figure}
|
||||
|
||||
}
|
||||
%{
|
||||
%}
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
%Because the derived component is defined by its failure modes and
|
||||
%the functional group used to derive it, we can use it
|
||||
As we have a set of failure modes for the potential divider {\dc},
|
||||
we can use it
|
||||
as a building block for other {\fgs}.% in the same way as we used the resistors $R1$ and $R2$.
|
||||
Because the derived component is defined by its failure modes and
|
||||
the functional group used to derive it, we can use it
|
||||
as a building block for other {\fgs} in the same way as we used the resistors $R1$ and $R2$.
|
||||
|
||||
Note that number of base failure modes, four, is reduced to two in the {\dc}.
|
||||
We avoided the state explosion problem of having to
|
||||
check $R1$ and $R2$ against all other components in the system they may belong to.
|
||||
Also, by modularising the circuit as a {\dc}, we have reduced the number of errors we need to consider at higher levels
|
||||
of analysis.
|
||||
%\clearpage
|
||||
|
||||
Using {\dcs} in higher level {\fgs} we can build a hierarchy to represent the failure mode behaviour
|
||||
of complete systems.
|
||||
\section{Failure Mode Analysis of the OP-AMP}
|
||||
|
||||
% \subsection{Re-Factoring the UML Model}
|
||||
Let use now consider the op-amp. According to
|
||||
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
||||
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
||||
|
||||
|
||||
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
We can represent these failure modes on a diagram (see figure~\ref{fig:op1}).
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/op1.png}
|
||||
% op1.jpg: 406x221 pixel, 72dpi, 14.32x7.80 cm, bb=0 0 406 221
|
||||
\caption{Op Amp failure modes}
|
||||
\label{fig:op1}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
\tikzstyle{annot} = [text width=4em, text centered]
|
||||
|
||||
\node[component] (OPAMP) at (0,-4) {$OPAMP$};
|
||||
|
||||
\node[failure] (OPAMPLU) at (\layersep,-0) {latchup};
|
||||
\node[failure] (OPAMPLD) at (\layersep,-2) {latchdown};
|
||||
\node[failure] (OPAMPNP) at (\layersep,-4) {noop};
|
||||
\node[failure] (OPAMPLS) at (\layersep,-6) {lowslew};
|
||||
|
||||
\path (OPAMP) edge (OPAMPLU);
|
||||
\path (OPAMP) edge (OPAMPLD);
|
||||
\path (OPAMP) edge (OPAMPNP);
|
||||
\path (OPAMP) edge (OPAMPLS);
|
||||
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing failure modes of an Op-amp}
|
||||
\label{fig:op1dag}
|
||||
\end{figure}
|
||||
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
%\clearpage
|
||||
|
||||
\section{Bringing the OP amp and the potential divider together}
|
||||
|
||||
We can now consider bringing the OP amp and the potential divider together to
|
||||
model the non inverting amplifier. We have the failure modes of the functional group for the potential divider,
|
||||
so we do not need to consider the individual resistor failure modes that define its behaviour.
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
We can make a new functional group to represent the amplifier, by bringing the component \textbf{opamp}
|
||||
and the component potential divider \textbf{PD} into a new functional group.
|
||||
This functional group has the failure modes from the op-amp component, and the failure modes
|
||||
from the potential divider {\dc}, represented by figure~\ref{fig:fgamp}.
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fgamp.png}
|
||||
% fgamp.jpg: 430x330 pixel, 72dpi, 15.17x11.64 cm, bb=0 0 430 330
|
||||
\caption{Amplifier Functional Group}
|
||||
\label{fig:fgamp}
|
||||
\end{figure}
|
||||
|
||||
We can now place test cases on this (note this analysis considers single failure modes only
|
||||
where we want to model multiple failures, we can over lap contours, and place the test cases in overlapping
|
||||
regions) see figure~\ref{fig:fgampa}.
|
||||
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fgampa.png}
|
||||
% fgampa.jpg: 430x330 pixel, 72dpi, 15.17x11.64 cm, bb=0 0 430 330 hno
|
||||
\caption{Amplifier Functional Group with Test Cases}
|
||||
\label{fig:fgampa}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
We can now crate a {\fg} for the non-inverting amplifier
|
||||
by bringing together the failure modes from \textbf{opamp} and \textbf{PD}.
|
||||
Each of these failure modes will be given a test case for analysis,
|
||||
and this is represented in table \ref{ampfmea}.
|
||||
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
%\clearpage
|
||||
{\footnotesize
|
||||
\begin{table}[ht]
|
||||
\caption{Non Inverting Amplifier: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|l||}
|
||||
\hline \hline
|
||||
\textbf{Test} & \textbf{Amplifier} & \textbf{Symptom} \\
|
||||
\textbf{Case} & \textbf{Effect} & \textbf{Description} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
TC1: $OPAMP$ & Output & AMPHigh \\
|
||||
LatchUP & High & \\ \hline
|
||||
|
||||
TC2: $OPAMP$ & Output Low& AMPLow \\
|
||||
LatchDown & Low gain & \\ \hline
|
||||
|
||||
TC3: $OPAMP$ & Output Low & AMPLow \\
|
||||
No Operation & & \\ \hline
|
||||
|
||||
TC4: $OPAMP$ & Low pass & LowPass \\
|
||||
Low Slew & filtering & \\ \hline
|
||||
|
||||
TC5: $PD$ & Output High & AMPHigh \\
|
||||
LowPD & & \\ \hline
|
||||
|
||||
TC6: $PD$ & Output Low & AMPLow \\
|
||||
HighPD & Low Gain & \\ \hline
|
||||
%TC7: $R_2$ OPEN & LOW & & LowPD \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{ampfmea}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
Let us consider, for the sake of example, that the voltage follower (very low gain of 1.0)
|
||||
amplification chracteristics from
|
||||
TC2 and TC6 can be considered as low output from the OPAMP for the application
|
||||
in hand (say milli-volt signal amplification).
|
||||
|
||||
For this amplifier configuration we have three failure modes, $AMPHigh, AMPLow, LowPass$.%see figure~\ref{fig:fgampb}.
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
We can now derive a `component' to represent this amplifier configuration (see figure ~\ref{fig:noninvampa}).
|
||||
\begin{figure}[h+]
|
||||
\centering
|
||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninvampa.png}
|
||||
% noninvampa.jpg: 436x720 pixel, 72dpi, 15.38x25.40 cm, bb=0 0 436 720
|
||||
\caption{Non Inverting Amplifier Derived Component}
|
||||
\label{fig:noninvampa}
|
||||
\end{figure}
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
% \ifthenelse {\boolean{dag}}
|
||||
% {
|
||||
%
|
||||
% The UML models thus far % in this
|
||||
% have been used to develop the ontology. % data relationships required to perform FMMD analysis.
|
||||
% We can now re-organise and rationalise the UML model.
|
||||
% We want to be able to use {\dcs} in functional groups.
|
||||
% It therefore makes sense for {\dc} to inherit {\em component}.
|
||||
|
||||
|
||||
|
||||
|
||||
% \begin{figure}[h]
|
||||
% %% text for figure below
|
||||
%
|
||||
% The non-inverting amplifier can be drawn as a DAG using the
|
||||
% results from table~\ref{ampfmea} (see~figure~\ref{fig:noninvdag0}).
|
||||
% Note that the potential divider, $PD$, is treated as a component with a set of failure modes,
|
||||
% and its error sources and analysis have been hidden in this diagram.
|
||||
% $PD$ is considered to be a {\dc}.
|
||||
%
|
||||
% \begin{figure}
|
||||
% \centering
|
||||
% \includegraphics[width=200pt,bb=0 0 702 464]{./master_uml.png}
|
||||
% % master_uml.jpg: 702x464 pixel, 72dpi, 24.76x16.37 cm, bb=0 0 702 464
|
||||
% \caption{Re-factored UML Diagram}
|
||||
% \label{fig:refactored_uml}
|
||||
% \end{figure}
|
||||
|
||||
% \begin{figure}[h]
|
||||
% \centering
|
||||
% \includegraphics[width=200pt]{./master_uml.png}
|
||||
% % master_uml.png: 700x462 pixel, 72dpi, 24.69x16.30 cm, bb=0 0 700 462
|
||||
% \caption{Re-factored UML Diagram }
|
||||
% \label{fig:refactored_uml}
|
||||
% \end{figure}
|
||||
% \begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
% \tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
% \tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||
% \tikzstyle{component}=[fmmde, fill=green!50];
|
||||
% \tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
% \tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
% \tikzstyle{annot} = [text width=4em, text centered]
|
||||
%
|
||||
% The re-factored UML diagram is shown in figure \ref{fig:refactored_uml}; with this structure
|
||||
% {\dcs} can be
|
||||
% used to build {\fgs} at a higher level. In this manner we
|
||||
% can build a hierarchical model with each layer consisting of
|
||||
% components derived from the functional groups of derived components,
|
||||
% until we arrive at a SYSTEM level.
|
||||
% The symptoms of the {\fg} at the top represent the SYSTEM failure modes.
|
||||
|
||||
|
||||
%From the ontology, a set of rules for converting the {\fgs}
|
||||
%(collecting common symptoms) to {\dcs} as we traverse up the
|
||||
%hierarchy is developed. The hierarchical model can have layers added
|
||||
%until it converges to a top level single functional group.
|
||||
|
||||
%On collecting
|
||||
%symptoms from this, we are left with the top level, or system level, failure modes.
|
||||
|
||||
% \paragraph{Diagramatic Notation based on Euler Diagrams}
|
||||
% \node[component] (OPAMP) at (0,-4) {$OPAMP$};
|
||||
% \node[failure] (OPAMPLU) at (\layersep,-0) {latchup};
|
||||
% \node[failure] (OPAMPLD) at (\layersep,-2) {latchdown};
|
||||
% \node[failure] (OPAMPNP) at (\layersep,-4) {noop};
|
||||
% \node[failure] (OPAMPLS) at (\layersep,-6) {lowslew};
|
||||
% \path (OPAMP) edge (OPAMPLU);
|
||||
% \path (OPAMP) edge (OPAMPLD);
|
||||
% \path (OPAMP) edge (OPAMPNP);
|
||||
% \path (OPAMP) edge (OPAMPLS);
|
||||
%
|
||||
% The model is presented in a diagrammatic notation that has been
|
||||
% designed to be intuitive and understandable.
|
||||
% %
|
||||
% It uses well tested
|
||||
% visual techniques to represent the elements of the model and their
|
||||
% relationships.
|
||||
% %
|
||||
% Software support for the development of models in this
|
||||
% notation has been designed and proof-of-concept tools have been implemented.
|
||||
%
|
||||
% \node[component] (PD) at (0,-9) {$PD$};
|
||||
% \node[symptom] (PDHIGH) at (\layersep,-8) {$PD_{HIGH}$};
|
||||
% \node[symptom] (PDLOW) at (\layersep,-10) {$PD_{LOW}$};
|
||||
% \path (PD) edge (PDHIGH);
|
||||
% \path (PD) edge (PDLOW);
|
||||
%
|
||||
% \node[symptom] (AMPHIGH) at (\layersep*4,-3) {$AMP_{HIGH}$};
|
||||
% \node[symptom] (AMPLOW) at (\layersep*4,-5) {$AMP_{LOW}$};
|
||||
% \node[symptom] (AMPLP) at (\layersep*4,-7) {$LOWPASS$};
|
||||
%
|
||||
% \path (PDLOW) edge (AMPHIGH);
|
||||
% \path (OPAMPLU) edge (AMPHIGH);
|
||||
%
|
||||
% \path (PDHIGH) edge (AMPLOW);
|
||||
% \path (OPAMPNP) edge (AMPLOW);
|
||||
% \path (OPAMPLD) edge (AMPLOW);
|
||||
% \path (OPAMPLS) edge (AMPLP);
|
||||
% \end{tikzpicture}
|
||||
% % End of code
|
||||
% \caption{DAG representing failure modes and symptoms of the Non Inverting Op-amp Circuit}
|
||||
% \label{fig:noninvdag0}
|
||||
% \end{figure}
|
||||
% }
|
||||
% {
|
||||
% }
|
||||
|
||||
|
||||
%failure mode contours).
|
||||
%\clearpage
|
||||
%\clearpage
|
||||
\section{Failure Modes from non inverting amplifier as a Directed Acyclic Graph (DAG)}
|
||||
\ifthenelse {\boolean{pld}}
|
||||
{
|
||||
We can now represent the FMMD analysis as a directed graph, see figure \ref{fig:noninvdag1}.
|
||||
With the information structured in this way, we can trace the high level failure mode symptoms
|
||||
back to their potential causes.
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\ifthenelse {\boolean{dag}}
|
||||
{
|
||||
We can now expand the $PD$ {\dc} and now have a full FMMD failure mode model
|
||||
drawn as a DAG, which we can use to traverse to determine the possible causes to
|
||||
the three high level symptoms, or failure~modes of the non-inverting amplifier.
|
||||
Figure \ref{fig:noninvdag1} shows a fully expanded DAG, from which we can derive information
|
||||
to assist in building models for FTA, FMEA, FMECA and FMEDA failure mode analysis methodologies.
|
||||
}
|
||||
{
|
||||
}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
\tikzstyle{annot} = [text width=4em, text centered]
|
||||
|
||||
% Draw the input layer nodes
|
||||
%\foreach \name / \y in {1,...,4}
|
||||
% This is the same as writing \foreach \name / \y in {1/1,2/2,3/3,4/4}
|
||||
% \node[component, pin=left:Input \#\y] (I-\name) at (0,-\y) {};
|
||||
|
||||
\node[component] (OPAMP) at (0,-4) {$OPAMP$};
|
||||
\node[component] (R1) at (0,-9) {$R_1$};
|
||||
\node[component] (R2) at (0,-13) {$R_2$};
|
||||
|
||||
%\node[component] (C-3) at (0,-5) {$C^0_3$};
|
||||
%\node[component] (K-4) at (0,-8) {$K^0_4$};
|
||||
%\node[component] (C-5) at (0,-10) {$C^0_5$};
|
||||
%\node[component] (C-6) at (0,-12) {$C^0_6$};
|
||||
%\node[component] (K-7) at (0,-15) {$K^0_7$};
|
||||
|
||||
% Draw the hidden layer nodes
|
||||
%\foreach \name / \y in {1,...,5}
|
||||
% \path[yshift=0.5cm]
|
||||
|
||||
\node[failure] (OPAMPLU) at (\layersep,-0) {latchup};
|
||||
\node[failure] (OPAMPLD) at (\layersep,-2) {latchdown};
|
||||
\node[failure] (OPAMPNP) at (\layersep,-4) {noop};
|
||||
\node[failure] (OPAMPLS) at (\layersep,-6) {lowslew};
|
||||
|
||||
\node[failure] (R1SHORT) at (\layersep,-9) {$R1_{SHORT}$};
|
||||
\node[failure] (R1OPEN) at (\layersep,-11) {$R1_{OPEN}$};
|
||||
|
||||
\node[failure] (R2SHORT) at (\layersep,-13) {$R2_{SHORT}$};
|
||||
\node[failure] (R2OPEN) at (\layersep,-15) {$R2_{OPEN}$};
|
||||
|
||||
|
||||
|
||||
% Draw the output layer node
|
||||
|
||||
% % Connect every node in the input layer with every node in the
|
||||
% % hidden layer.
|
||||
% %\foreach \source in {1,...,4}
|
||||
% % \foreach \dest in {1,...,5}
|
||||
\path (OPAMP) edge (OPAMPLU);
|
||||
\path (OPAMP) edge (OPAMPLD);
|
||||
\path (OPAMP) edge (OPAMPNP);
|
||||
\path (OPAMP) edge (OPAMPLS);
|
||||
|
||||
\path (R1) edge (R1SHORT);
|
||||
\path (R1) edge (R1OPEN);
|
||||
|
||||
\path (R2) edge (R2SHORT);
|
||||
\path (R2) edge (R2OPEN);
|
||||
|
||||
|
||||
% Potential divider failure modes
|
||||
%
|
||||
\node[symptom] (PDHIGH) at (\layersep*2,-11) {$PD_{HIGH}$};
|
||||
\node[symptom] (PDLOW) at (\layersep*2,-13) {$PD_{LOW}$};
|
||||
|
||||
|
||||
|
||||
\path (R1OPEN) edge (PDHIGH);
|
||||
\path (R2SHORT) edge (PDHIGH);
|
||||
|
||||
|
||||
\path (R2OPEN) edge (PDLOW);
|
||||
\path (R1SHORT) edge (PDLOW);
|
||||
|
||||
|
||||
|
||||
\node[symptom] (AMPHIGH) at (\layersep*3.4,-7) {$AMP_{HIGH}$};
|
||||
\node[symptom] (AMPLOW) at (\layersep*3.4,-9) {$AMP_{LOW}$};
|
||||
\node[symptom] (AMPLP) at (\layersep*3.4,-11) {$LOWPASS$};
|
||||
|
||||
\path (PDLOW) edge (AMPHIGH);
|
||||
\path (OPAMPLU) edge (AMPHIGH);
|
||||
|
||||
\path (PDHIGH) edge (AMPLOW);
|
||||
\path (OPAMPNP) edge (AMPLOW);
|
||||
\path (OPAMPLD) edge (AMPLOW);
|
||||
|
||||
\path (OPAMPLS) edge (AMPLP);
|
||||
% %\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
|
||||
% \node[symptom, right of=C-1a] (s1) {s1};
|
||||
% \node[symptom, right of=C-2a] (s2) {s2};
|
||||
%
|
||||
%
|
||||
%
|
||||
% \path (C-2b) edge (s1);
|
||||
% \path (C-1a) edge (s1);
|
||||
%
|
||||
% \path (C-2a) edge (s2);
|
||||
% \path (C-1b) edge (s2);
|
||||
%
|
||||
% %\node[component, right of=s1] (DC) {$C^1_1$};
|
||||
%
|
||||
% %\path (s1) edge (DC);
|
||||
% %\path (s2) edge (DC);
|
||||
%
|
||||
%
|
||||
%
|
||||
% % Connect every node in the hidden layer with the output layer
|
||||
% %\foreach \source in {1,...,5}
|
||||
% % \path (H-\source) edge (O);
|
||||
%
|
||||
% % Annotate the layers
|
||||
% \node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
|
||||
% \node[annot,left of=hl] {Base Components};
|
||||
% \node[annot,right of=hl](s) {Symptoms};
|
||||
%\node[annot,right of=s](dcl) {Derived Component};
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{Full DAG representing failure modes and symptoms of the Non Inverting Op-amp Circuit}
|
||||
\label{fig:noninvdag1}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{Evaluation against Desirable Criteria}
|
||||
@ -785,6 +1161,30 @@ particular field. It can be applied to mechanical, electrical or software domain
|
||||
It can therefore be used to analyse systems comprised of electrical,
|
||||
mechanical and software elements in one integrated model.
|
||||
|
||||
|
||||
{ \small
|
||||
\begin{table}[ht]
|
||||
\caption{Features of static Failure Mode analysis methodologies} % title of Table
|
||||
\centering % used for centering table
|
||||
\begin{tabular}{||l|c|c|c|c|c||}
|
||||
\hline \hline
|
||||
\textbf{Desirable} & \textbf{FTA} & \textbf{FMEA} & \textbf{FMECA} & \textbf{FDEMA} & \textbf{FMMD} \\
|
||||
\textbf{Criteria} & \textbf{} & \textbf{} & \textbf{} & \textbf{} & \textbf{} \\
|
||||
% R & wire & res + & res - & description
|
||||
\hline
|
||||
\hline
|
||||
C1: state exp & partial & & & & $\tickYES$ \\ \hline
|
||||
C2: $\forall$ failures & &$\tickYES$ & $\tickYES$ & $\tickYES$ & $\tickYES$ \\ \hline
|
||||
C3: mech,elec,s/w & $\tickYES$ & & & & $\tickYES$ \\ \hline
|
||||
C4: modular & & & & partial & $\tickYES$ \\ \hline
|
||||
C5: formal & partial & partial & partial & partial & $\tickYES$ \\ \hline
|
||||
C6: multiple fm & $\tickYES$ & & & partial & $\tickYES$ \\ \hline
|
||||
\hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\label{pdfmea}
|
||||
\end{table}
|
||||
}
|
||||
%\today
|
||||
%
|
||||
{ \small
|
||||
|
Loading…
Reference in New Issue
Block a user