rime=i+i+3;
This commit is contained in:
parent
138112e3bd
commit
917abf0d41
Binary file not shown.
206
papers/fermat/fermat.tex
Normal file
206
papers/fermat/fermat.tex
Normal file
@ -0,0 +1,206 @@
|
||||
|
||||
|
||||
%%% OUTLINE
|
||||
|
||||
|
||||
|
||||
|
||||
%\documentclass[twocolumn]{article}
|
||||
\documentclass{article}
|
||||
%\documentclass[twocolumn,10pt]{report}
|
||||
\usepackage{graphicx}
|
||||
\usepackage{fancyhdr}
|
||||
%\usepackage{wassysym}
|
||||
\usepackage{tikz}
|
||||
\usepackage{amsfonts,amsmath,amsthm}
|
||||
\usetikzlibrary{shapes.gates.logic.US,trees,positioning,arrows}
|
||||
%\input{../style}
|
||||
\usepackage{ifthen}
|
||||
\usepackage{lastpage}
|
||||
|
||||
\def\layersep{1.8cm}
|
||||
|
||||
\linespread{1.0}
|
||||
|
||||
\begin{document}
|
||||
% numbers at outer edges
|
||||
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||
\author{R.Clark$^\star$, \\
|
||||
$^\star${\em Energy Technology Control, UK. r.clark@energytechnologycontrol.com} \and $^\dagger${\em University of Brighton, UK}
|
||||
}
|
||||
|
||||
%\title{Developing a rigorous bottom-up modular static failure mode modelling methodology}
|
||||
\title{fermat}
|
||||
%\nodate
|
||||
\maketitle
|
||||
|
||||
\today
|
||||
|
||||
\paragraph{Keywords:} fermat; prime;
|
||||
%\small
|
||||
|
||||
\abstract{ % \em
|
||||
} % abstract
|
||||
|
||||
|
||||
|
||||
\section{Introduction}
|
||||
Fermat's Last Theorem
|
||||
states that no three positive integers a, b, and c can satisfy the
|
||||
equation $a^n + b^n = c^n$ for any integer value of n greater than two.
|
||||
|
||||
|
||||
|
||||
\section{Breaking these positive integers into constituent primes}
|
||||
|
||||
Any positive integer can be represented as a collection (or bag) of prime numbers multiple together.
|
||||
A function $bpf()$ or `bag of prime factors' is defined to represent this.
|
||||
\begin{equation}
|
||||
\prod{bpf(a)}^n + \prod{bpf(b)}^n = c^n
|
||||
\end{equation}
|
||||
|
||||
The function $bpf()$ will always contain 1.
|
||||
|
||||
The numbers $a$ and $b$ may have common and will have uncommon prime factors; these can be collected into
|
||||
three bags, those only in a $ubpf(a)$, those only in b, $ubpf(b)$ and those common, $cbpf(a,b)$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:primesexpanded0}
|
||||
2 \prod{cbpf(a,b)}^n \prod{ubpf(a)^n} + \prod{cbpf(a,b)}^n \prod{ubpf(b)^n} = c^n
|
||||
\end{equation}
|
||||
|
||||
this can be re-written as
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:primesexpanded1}
|
||||
2 \prod{cbpf(a,b)}^n \big( \prod{ubpf(a)^n} + \prod{ubpf(b)^n} \big) = c^n
|
||||
\end{equation}
|
||||
|
||||
These are all prime numbers, and although some may be repeated within their bags
|
||||
a prime number can only exist in one of the bags.
|
||||
|
||||
Also all these prime numbers are greater than two and therefore odd.
|
||||
|
||||
So this becomes a product of a list of prime numbers in ${cbpf(a,b)}$.
|
||||
The common prime factors between a and b multiplied
|
||||
by the uncommon prime numbers.
|
||||
Let $\prod{ubpf(a)^n} + \prod{ubpf(b)^n = k$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:primesexpanded2}
|
||||
2 \prod{cbpf(a,b)}^n k = c^n
|
||||
\end{equation}
|
||||
|
||||
|
||||
|
||||
|
||||
Adding two prime numbers at any power greater than 1
|
||||
and then taking a root means getting an irrational number.
|
||||
|
||||
|
||||
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:primesexpanded}
|
||||
% \prod{cbpf(a,b)}^n \big( \prod{ubpf(a)^n} + \prod{ubpf(b)^n} \big) = c^n
|
||||
% \end{equation}
|
||||
%
|
||||
% \begin{equation}
|
||||
% a^n + b^n = \prod{bpf(c)^n}
|
||||
% \end{equation}
|
||||
%
|
||||
%
|
||||
% %assuming its true $c^n$ must be $ 2 \prod{cpf(a,b)}^n \prod{upf(a)^n} \prod{upf(b)^n} $
|
||||
%
|
||||
%
|
||||
% %
|
||||
% % \begin{equation}
|
||||
% % 2 \prod{cpf(a,b)}^n = \frac{\prod{bpf(c)^n}}{\prod{upf(a)^n} \prod{upf(b)^n}}
|
||||
% % \end{equation}
|
||||
|
||||
\section{conditions for having a integer root}
|
||||
|
||||
To have an integer root $n$ all prime numbers that comprise the number to be rooted must be at least
|
||||
to the power of $n$.
|
||||
Consider the square root of 144.
|
||||
This can be written as
|
||||
$12 \times 12$ or breaking it down into prime numbers
|
||||
$2 \times 2 \times 3 \times 2 \times \times 2 \times 3$ or $ 2^4 \times 3^2 $.
|
||||
Taking the square root means halving the powers $ \sqrt{2^4 \times 3^2} = 2^2 \times 3$.
|
||||
|
||||
To get an nth root you need all the prime numbers that comprise
|
||||
that number to be at the power of n or greater.
|
||||
|
||||
That means that ${ubpf(a)^n}$ and ${ubpf(b)^n}$ multiply the prime numbers in $cbpf(a,b)$
|
||||
$n$ times each.
|
||||
These are a component of $c^n$.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:primesexpanded1}
|
||||
2 \prod{cbpf(a,b)}^n = \frac{c^n}{\big( \prod{ubpf(a)^n} + \prod{ubpf(b)^n} \big) }
|
||||
\end{equation}
|
||||
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:primesexpanded1}
|
||||
% \prod{ubpf(a)^n} + \prod{ubpf(b)^n} = \frac{c^n}{ \prod{cbpf(a,b)}^n }
|
||||
% \end{equation}
|
||||
%
|
||||
%
|
||||
% $c^n$ must contain $ \prod{cbpf(a,b)}^n $
|
||||
% %Try to find a and b such that a^2 + b^2 = 144;
|
||||
%
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:primesexpanded1}
|
||||
% \prod{ubpf(a)^n} + \prod{ubpf(b)^n} = \frac{c^n}{ \prod{cbpf(a,b)}^n }
|
||||
% \end{equation}
|
||||
%
|
||||
|
||||
%It should be even because its multiplied by 2.
|
||||
% It must have all the common factors of $a$ and $b$ twice but the uncommon factors only once.
|
||||
% This seems to be an apparent contradiction.
|
||||
% It means the $2 \prod{cpf(a,b)}^n $ term is multiplied by at least one other prime number. % and therefore cannot have an nth root.
|
||||
% A number must consist of n times of all its prime number can give an integer nth root.
|
||||
% Because a and b are different they must consist of at least one difference in prime numbers.
|
||||
%
|
||||
% Taking equation~\ref{eqn:primesexpanded}
|
||||
% and re-writing:
|
||||
% \begin{equation}
|
||||
% \label{eqn:primesexpanded2}
|
||||
% \sqrt[n]{2}^n \prod{cbpf(a,b)}^n \prod{ubpf(a)^n} \prod{ubpf(b)^n} = c^n
|
||||
% \end{equation}
|
||||
%
|
||||
%
|
||||
% Taking the nth root of both sides of equation~\ref{qn:primesexpanded2} gives
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:primesexpanded2}
|
||||
% \sqrt[n]{2} \prod{cbpf(a,b)} (\prod{ubpf(a)} \prod{ubpf(b)}) = c
|
||||
% \end{equation}
|
||||
%
|
||||
|
||||
|
||||
|
||||
Which means that a product of $c$ is a root of 2, it is therefore irrational
|
||||
and not a whole number.
|
||||
|
||||
|
||||
If $c$ is even 2 can be divided from each side until only
|
||||
both $c$ and $ \prod{cbpf(a,b)} \prod{ubpf(a)} \prod{ubpf(b)} $
|
||||
are odd. The $\sqrt[n]{2}$ term remains. The result $c$ is therefore irrational.
|
||||
|
||||
%Adding $a^n$ and $b^n$ where a and b are different means adding primes to th power of N
|
||||
%which means they have no integer nth root.
|
||||
|
||||
{
|
||||
\footnotesize
|
||||
\bibliographystyle{plain}
|
||||
\bibliography{../../vmgbibliography,../../mybib}
|
||||
}
|
||||
|
||||
\today
|
||||
%\today
|
||||
\end{document}
|
||||
|
Loading…
Reference in New Issue
Block a user