moved approvals FMEA to the end
This commit is contained in:
parent
b6a7d4893b
commit
8ed37030ca
@ -131,41 +131,6 @@ double failure scenarios (for burner lock-out scenarios).
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{FMEA used for Saftey Critical Aprovals}
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
Experts from Approval House and Equipement Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Meeting notes or minutes only.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{PFMEA - Production FMEA : 1940's to present}
|
||||
|
||||
@ -345,6 +310,7 @@ if it can be shown that selfchecking will detect failure modes.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
Failure modes are classified as Safe or Dangerous according
|
||||
to the putative system level failure they will cause.
|
||||
The Failure modes are also classified as Detected or
|
||||
@ -356,6 +322,7 @@ is represented by lambda variables
|
||||
(i.e. $\lambda_{SD}$, $\lambda_{SU}$, $\lambda_{DD}$, $\lambda_{DU}$).
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Diagnostic Coverage.}
|
||||
The diagnostic coverage is simply the ratio
|
||||
of the dangerous detected probabilities
|
||||
@ -369,6 +336,7 @@ $$ DiagnosticCoverage = \Sigma\lambda_{DD} / \Sigma\lambda_D $$
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
The diagnostic coverage for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
safe detected base component failure modes,
|
||||
and $\Sigma\lambda_S$ the total number of safe base component failure modes,
|
||||
@ -388,9 +356,49 @@ $$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
SIL Levels are how they are calculated
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\section{FMEA used for Safety Critical Approvals}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
Experts from Approval House and Equipment Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Meeting notes or minutes only.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\section{FMEA - General Criticism}
|
||||
\begin{frame}
|
||||
\frametitle{FMEA - General Criticism}
|
||||
@ -402,42 +410,60 @@ $$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_
|
||||
\pause \item FMEA type methodologies were designed for simple electro-mechanical systems of the 1940's to 1960's.
|
||||
\end{itemize}
|
||||
|
||||
FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
self checking features, and provides detailed recommendations for computer/software architecture,
|
||||
but
|
||||
%FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
%self checking features, and provides detailed recommendations for computer/software architecture,
|
||||
%but
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMEA - Better Metodology - Wish List}
|
||||
|
||||
\begin{itemize}
|
||||
|
||||
\pause \item State explosion
|
||||
\pause \item Rigorous
|
||||
\pause \item Reasoning Traceable
|
||||
\pause \item re-useable
|
||||
\pause \item
|
||||
\end{itemize}
|
||||
|
||||
%FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
%self checking features, and provides detailed recommendations for computer/software architecture,
|
||||
%but
|
||||
|
||||
\end{frame}
|
||||
\section{Failure Mode Modular De-Composition}
|
||||
\subsection{FMEA and complexity of each failure scenario analysis}
|
||||
\begin{frame}
|
||||
|
||||
Consider the FMEA type methodologies
|
||||
where we look at all the failure modes in a system, and then
|
||||
see how they can affect all other components within it,
|
||||
to determine its system level symptom or failure mode.
|
||||
We need to look at a large number of failure scenarios
|
||||
to do this completely (all failure modes against all components).
|
||||
This is represented in equation~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$cfm$ is the number of failure modes per component.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_state_exp}
|
||||
N.(N-1).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
\end{equation}
|
||||
% Consider the FMEA type methodologies
|
||||
% where we look at all the failure modes in a system, and then
|
||||
% see how they can affect all other components within it,
|
||||
% to determine its system level symptom or failure mode.
|
||||
% We need to look at a large number of failure scenarios
|
||||
% to do this completely (all failure modes against all components).
|
||||
% This is represented in equation~\ref{eqn:fmea_state_exp},
|
||||
% where $N$ is the total number of components in the system, and
|
||||
% $cfm$ is the number of failure modes per component.
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:fmea_state_exp}
|
||||
% N.(N-1).cfm % \\
|
||||
% %(N^2 - N).cfm
|
||||
% \end{equation}
|
||||
|
||||
|
||||
The FMMD methodology breaks the analysis down into small stages,
|
||||
by making the analyst choose functional groups, and then when analysed the groups
|
||||
are treated as components to be used for a higher stage.
|
||||
This is designed to address the state explosion (where $O$ is order
|
||||
by making the analyst choose functional groups of components, which are then when analysed.
|
||||
When analysed, we will have a set of symptoms of failure for the functional group.
|
||||
We can then create a derived~component,
|
||||
to represent the functional group.
|
||||
We can use derived components to form `higher~level' functional groups.
|
||||
This addresses the state explosion (where $O$ is order
|
||||
of complexity) $O=N^2$ inherent in equation~\ref{eqn:fmea_state_exp}.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
We can view the functional groups in FMMD as forming a hierarchy.
|
||||
If for the sake of example we consider each functional group to
|
||||
be three components, figure~\ref{fig:three_tree} shows
|
||||
@ -451,7 +477,7 @@ how the levels work and converge to a top or system level.
|
||||
\label{fig:three_tree}
|
||||
\end{figure}
|
||||
|
||||
\clearpage
|
||||
\end{frame}
|
||||
We can represent the number of failure scenarios to check in an FMMD hierarchy
|
||||
with equation~\ref{eqn:anscen}.
|
||||
|
||||
@ -498,7 +524,7 @@ group is the same for equation~\ref{eqn:fmea_state_exp22}
|
||||
and equation~\ref{eqn:anscen}.
|
||||
\clearpage
|
||||
|
||||
\section{Example}
|
||||
%\section{Example}
|
||||
|
||||
To see the effects of reducing `state~explosion' we need to look at a larger system.
|
||||
Let us take a system with 3 levels and apply these formulae.
|
||||
|
Loading…
Reference in New Issue
Block a user