Sigma Delta tidied up.
Chris Garret rightly pointed out that the two resistors could not be considered as a summing junction on their own because they connnected to the -ve input of the integrating OpAmp. Changed structure of the FMMD analysis accordingly.
This commit is contained in:
parent
b9d80c11d1
commit
8e93f91eeb
@ -323,7 +323,12 @@ year = {2012},
|
||||
PUBLISHER = "Newnes",
|
||||
YEAR = "2002"
|
||||
}
|
||||
|
||||
@BOOK{ehb,
|
||||
AUTHOR = "Jerry C whitaker",
|
||||
TITLE = "The Electronics Handbook ISBN:0-8493-8345-5 ",
|
||||
PUBLISHER = "IEEE Press ",
|
||||
YEAR = "1996"
|
||||
}
|
||||
@BOOK{alggraph,
|
||||
AUTHOR = "Alan Gibbons",
|
||||
TITLE = "Algorithmic Graph Theory ISBN:978-0521288811 ",
|
||||
|
@ -5,7 +5,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
|
||||
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
|
||||
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
|
||||
tree_abstraction_levels.png vrange.png sigma_delta_block.png ftcontext.png ct1.png hd.png \
|
||||
sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png eulersd.png
|
||||
sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png eulersd.png eulersdfinal.png
|
||||
|
||||
|
||||
|
||||
|
@ -1207,7 +1207,7 @@ to periodically switch in test signals in place of the input signal.}
|
||||
|
||||
The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter.
|
||||
Starting at the input, we have a first order low pass filter buffered by an op-amp,
|
||||
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267] second order lowpass filter.
|
||||
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267]~\cite{electronicssysapproach}[p.288] second order low-pass filter.
|
||||
The output of this is passed into another Sallen~Key filter -- which although it may have different values
|
||||
for its resistors/capacitors and thus have a different frequency response -- is identical from a failure mode perspective.
|
||||
Thus we can analyse the first Sallen~Key low pass filter and re-use the results for the second stage
|
||||
@ -1983,6 +1983,8 @@ The output of the flip flop is also routed to the feedback.
|
||||
It is level converted to an analogue signal
|
||||
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
|
||||
and fed into the summing integrator completing the negative feedback loop.
|
||||
%
|
||||
This implements an over-sampling analogue to digital converter~\cite{ehb}[pp.729-730].
|
||||
|
||||
\subsection{FMMD analysis of \sd }
|
||||
|
||||
@ -2076,9 +2078,9 @@ We create the derived component
|
||||
$SUMJINT$ and assign it the failure modes collected above.% which has the failure modes from collecting its symptoms.
|
||||
We now state:
|
||||
|
||||
$$ fm(SUMJUINT^1_0) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
$$ fm(SUMJUINT) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
|
||||
That is the failure modes of our new {\dc} $SUMJINT^1_0$ are $\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$
|
||||
That is the failure modes of our new {\dc} $SUMJINT$ are $$\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
|
||||
|
||||
\clearpage
|
||||
|
||||
@ -2122,9 +2124,11 @@ we my consider it as a derived component, that of a High Impedance Signal Buffer
|
||||
%
|
||||
% \end{tabular}
|
||||
% \end{table}
|
||||
We create the {\dc} $HISB^1_1$ and it failure mode may be stated as $fm(HISB^1_1) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}$.
|
||||
We create the {\dc} $HISB$ and its failure mode may be stated as $$fm(HISB) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}$$.
|
||||
|
||||
\subsubsection{Digital level to analogue level conversion ($DL2AL$).}
|
||||
The integrator is implemented in digital electronics, but the output from the D type flip flop is a digital signal.
|
||||
A conversion stage is required to interface these stages.
|
||||
Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4.
|
||||
The potential divider provides a mid rail reference voltage
|
||||
to the inverting input of IC3.
|
||||
@ -2181,7 +2185,7 @@ We can now derive a new component to represent the level conversion and call it
|
||||
|
||||
$$ DL2AL = D(FG = \{ PD , IC3 \}) $$
|
||||
|
||||
$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
||||
$$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
|
||||
|
||||
\clearpage
|
||||
|
||||
@ -2228,7 +2232,7 @@ We now analyse this {\fg} in table~\ref{tbl:digbuf}.
|
||||
\end{table}
|
||||
|
||||
We collect the symptoms of failure $\{ LOW, STOPPED \}$.
|
||||
We can now derive a new component to represent the level conversion and call it $DIGBUF$.
|
||||
We can now derive a new component to represent the digital buffer and call it $DIGBUF$.
|
||||
|
||||
|
||||
$$ fm (DIGBUF) = \{ LOW, STOPPED \} $$
|
||||
@ -2251,9 +2255,11 @@ These are:
|
||||
\item DL2AL --- A digital to analog level converter.
|
||||
\item DIGBUF --- A digital one bit buffer/memory
|
||||
\end{itemize}
|
||||
These {\dcs} follow to signal path shown in figure~\ref{fig:sigmadeltablock}.
|
||||
We now use these {\dcs} to create a final {\fg} to represent the failure mode
|
||||
behaviour of the $\Sigma \Delta ADC$. We represent this
|
||||
These {\dcs} follow the signal path shown in figure~\ref{fig:sigmadeltablock}.
|
||||
We now use these {\dcs} to create higher level {\fgs}.
|
||||
%to represent the failure mode
|
||||
%behaviour of the $\Sigma \Delta ADC$.
|
||||
We represent this
|
||||
in the Euler diagram in figure~\ref{fig:eulersd}.
|
||||
The next stage is to create {\fgs} from these initial {\dcs}
|
||||
and make a complete failure mode mode for the {\sd}.
|
||||
@ -2262,7 +2268,7 @@ and make a complete failure mode mode for the {\sd}.
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/eulersd.png}
|
||||
% eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334
|
||||
\caption{Euler diagram showing the functional grouping used to model the $\Sigma \Delta ADC$}
|
||||
\caption{Euler diagram showing the initial {\dcs} used to model the $\Sigma \Delta ADC$}
|
||||
\label{fig:eulersd}
|
||||
\end{figure}
|
||||
|
||||
@ -2275,11 +2281,7 @@ and make a complete failure mode mode for the {\sd}.
|
||||
% \label{fig:sigdel1}
|
||||
% \end{figure}
|
||||
|
||||
|
||||
%IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural candidates
|
||||
%for the next {\fg}.
|
||||
BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} as well.
|
||||
|
||||
|
||||
\clearpage
|
||||
|
||||
|
||||
@ -2323,8 +2325,8 @@ $$ FG = \{ HISB, SUMJINT \} $$
|
||||
|
||||
|
||||
|
||||
We now collect symptoms $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$, and create a {\dc}
|
||||
called $BISJ^2$.
|
||||
We now collect the symptoms of failure $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$, and create a {\dc}
|
||||
called $BISJ$.
|
||||
|
||||
|
||||
|
||||
@ -2374,24 +2376,26 @@ We analyse the buffered flip flop circuitry in table~\ref{tbl:digbuf}.
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
|
||||
We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} at the third level of symptom abstraction
|
||||
called $FFB^3$.
|
||||
We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} %at the third level of symptom abstraction
|
||||
called $FFB$.
|
||||
|
||||
|
||||
\clearpage
|
||||
\subsection{Final, top level {\fg} for sigma delta Converter}
|
||||
|
||||
|
||||
We now have two {\dcs}, $FFB^3$ and $BISJ^2$: we form a final functional group with these:
|
||||
$$ G^3_0 = \{ FFB^3, BISJ^2 \} .$$
|
||||
We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
||||
We now have two {\dcs}, $FFB$ and $BISJ$.
|
||||
These together represent all base components within this circuit.
|
||||
We form a final functional group with these:
|
||||
$$ FG = \{ FFB , BISJ \} .$$
|
||||
We analyse the buffered {\sd} circuit in table~\ref{tbl:sdadc}.
|
||||
%
|
||||
% FFB^3 $\{OUTPUT STUCK, LOW\_SLEW\}$
|
||||
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
|
||||
%
|
||||
\begin{table}[h+]
|
||||
\caption{ $FFB^3, BISJ^2$ \sd ($SDADC$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:sd}
|
||||
\caption{ $FFB , BISJ $ \sd ($SDADC$): Failure Mode Effects Analysis} % title of Table
|
||||
\label{tbl:sdadc}
|
||||
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
|
||||
@ -2401,12 +2405,12 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
||||
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
|
||||
|
||||
\hline \hline
|
||||
FS1: $FFB^3$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS2: $FFB^3$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
|
||||
FS1: $FFB$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS2: $FFB$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
|
||||
% FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
|
||||
%\hline
|
||||
FS3: $BISJ^2$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS4: $BISJ^2$ $REDUCED\_INTEGRATION$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ \hline
|
||||
FS3: $BISJ$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
|
||||
FS4: $BISJ$ $REDUCED\_INTEGRATION$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
@ -2417,10 +2421,16 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
|
||||
We now collect the symptoms for the \sd $ \;
|
||||
\{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$.
|
||||
We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$.
|
||||
$$fm(SSDADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||
We now show the final hierarchy in figure~\ref{fig:sdadc}.
|
||||
|
||||
$$fm(SSDADC) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
|
||||
We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=400pt]{./CH5_Examples/eulersdfinal.png}
|
||||
% eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334
|
||||
\caption{Euler diagram showing the final {\dcs} used to model the $\Sigma \Delta ADC$}
|
||||
\label{fig:eulersdfinal}
|
||||
\end{figure}
|
||||
% \begin{figure}[h]
|
||||
% \centering
|
||||
% \includegraphics[width=400pt]{./CH5_Examples/sdadc.png}
|
||||
|
Loading…
Reference in New Issue
Block a user