Sigma Delta tidied up.

Chris Garret rightly pointed out
that the two resistors could not be considered
as a summing junction on their own because
they connnected to the -ve input of the integrating OpAmp.
Changed structure of the FMMD analysis accordingly.
This commit is contained in:
Robin Clark 2012-10-11 20:35:25 +01:00
parent b9d80c11d1
commit 8e93f91eeb
3 changed files with 48 additions and 33 deletions

View File

@ -323,7 +323,12 @@ year = {2012},
PUBLISHER = "Newnes", PUBLISHER = "Newnes",
YEAR = "2002" YEAR = "2002"
} }
@BOOK{ehb,
AUTHOR = "Jerry C whitaker",
TITLE = "The Electronics Handbook ISBN:0-8493-8345-5 ",
PUBLISHER = "IEEE Press ",
YEAR = "1996"
}
@BOOK{alggraph, @BOOK{alggraph,
AUTHOR = "Alan Gibbons", AUTHOR = "Alan Gibbons",
TITLE = "Algorithmic Graph Theory ISBN:978-0521288811 ", TITLE = "Algorithmic Graph Theory ISBN:978-0521288811 ",

View File

@ -5,7 +5,7 @@ PNG_DIA = blockdiagramcircuit2.png bubba_oscillator_block_diagram.png circuit1
poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \ poss1finalbubba.png poss2finalbubba.png pt100.png pt100_doublef.png pt100_singlef.png \
pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \ pt100_tc.png pt100_tc_sp.png shared_component.png stat_single.png three_tree.png \
tree_abstraction_levels.png vrange.png sigma_delta_block.png ftcontext.png ct1.png hd.png \ tree_abstraction_levels.png vrange.png sigma_delta_block.png ftcontext.png ct1.png hd.png \
sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png eulersd.png sigdel1.png sdadc.png bubba_euler_1.png bubba_euler_2.png eulersd.png eulersdfinal.png

View File

@ -1207,7 +1207,7 @@ to periodically switch in test signals in place of the input signal.}
The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter. The circuit in figure~\ref{fig:circuit2} shows a five pole low pass filter.
Starting at the input, we have a first order low pass filter buffered by an op-amp, Starting at the input, we have a first order low pass filter buffered by an op-amp,
the output of this is passed to a Sallen~Key~\cite{aoe}[p.267] second order lowpass filter. the output of this is passed to a Sallen~Key~\cite{aoe}[p.267]~\cite{electronicssysapproach}[p.288] second order low-pass filter.
The output of this is passed into another Sallen~Key filter -- which although it may have different values The output of this is passed into another Sallen~Key filter -- which although it may have different values
for its resistors/capacitors and thus have a different frequency response -- is identical from a failure mode perspective. for its resistors/capacitors and thus have a different frequency response -- is identical from a failure mode perspective.
Thus we can analyse the first Sallen~Key low pass filter and re-use the results for the second stage Thus we can analyse the first Sallen~Key low pass filter and re-use the results for the second stage
@ -1983,6 +1983,8 @@ The output of the flip flop is also routed to the feedback.
It is level converted to an analogue signal It is level converted to an analogue signal
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage) (i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
and fed into the summing integrator completing the negative feedback loop. and fed into the summing integrator completing the negative feedback loop.
%
This implements an over-sampling analogue to digital converter~\cite{ehb}[pp.729-730].
\subsection{FMMD analysis of \sd } \subsection{FMMD analysis of \sd }
@ -2076,9 +2078,9 @@ We create the derived component
$SUMJINT$ and assign it the failure modes collected above.% which has the failure modes from collecting its symptoms. $SUMJINT$ and assign it the failure modes collected above.% which has the failure modes from collecting its symptoms.
We now state: We now state:
$$ fm(SUMJUINT^1_0) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$ $$ fm(SUMJUINT) = \{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
That is the failure modes of our new {\dc} $SUMJINT^1_0$ are $\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$ That is the failure modes of our new {\dc} $SUMJINT$ are $$\{ V_{in} DOM, V_{fb} DOM, NO\_INTEGRATION, HIGH, LOW \} .$$
\clearpage \clearpage
@ -2122,9 +2124,11 @@ we my consider it as a derived component, that of a High Impedance Signal Buffer
% %
% \end{tabular} % \end{tabular}
% \end{table} % \end{table}
We create the {\dc} $HISB^1_1$ and it failure mode may be stated as $fm(HISB^1_1) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}$. We create the {\dc} $HISB$ and its failure mode may be stated as $$fm(HISB) = \{HIGH, LOW, NOOP, LOW_{SLEW} \}$$.
\subsubsection{Digital level to analogue level conversion ($DL2AL$).} \subsubsection{Digital level to analogue level conversion ($DL2AL$).}
The integrator is implemented in digital electronics, but the output from the D type flip flop is a digital signal.
A conversion stage is required to interface these stages.
Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4. Digital level to analogue level conversion is performed by IC3 in conjunction with a potential divider formed by R3,R4.
The potential divider provides a mid rail reference voltage The potential divider provides a mid rail reference voltage
to the inverting input of IC3. to the inverting input of IC3.
@ -2181,7 +2185,7 @@ We can now derive a new component to represent the level conversion and call it
$$ DL2AL = D(FG = \{ PD , IC3 \}) $$ $$ DL2AL = D(FG = \{ PD , IC3 \}) $$
$$ fm (DL2AL^2) = \{ LOW, HIGH, LOW\_{SLEW} \} $$ $$ fm (DL2AL) = \{ LOW, HIGH, LOW\_{SLEW} \} $$
\clearpage \clearpage
@ -2228,7 +2232,7 @@ We now analyse this {\fg} in table~\ref{tbl:digbuf}.
\end{table} \end{table}
We collect the symptoms of failure $\{ LOW, STOPPED \}$. We collect the symptoms of failure $\{ LOW, STOPPED \}$.
We can now derive a new component to represent the level conversion and call it $DIGBUF$. We can now derive a new component to represent the digital buffer and call it $DIGBUF$.
$$ fm (DIGBUF) = \{ LOW, STOPPED \} $$ $$ fm (DIGBUF) = \{ LOW, STOPPED \} $$
@ -2251,9 +2255,11 @@ These are:
\item DL2AL --- A digital to analog level converter. \item DL2AL --- A digital to analog level converter.
\item DIGBUF --- A digital one bit buffer/memory \item DIGBUF --- A digital one bit buffer/memory
\end{itemize} \end{itemize}
These {\dcs} follow to signal path shown in figure~\ref{fig:sigmadeltablock}. These {\dcs} follow the signal path shown in figure~\ref{fig:sigmadeltablock}.
We now use these {\dcs} to create a final {\fg} to represent the failure mode We now use these {\dcs} to create higher level {\fgs}.
behaviour of the $\Sigma \Delta ADC$. We represent this %to represent the failure mode
%behaviour of the $\Sigma \Delta ADC$.
We represent this
in the Euler diagram in figure~\ref{fig:eulersd}. in the Euler diagram in figure~\ref{fig:eulersd}.
The next stage is to create {\fgs} from these initial {\dcs} The next stage is to create {\fgs} from these initial {\dcs}
and make a complete failure mode mode for the {\sd}. and make a complete failure mode mode for the {\sd}.
@ -2262,7 +2268,7 @@ and make a complete failure mode mode for the {\sd}.
\centering \centering
\includegraphics[width=400pt]{./CH5_Examples/eulersd.png} \includegraphics[width=400pt]{./CH5_Examples/eulersd.png}
% eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334 % eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334
\caption{Euler diagram showing the functional grouping used to model the $\Sigma \Delta ADC$} \caption{Euler diagram showing the initial {\dcs} used to model the $\Sigma \Delta ADC$}
\label{fig:eulersd} \label{fig:eulersd}
\end{figure} \end{figure}
@ -2276,10 +2282,6 @@ and make a complete failure mode mode for the {\sd}.
% \end{figure} % \end{figure}
%IC4 is as yet unused, the signal path connects IC4 and DL2AL. These seem natural candidates
%for the next {\fg}.
BFINT and SUMJ are adjacent in the signal path and these are chosen as a {\fg} as well.
\clearpage \clearpage
@ -2323,8 +2325,8 @@ $$ FG = \{ HISB, SUMJINT \} $$
We now collect symptoms $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$, and create a {\dc} We now collect the symptoms of failure $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$, and create a {\dc}
called $BISJ^2$. called $BISJ$.
@ -2374,24 +2376,26 @@ We analyse the buffered flip flop circuitry in table~\ref{tbl:digbuf}.
\end{tabular} \end{tabular}
\end{table} \end{table}
We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} at the third level of symptom abstraction We now collect symptoms $\{OUTPUT STUCK, LOW\_SLEW\}$ and create a {\dc} %at the third level of symptom abstraction
called $FFB^3$. called $FFB$.
\clearpage \clearpage
\subsection{Final, top level {\fg} for sigma delta Converter} \subsection{Final, top level {\fg} for sigma delta Converter}
We now have two {\dcs}, $FFB^3$ and $BISJ^2$: we form a final functional group with these: We now have two {\dcs}, $FFB$ and $BISJ$.
$$ G^3_0 = \{ FFB^3, BISJ^2 \} .$$ These together represent all base components within this circuit.
We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}. We form a final functional group with these:
$$ FG = \{ FFB , BISJ \} .$$
We analyse the buffered {\sd} circuit in table~\ref{tbl:sdadc}.
% %
% FFB^3 $\{OUTPUT STUCK, LOW\_SLEW\}$ % FFB^3 $\{OUTPUT STUCK, LOW\_SLEW\}$
% BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$ % BISJ^2 $\{ OUTPUT STUCK , REDUCED\_INTEGRATION \}$
% %
\begin{table}[h+] \begin{table}[h+]
\caption{ $FFB^3, BISJ^2$ \sd ($SDADC$): Failure Mode Effects Analysis} % title of Table \caption{ $FFB , BISJ $ \sd ($SDADC$): Failure Mode Effects Analysis} % title of Table
\label{tbl:sd} \label{tbl:sdadc}
\begin{tabular}{|| l | l | c | c | l ||} \hline \begin{tabular}{|| l | l | c | c | l ||} \hline
%\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\ %\textbf{Failure Scenario} & & \textbf{failure result } & & \textbf{Symptom} \\
@ -2401,12 +2405,12 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
\textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\ \textbf{cause} & & \textbf{Effect} & & \textbf{Failure Mode} \\
\hline \hline \hline \hline
FS1: $FFB^3$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\ FS1: $FFB$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
FS2: $FFB^3$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ FS2: $FFB$ $LOW\_SLEW$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\
% FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline % FS3: $IC4^0$ $NOOP$ & & output stuck low & & $OUTPUT STUCK$ \\ \hline
%\hline %\hline
FS3: $BISJ^2$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\ FS3: $BISJ$ $OUTPUT STUCK$ & & value max high or low & & $OUTPUT\_OUT\_OF\_RANGE$ \\
FS4: $BISJ^2$ $REDUCED\_INTEGRATION$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ \hline FS4: $BISJ$ $REDUCED\_INTEGRATION$ & & values will appear larger & & $OUTPUT\_INCORRECT$ \\ \hline
\hline \hline
@ -2417,10 +2421,16 @@ We analyse the buffered {\sd} circuit in table~\ref{tbl:FFB}.
We now collect the symptoms for the \sd $ \; We now collect the symptoms for the \sd $ \;
\{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$. \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$.
We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$. We can now create a {\dc} to represent the analogue to digital converter, $SADC^4$.
$$fm(SSDADC^4) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$ $$fm(SSDADC) = \{OUTPUT\_OUT\_OF\_RANGE, OUTPUT\_INCORRECT\}$$
We now show the final hierarchy in figure~\ref{fig:sdadc}. We now show the final {\dc} hierarchy in figure~\ref{fig:eulersdfinal}.
\begin{figure}[h]
\centering
\includegraphics[width=400pt]{./CH5_Examples/eulersdfinal.png}
% eulersd.png: 1018x334 pixel, 72dpi, 35.91x11.78 cm, bb=0 0 1018 334
\caption{Euler diagram showing the final {\dcs} used to model the $\Sigma \Delta ADC$}
\label{fig:eulersdfinal}
\end{figure}
% \begin{figure}[h] % \begin{figure}[h]
% \centering % \centering
% \includegraphics[width=400pt]{./CH5_Examples/sdadc.png} % \includegraphics[width=400pt]{./CH5_Examples/sdadc.png}