re-organised the presentation for System safety
2012---and made minor alterations to CH4. J Howse said CH4 is finished !!!! Whooooooooooooooopppppppppppppppppppppppeeeeeeeeeeeeeeeeeeee!
This commit is contained in:
parent
d34f74ef07
commit
89222b34b2
@ -1,7 +1,7 @@
|
||||
|
||||
@BOOK{dmfnt,
|
||||
AUTHOR = "mixedsignaldsp",
|
||||
TITLE = "Mixed Signal and DSP Design Techniques ISBN 0750676116"
|
||||
@BOOK{mixedsignaldsp,
|
||||
AUTHOR = "Walt Kestler",
|
||||
TITLE = "Mixed Signal and DSP Design Techniques ISBN 0750676116",
|
||||
PUBLISHER = "Newnes/Analog Devices",
|
||||
YEAR = "2003"
|
||||
}
|
||||
|
@ -117,6 +117,7 @@ For the sake of example let us choose resistor R1 in the OP-AMP gain circuitry.
|
||||
|
||||
|
||||
\begin{frame}
|
||||
%
|
||||
\frametitle{FMEA Example: Milli-volt reader}
|
||||
\begin{figure}
|
||||
\centering
|
||||
@ -129,80 +130,14 @@ For the sake of example let us choose resistor R1 in the OP-AMP gain circuitry.
|
||||
\pause \item \textbf{E - Effects} This will drive the minus input LOW causing a HIGH OUTPUT/READING
|
||||
\pause \item \textbf{A - Analysis} The reading will be out of normal range, and we will have an erroneous milli-volt reading
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
Note here that we have had to look at the failure~mode
|
||||
in relation to the entire circuit. \pause
|
||||
We have used intuition to determine the probable
|
||||
effect of this failure mode. \pause
|
||||
We have not examined this failure mode
|
||||
against every other component in the system. \pause
|
||||
Perhaps we should.... this would be a more rigorous and complete
|
||||
approach in looking for system failures.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{Rigorous FMEA - State Explosion}
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
Consider the analysis
|
||||
where we look at all the failure modes in a system, and then
|
||||
see how they can affect all other components within it.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
We need to look at a large number of failure scenarios
|
||||
to do this completely (all failure modes against all components).
|
||||
This is represented in the equation below. %~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$f$ is the number of failure modes per component.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single}
|
||||
N.(N-1).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
This would mean an order of $N^2$ number of checks to perform
|
||||
to undertake a `rigorous~FMEA'. Even small systems have typically
|
||||
100 components, and they typically have 3 or more failure modes each.
|
||||
$100*99*3=29,700$.
|
||||
%
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Double Failure FMEA}
|
||||
For looking at potential double failure scenarios (two components
|
||||
failing within a given time frame) and the order becomes
|
||||
$N^3$. \pause
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_double}
|
||||
N.(N-1).(N-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
\pause
|
||||
$100*99*98*3=2,910,600$.
|
||||
\pause
|
||||
|
||||
.\\
|
||||
|
||||
The European Gas burner standard (EN298:2003), demands the checking of
|
||||
double failure scenarios (for burner lock-out scenarios).
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Four main Variants of FMEA}
|
||||
@ -216,380 +151,6 @@ double failure scenarios (for burner lock-out scenarios).
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{PFMEA - Production FMEA : 1940's to present}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA}
|
||||
Production FMEA (or PFMEA), is FMEA used to prioritise, in terms of
|
||||
cost, problems to be addressed in product production.\pause
|
||||
|
||||
It focuses on known problems, determines the
|
||||
frequency they occur and their cost to fix.\pause
|
||||
This is multiplied together and called an RPN
|
||||
number.\pause
|
||||
Fixing problems with the highest RPN number
|
||||
will return most cost benefit.\pause
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
% benign example of PFMEA in CARS - make something up.
|
||||
\frametitle{PFMEA Example}
|
||||
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
% rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
% ruptured f.tank & & & & \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
%Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: $200,000 per death, $67,000 per injury, $700 per vehicle.
|
||||
%Total Benefit: 180 X ($200,000) + 180 X ($67,000) + $2,100 X ($700) = $49.5 million.
|
||||
%COSTS
|
||||
%Sales: 11 million cars, 1.5 million light trucks.
|
||||
%Unit Cost: $11 per car, $11 per truck.
|
||||
%Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = $137 million.
|
||||
|
||||
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
%\subsection{Production FMEA : Example Ford Pinto : 1975}
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./ad_ford_pinto_mpg_red_3_1975.jpg}
|
||||
% ad_ford_pinto_mpg_red_3_1975.jpg: 720x933 pixel, 96dpi, 19.05x24.69 cm, bb=0 0 540 700
|
||||
\caption{Ford Pinto Advert}
|
||||
\label{fig:fordpintoad}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./burntoutpinto.png}
|
||||
% burntoutpinto.png: 376x250 pixel, 72dpi, 13.26x8.82 cm, bb=0 0 376 250
|
||||
\caption{Burnt Out Pinto}
|
||||
\label{fig:burntoutpinto}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
ruptured f.tank & & & allow & \\ \hline
|
||||
|
||||
rear end crash & $1$ & $11$ & recall & 11.0 \\
|
||||
ruptured f.tank & & & fix tank & \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
|
||||
http://www.youtube.com/watch?v=rcNeorjXMrE
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
%\includegraphics[width=100pt]{./military-aircraft-desktop-computer-wallpaper-missile-launch.jpg}
|
||||
\includegraphics[width=100pt]{./A10_thunderbolt.jpg}
|
||||
% military-aircraft-desktop-computer-wallpaper-missile-launch.jpg: 1024x768 pixel, 300dpi, 8.67x6.50 cm, bb=0 0 246 184
|
||||
\caption{A10 Thunderbolt}
|
||||
\label{fig:f16missile}
|
||||
\end{figure}
|
||||
Emphasis on determining criticality of failure.
|
||||
Applies some Bayesian statistics (probabilities of component failures and those thereby causing given system level failures).
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
Very similar to PFMEA, but instead of cost, a criticality or
|
||||
seriousness factor is ascribed to putative top level incidents.\pause
|
||||
FMECA has three probability factors for component failures.\pause
|
||||
|
||||
\textbf{FMECA ${\lambda}_{p}$ value.}
|
||||
This is the overall failure rate of a base component.
|
||||
This will typically be the failure rate per million ($10^6$) or
|
||||
billion ($10^9$) hours of operation.\pause reference MIL1991. \pause
|
||||
|
||||
\textbf{FMECA $\alpha$ value.}
|
||||
The failure mode probability, usually denoted by $\alpha$ is the probability of
|
||||
a particular failure~mode occurring within a component. \pause reference FMD-91.
|
||||
%, should it fail.
|
||||
%A component with N failure modes will thus have
|
||||
%have an $\alpha$ value associated with each of those modes.
|
||||
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
\textbf{FMECA $\beta$ value.}
|
||||
The second probability factor $\beta$, is the probability that the failure mode
|
||||
will cause a given system failure.\pause
|
||||
This corresponds to `Bayesian' probability, given a particular
|
||||
component failure mode, the probability of a given system level failure.
|
||||
\pause
|
||||
\textbf{FMECA `t' Value}\pause
|
||||
The time that a system will be operating for, or the working life time of the product is
|
||||
represented by the variable $t$.
|
||||
%for probability of failure on demand studies,
|
||||
%this can be the number of operating cycles or demands expected.
|
||||
\pause
|
||||
\textbf{Severity `s' value}
|
||||
A weighting factor to indicate the seriousness of the putative system level error.
|
||||
%Typical classifications are as follows:~\cite{fmd91}
|
||||
\pause
|
||||
\begin{equation}
|
||||
C_m = {\beta} . {\alpha} . {{\lambda}_p} . {t} . {s}
|
||||
\end{equation}
|
||||
\pause
|
||||
Highest $C_m$ values would be at the top of a `to~do' list
|
||||
for a project manager.
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\subsection{FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./SIL.png}
|
||||
% SIL.jpg: 350x286 pixel, 72dpi, 12.35x10.09 cm, bb=0 0 350 286
|
||||
\caption{SIL requirements}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item \textbf{Statistical Safety} \pause Safety Integrity Level (SIL) standards (EN61508/IOC5108).
|
||||
\pause \item \textbf{Diagnostics} \pause Diagnostic or self checking elements modelled
|
||||
\pause \item \textbf{Complete Failure Mode Coverage} \pause All failure modes of all components must be in the model
|
||||
\pause \item \textbf{Guidelines} \pause To system architectures and development processes
|
||||
\end{itemize}
|
||||
|
||||
% FMEDA is the methodology behind statistical (safety integrity level)
|
||||
% type standards (EN61508/IOC5108). \pause
|
||||
% It provides a statistical overall level of safety
|
||||
% and allows diagnostic mitigation for self checking etc. \pause
|
||||
% It provides guidelines for the design and architecture
|
||||
% of computer/software systems for the four levels of
|
||||
% safety Integrity.
|
||||
% %For Hardware
|
||||
% \pause
|
||||
% FMEDA does force the user to consider all components in a system
|
||||
% by requiring that a MTTF value is assigned for each failure~mode; \pause
|
||||
% the MTTF may be statistically mitigated (improved)
|
||||
% if it can be shown that self-checking will detect failure modes.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Failure Mode Classifications in FMEDA.}
|
||||
\begin{itemize}
|
||||
\pause \item \textbf{Safe or Dangerous} \pause Failure modes are classified SAFE or DANGEROUS
|
||||
\pause \item \textbf{Detectable failure modes} \pause Failure modes are given the attribute DETECTABLE or UNDETECTABLE
|
||||
\pause \item \textbf{Four attributes to Failure Modes} \pause All failure modes may thus be Safe Detected(SD), Safe Undetected(SU), Dangerous Detected(DD), Dangerous Undetected(DU)
|
||||
\pause \item \textbf{Four statistical properties of a system} \pause \\
|
||||
$ \sum \lambda_{SD}$, $\sum \lambda_{SU}$, $\sum \lambda_{DD}$, $\sum \lambda_{DU}$
|
||||
\end{itemize}
|
||||
|
||||
% Failure modes are classified as Safe or Dangerous according
|
||||
% to the putative system level failure they will cause. \pause
|
||||
% The Failure modes are also classified as Detected or
|
||||
% Undetected.
|
||||
% This gives us four level failure mode classifications:
|
||||
% Safe-Detected (SD), Safe-Undetected (SU), Dangerous-Detected (DD) or Dangerous-Undetected (DU),
|
||||
% and the probabilistic failure rate of each classification
|
||||
% is represented by lambda variables
|
||||
% (i.e. $\lambda_{SD}$, $\lambda_{SU}$, $\lambda_{DD}$, $\lambda_{DU}$).
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Diagnostic Coverage.}
|
||||
The diagnostic coverage is simply the ratio
|
||||
of the dangerous detected probabilities
|
||||
against the probability of all dangerous failures,
|
||||
and is normally expressed as a percentage. $\Sigma\lambda_{DD}$ represents
|
||||
the percentage of dangerous detected base component failure modes, and
|
||||
$\Sigma\lambda_D$ the total number of dangerous base component failure modes.
|
||||
|
||||
$$ DiagnosticCoverage = \Sigma\lambda_{DD} / \Sigma\lambda_D $$
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
The \textbf{diagnostic coverage} for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
safe detected base component failure modes,
|
||||
and $\Sigma\lambda_S$ the total number of safe base component failure modes,
|
||||
is given as
|
||||
|
||||
$$ SF = \frac{\Sigma\lambda_{SD}}{\Sigma\lambda_S} $$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Safe Failure Fraction.}
|
||||
A key concept in FMEDA is Safe Failure Fraction (SFF).
|
||||
This is the ratio of safe and dangerous detected failures
|
||||
against all safe and dangerous failure probabilities.
|
||||
Again this is usually expressed as a percentage.
|
||||
|
||||
$$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_S + \Sigma\lambda_D \big) $$
|
||||
\pause
|
||||
SFF determines how proportionately fail-safe a system is, not how reliable it is ! \pause
|
||||
Weakness in this philosophy; \pause adding extra safe failures (even unused ones) improves the SFF.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
To achieve SIL levels, diagnostic coverage and SFF levels are prescribed along with
|
||||
hardware architectures and software techniques. \pause
|
||||
The overall the aim of SIL is classify the safety of a system,
|
||||
by statistically determining how frequently it can fail dangerously.
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{SIL} & \textbf{Low Demand} & \textbf{Continuous Demand} \\
|
||||
& Prob of failing on demand & Prob of failure per hour \\ \hline \hline
|
||||
4 & $ 10^{-5}$ to $< 10^{-4}$ & $ 10^{-9}$ to $< 10^{-8}$ \\ \hline
|
||||
3 & $ 10^{-4}$ to $< 10^{-3}$ & $ 10^{-8}$ to $< 10^{-7}$ \\ \hline
|
||||
2 & $ 10^{-3}$ to $< 10^{-2}$ & $ 10^{-7}$ to $< 10^{-6}$ \\ \hline
|
||||
1 & $ 10^{-2}$ to $< 10^{-1}$ & $ 10^{-6}$ to $< 10^{-5}$ \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
Table adapted from EN61508-1:2001 [7.6.2.9 p33]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
self checking features, and provides detailed recommendations for computer/software architecture. \pause
|
||||
It has a simple final result, a Safety Integrity Level (SIL) from 1 to 4 (where 4 is safest).
|
||||
|
||||
%FMEA can be used as a term simple to mean Failure Mode Effects Analysis, and is
|
||||
%part of product approval for many regulated products in the EU and the USA...
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA used for Safety Critical Approvals}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{DESIGN FMEA (DFMEA): Safety Critical Approvals FMEA}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
Static FMEA, Design FMEA, Approvals FMEA \pause
|
||||
|
||||
Experts from Approval House and Equipment Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Often Meeting notes or minutes only. Unusual for detailed arguments to be documented.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{FMEA - General Criticism}
|
||||
\begin{frame}
|
||||
\frametitle{FMEA - General Criticism}
|
||||
@ -1648,8 +1209,459 @@ Questions ?
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
Addendum --- Types of FMEA.
|
||||
\end{frame}
|
||||
|
||||
\subsection{PFMEA - Production FMEA : 1940's to present}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA}
|
||||
Production FMEA (or PFMEA), is FMEA used to prioritise, in terms of
|
||||
cost, problems to be addressed in product production.\pause
|
||||
|
||||
It focuses on known problems, determines the
|
||||
frequency they occur and their cost to fix.\pause
|
||||
This is multiplied together and called an RPN
|
||||
number.\pause
|
||||
Fixing problems with the highest RPN number
|
||||
will return most cost benefit.\pause
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
% benign example of PFMEA in CARS - make something up.
|
||||
\frametitle{PFMEA Example}
|
||||
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
% rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
% ruptured f.tank & & & & \\ \hline
|
||||
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
%Savings: 180 burn deaths, 180 serious burn injuries, 2,100 burned vehicles. Unit Cost: $200,000 per death, $67,000 per injury, $700 per vehicle.
|
||||
%Total Benefit: 180 X ($200,000) + 180 X ($67,000) + $2,100 X ($700) = $49.5 million.
|
||||
%COSTS
|
||||
%Sales: 11 million cars, 1.5 million light trucks.
|
||||
%Unit Cost: $11 per car, $11 per truck.
|
||||
%Total Cost: 11,000,000 X ($11) + 1,500,000 X ($11) = $137 million.
|
||||
|
||||
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
%\subsection{Production FMEA : Example Ford Pinto : 1975}
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./ad_ford_pinto_mpg_red_3_1975.jpg}
|
||||
% ad_ford_pinto_mpg_red_3_1975.jpg: 720x933 pixel, 96dpi, 19.05x24.69 cm, bb=0 0 540 700
|
||||
\caption{Ford Pinto Advert}
|
||||
\label{fig:fordpintoad}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./burntoutpinto.png}
|
||||
% burntoutpinto.png: 376x250 pixel, 72dpi, 13.26x8.82 cm, bb=0 0 376 250
|
||||
\caption{Burnt Out Pinto}
|
||||
\label{fig:burntoutpinto}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{PFMEA Example: Ford Pinto: 1975}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Mode} & \textbf{P} & \textbf{Cost} & \textbf{Symptom} & \textbf{RPN} \\ \hline \hline
|
||||
relay 1 n/c & $1*10^{-5}$ & 38.0 & indicators fail & 0.00038 \\ \hline
|
||||
relay 2 n/c & $1*10^{-5}$ & 98.0 & doorlocks fail & 0.00098 \\ \hline
|
||||
rear end crash & $14.4*10^{-6}$ & 267,700 & fatal fire & 3.855 \\
|
||||
ruptured f.tank & & & allow & \\ \hline
|
||||
|
||||
rear end crash & $1$ & $11$ & recall & 11.0 \\
|
||||
ruptured f.tank & & & fix tank & \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
|
||||
|
||||
http://www.youtube.com/watch?v=rcNeorjXMrE
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticallity Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
%\includegraphics[width=100pt]{./military-aircraft-desktop-computer-wallpaper-missile-launch.jpg}
|
||||
\includegraphics[width=100pt]{./A10_thunderbolt.jpg}
|
||||
% military-aircraft-desktop-computer-wallpaper-missile-launch.jpg: 1024x768 pixel, 300dpi, 8.67x6.50 cm, bb=0 0 246 184
|
||||
\caption{A10 Thunderbolt}
|
||||
\label{fig:f16missile}
|
||||
\end{figure}
|
||||
Emphasis on determining criticality of failure.
|
||||
Applies some Bayesian statistics (probabilities of component failures and those thereby causing given system level failures).
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
Very similar to PFMEA, but instead of cost, a criticality or
|
||||
seriousness factor is ascribed to putative top level incidents.\pause
|
||||
FMECA has three probability factors for component failures.\pause
|
||||
|
||||
\textbf{FMECA ${\lambda}_{p}$ value.}
|
||||
This is the overall failure rate of a base component.
|
||||
This will typically be the failure rate per million ($10^6$) or
|
||||
billion ($10^9$) hours of operation.\pause reference MIL1991. \pause
|
||||
|
||||
\textbf{FMECA $\alpha$ value.}
|
||||
The failure mode probability, usually denoted by $\alpha$ is the probability of
|
||||
a particular failure~mode occurring within a component. \pause reference FMD-91.
|
||||
%, should it fail.
|
||||
%A component with N failure modes will thus have
|
||||
%have an $\alpha$ value associated with each of those modes.
|
||||
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMECA - Failure Modes Effects and Criticality Analysis}
|
||||
\textbf{FMECA $\beta$ value.}
|
||||
The second probability factor $\beta$, is the probability that the failure mode
|
||||
will cause a given system failure.\pause
|
||||
This corresponds to `Bayesian' probability, given a particular
|
||||
component failure mode, the probability of a given system level failure.
|
||||
\pause
|
||||
\textbf{FMECA `t' Value}\pause
|
||||
The time that a system will be operating for, or the working life time of the product is
|
||||
represented by the variable $t$.
|
||||
%for probability of failure on demand studies,
|
||||
%this can be the number of operating cycles or demands expected.
|
||||
\pause
|
||||
\textbf{Severity `s' value}
|
||||
A weighting factor to indicate the seriousness of the putative system level error.
|
||||
%Typical classifications are as follows:~\cite{fmd91}
|
||||
\pause
|
||||
\begin{equation}
|
||||
C_m = {\beta} . {\alpha} . {{\lambda}_p} . {t} . {s}
|
||||
\end{equation}
|
||||
\pause
|
||||
Highest $C_m$ values would be at the top of a `to~do' list
|
||||
for a project manager.
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\subsection{FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics[width=200pt]{./SIL.png}
|
||||
% SIL.jpg: 350x286 pixel, 72dpi, 12.35x10.09 cm, bb=0 0 350 286
|
||||
\caption{SIL requirements}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item \textbf{Statistical Safety} \pause Safety Integrity Level (SIL) standards (EN61508/IOC5108).
|
||||
\pause \item \textbf{Diagnostics} \pause Diagnostic or self checking elements modelled
|
||||
\pause \item \textbf{Complete Failure Mode Coverage} \pause All failure modes of all components must be in the model
|
||||
\pause \item \textbf{Guidelines} \pause To system architectures and development processes
|
||||
\end{itemize}
|
||||
|
||||
% FMEDA is the methodology behind statistical (safety integrity level)
|
||||
% type standards (EN61508/IOC5108). \pause
|
||||
% It provides a statistical overall level of safety
|
||||
% and allows diagnostic mitigation for self checking etc. \pause
|
||||
% It provides guidelines for the design and architecture
|
||||
% of computer/software systems for the four levels of
|
||||
% safety Integrity.
|
||||
% %For Hardware
|
||||
% \pause
|
||||
% FMEDA does force the user to consider all components in a system
|
||||
% by requiring that a MTTF value is assigned for each failure~mode; \pause
|
||||
% the MTTF may be statistically mitigated (improved)
|
||||
% if it can be shown that self-checking will detect failure modes.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Failure Mode Classifications in FMEDA.}
|
||||
\begin{itemize}
|
||||
\pause \item \textbf{Safe or Dangerous} \pause Failure modes are classified SAFE or DANGEROUS
|
||||
\pause \item \textbf{Detectable failure modes} \pause Failure modes are given the attribute DETECTABLE or UNDETECTABLE
|
||||
\pause \item \textbf{Four attributes to Failure Modes} \pause All failure modes may thus be Safe Detected(SD), Safe Undetected(SU), Dangerous Detected(DD), Dangerous Undetected(DU)
|
||||
\pause \item \textbf{Four statistical properties of a system} \pause \\
|
||||
$ \sum \lambda_{SD}$, $\sum \lambda_{SU}$, $\sum \lambda_{DD}$, $\sum \lambda_{DU}$
|
||||
\end{itemize}
|
||||
|
||||
% Failure modes are classified as Safe or Dangerous according
|
||||
% to the putative system level failure they will cause. \pause
|
||||
% The Failure modes are also classified as Detected or
|
||||
% Undetected.
|
||||
% This gives us four level failure mode classifications:
|
||||
% Safe-Detected (SD), Safe-Undetected (SU), Dangerous-Detected (DD) or Dangerous-Undetected (DU),
|
||||
% and the probabilistic failure rate of each classification
|
||||
% is represented by lambda variables
|
||||
% (i.e. $\lambda_{SD}$, $\lambda_{SU}$, $\lambda_{DD}$, $\lambda_{DU}$).
|
||||
\end{frame}
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Diagnostic Coverage.}
|
||||
The diagnostic coverage is simply the ratio
|
||||
of the dangerous detected probabilities
|
||||
against the probability of all dangerous failures,
|
||||
and is normally expressed as a percentage. $\Sigma\lambda_{DD}$ represents
|
||||
the percentage of dangerous detected base component failure modes, and
|
||||
$\Sigma\lambda_D$ the total number of dangerous base component failure modes.
|
||||
|
||||
$$ DiagnosticCoverage = \Sigma\lambda_{DD} / \Sigma\lambda_D $$
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
The \textbf{diagnostic coverage} for safe failures, where $\Sigma\lambda_{SD}$ represents the percentage of
|
||||
safe detected base component failure modes,
|
||||
and $\Sigma\lambda_S$ the total number of safe base component failure modes,
|
||||
is given as
|
||||
|
||||
$$ SF = \frac{\Sigma\lambda_{SD}}{\Sigma\lambda_S} $$
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
\textbf{Safe Failure Fraction.}
|
||||
A key concept in FMEDA is Safe Failure Fraction (SFF).
|
||||
This is the ratio of safe and dangerous detected failures
|
||||
against all safe and dangerous failure probabilities.
|
||||
Again this is usually expressed as a percentage.
|
||||
|
||||
$$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_S + \Sigma\lambda_D \big) $$
|
||||
\pause
|
||||
SFF determines how proportionately fail-safe a system is, not how reliable it is ! \pause
|
||||
Weakness in this philosophy; \pause adding extra safe failures (even unused ones) improves the SFF.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
To achieve SIL levels, diagnostic coverage and SFF levels are prescribed along with
|
||||
hardware architectures and software techniques. \pause
|
||||
The overall the aim of SIL is classify the safety of a system,
|
||||
by statistically determining how frequently it can fail dangerously.
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
{
|
||||
\begin{table}[ht]
|
||||
\caption{FMEA Calculations} % title of Table
|
||||
%\centering % used for centering table
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{SIL} & \textbf{Low Demand} & \textbf{Continuous Demand} \\
|
||||
& Prob of failing on demand & Prob of failure per hour \\ \hline \hline
|
||||
4 & $ 10^{-5}$ to $< 10^{-4}$ & $ 10^{-9}$ to $< 10^{-8}$ \\ \hline
|
||||
3 & $ 10^{-4}$ to $< 10^{-3}$ & $ 10^{-8}$ to $< 10^{-7}$ \\ \hline
|
||||
2 & $ 10^{-3}$ to $< 10^{-2}$ & $ 10^{-7}$ to $< 10^{-6}$ \\ \hline
|
||||
1 & $ 10^{-2}$ to $< 10^{-1}$ & $ 10^{-6}$ to $< 10^{-5}$ \\ \hline
|
||||
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{table}
|
||||
}
|
||||
Table adapted from EN61508-1:2001 [7.6.2.9 p33]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{ FMEDA - Failure Modes Effects and Diagnostic Analysis}
|
||||
FMEDA is a modern extension of FMEA, in that it will allow for
|
||||
self checking features, and provides detailed recommendations for computer/software architecture. \pause
|
||||
It has a simple final result, a Safety Integrity Level (SIL) from 1 to 4 (where 4 is safest).
|
||||
|
||||
%FMEA can be used as a term simple to mean Failure Mode Effects Analysis, and is
|
||||
%part of product approval for many regulated products in the EU and the USA...
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\subsection{FMEA used for Safety Critical Approvals}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{DESIGN FMEA (DFMEA): Safety Critical Approvals FMEA}
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=100pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
Static FMEA, Design FMEA, Approvals FMEA \pause
|
||||
|
||||
Experts from Approval House and Equipment Manufacturer
|
||||
discuss selected component failure modes
|
||||
judged to be in critical sections of the product.
|
||||
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{DESIGN FMEA: Safety Critical Approvals FMEA}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\includegraphics[width=70pt,keepaspectratio=true]{./tech_meeting.png}
|
||||
% tech_meeting.png: 350x299 pixel, 300dpi, 2.97x2.53 cm, bb=0 0 84 72
|
||||
\caption{FMEA Meeting}
|
||||
\label{fig:tech_meeting}
|
||||
\end{figure}
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Impossible to look at all component failures let alone apply FMEA rigorously.
|
||||
\pause \item In practise, failure scenarios for critical sections are contested, and either justified or extra safety measures implemented.
|
||||
\pause \item Often Meeting notes or minutes only. Unusual for detailed arguments to be documented.
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
Addendum --- reasoning distance
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
Note here that we have had to look at the failure~mode
|
||||
in relation to the entire circuit. \pause
|
||||
We have used intuition to determine the probable
|
||||
effect of this failure mode. \pause
|
||||
We have not examined this failure mode
|
||||
against every other component in the system. \pause
|
||||
Perhaps we should.... this would be a more rigorous and complete
|
||||
approach in looking for system failures.
|
||||
|
||||
\end{frame}
|
||||
|
||||
\subsection{Rigorous FMEA - State Explosion}
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
Consider the analysis
|
||||
where we look at all the failure modes in a system, and then
|
||||
see how they can affect all other components within it.
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
We need to look at a large number of failure scenarios
|
||||
to do this completely (all failure modes against all components).
|
||||
This is represented in the equation below. %~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$f$ is the number of failure modes per component.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single}
|
||||
N.(N-1).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Single Failure FMEA}
|
||||
This would mean an order of $N^2$ number of checks to perform
|
||||
to undertake a `rigorous~FMEA'. Even small systems have typically
|
||||
100 components, and they typically have 3 or more failure modes each.
|
||||
$100*99*3=29,700$.
|
||||
\pause
|
||||
The European Gas burner standard (EN298:2003), demands the checking of
|
||||
double failure scenarios (for burner lock-out scenarios).
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{Rigorous Double Failure FMEA}
|
||||
For looking at potential double failure scenarios (two components
|
||||
failing within a given time frame) and the order becomes
|
||||
$N^3$. \pause
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_double}
|
||||
N.(N-1).(N-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
\pause
|
||||
$100*99*98*3=2,910,600$.
|
||||
\pause
|
||||
|
||||
.\\
|
||||
\end{frame}
|
||||
\end{document}
|
||||
|
@ -772,7 +772,7 @@ We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
||||
%}
|
||||
%\clearpage
|
||||
%\paragraph{Modelling the OP amp with the potential divider.}
|
||||
We now bring the op-amp and the {\dc} {\em PD} together to % andrew heavily critised this sentence but it made sense to Chris and I
|
||||
The op-amp and the {\dc} {\em PD} now % andrew heavily critised this sentence but it made sense to Chris and I
|
||||
form a {\fg} to model the failure mode behaviour of the non-inverting amplifier.
|
||||
%
|
||||
%We have the failure modes of the {\dc} for the potential divider,
|
||||
@ -963,7 +963,7 @@ as {\fcs} in table~\ref{tbl:ampfmea1}.
|
||||
%
|
||||
For this amplifier configuration we have three {\dc} failure modes; {\em AMP\_High, AMP\_Low, LowPass}. % see figure~\ref{fig:fgampb}.
|
||||
% HTR 05SEP2012
|
||||
This model now has two stages of analysis, as represented in figure~\ref{fig:dc2}.
|
||||
This model now has two stages of analysis, as represented in figure~\ref{fig:eulerfmmd}.
|
||||
%
|
||||
From the analysis in table \ref{tbl:ampfmea1} we can create the {\dc} {\em NONINVAMP}, which
|
||||
represents the failure mode behaviour of the non-inverting amplifier.
|
||||
@ -1461,7 +1461,7 @@ This is dealt with in detail using an algorithmic description, in appendix \ref{
|
||||
% %, and in this case it would have a set of failure modes.
|
||||
% %Looking at the {\fg} in this way is seeing it as a {\dc}.
|
||||
|
||||
In terms of our UML model, the symptom abstraction process takes a {\fg}
|
||||
In terms of our UML model (see figure~\ref{fig:cfg}), the symptom abstraction process takes a {\fg}
|
||||
and creates a new {\dc} from it.
|
||||
%To do this it first creates
|
||||
%a new set of failure modes, representing the fault behaviour
|
||||
@ -1493,13 +1493,14 @@ Each {\fg} will have one analysis report associated with it.
|
||||
The UML representation (in figure \ref{fig:cfg}) shows a `{\fg}' having a one to one relationship with a derived~component.
|
||||
%
|
||||
%
|
||||
The symbol $\derivec$ is used to indicate the analysis process that takes a
|
||||
functional group and converts it into a new component.
|
||||
\begin{definition}
|
||||
With $\mathcal{\FG}$ representing the set of all functional groups (over all possible components),
|
||||
and $\mathcal{{\DC}}$ the set of all derived components,
|
||||
we express the analysis process $\derivec$ as $$ \derivec : \mathcal{\FG} \rightarrow \mathcal{{\DC}} .$$
|
||||
\end{definition}
|
||||
%%% FORMAL DEF SLIGHTLY OUT OF PLACE HERE ---- J.HOWSE
|
||||
% The symbol $\derivec$ is used to indicate the analysis process that takes a
|
||||
% functional group and converts it into a new component.
|
||||
% \begin{definition}
|
||||
% With $\mathcal{\FG}$ representing the set of all functional groups (over all possible components),
|
||||
% and $\mathcal{{\DC}}$ the set of all derived components,
|
||||
% we express the analysis process $\derivec$ as $$ \derivec : \mathcal{\FG} \rightarrow \mathcal{{\DC}} .$$
|
||||
% \end{definition}
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
@ -1563,7 +1564,7 @@ in quality systems~\cite{iso9001}.
|
||||
Having analysis reports increases the traceability---or documented paper trail---aiding understanding
|
||||
and maintainability for failure mode models.
|
||||
%
|
||||
Also a detailed cause and effect model is useful creating diagnostic schemas~\cite{dbamafta}.
|
||||
Also a detailed cause and effect model is useful for creating diagnostic schemas~\cite{dbamafta}.
|
||||
|
||||
|
||||
|
||||
|
@ -1985,7 +1985,7 @@ It is level converted to an analogue signal
|
||||
(i.e. a digital 0 becomes a -ve voltage and a digital 1 becomes a +ve voltage)
|
||||
and fed into the summing integrator completing the negative feedback loop.
|
||||
%
|
||||
This implements an over-sampling analogue to digital converter~\cite{ehb}[pp.729-730].
|
||||
In essence this implements an over-sampling analogue to digital converter~\cite{ehb}[pp.729-730].
|
||||
|
||||
\subsection{FMMD analysis of \sd }
|
||||
|
||||
|
BIN
submission_thesis/CH5_Examples/eulersdfinal.dia
Normal file
BIN
submission_thesis/CH5_Examples/eulersdfinal.dia
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user