OK, got the example from the

presentation given at Birmingham
22SEP2011.
This commit is contained in:
Robin Clark 2011-10-03 21:20:42 +01:00
parent 609d37d013
commit 7f7e2b4329
11 changed files with 160 additions and 2 deletions

Binary file not shown.

View File

@ -551,6 +551,164 @@ We can use derived components to form `higher~level' functional groups.
This creates an analysis hierarchy.
\end{frame}
\subsection{example}
\begin{frame}
\frametitle{FMMD - Example}
We can take groups of components that perform a well defined task, and analyse their failure mode behaviour.
We can call these 'functional groups'.
If we analyse the failure mode behaviour of a functional group we can determine how it will fail, or its symptoms of failure.
We can represent this by a 'derived component', where its failure modes are the symptoms of the functional group it was derived from.
\end{frame}
\begin{frame}
\frametitle{FMMD - Example}
We can begin to analyse this by looking for functional groups.
The resistors would together to perform a fairly common function in electronics, that of the potential divider.
We can now take the failure modes for the resistors (OPEN and SHORT EN298) and see what effect each of these failures will have on the functional group
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Resistor and failure modes}
Resistor and its failure modes represented as a directed graph.
\begin{figure}
\centering
\includegraphics[width=200pt]{./resistor_failure_graph.png}
% resistor_failure_graph.png: 391x279 pixel, 93dpi, 10.68x7.62 cm, bb=0 0 303 216
\label{fig:resasfm}
\end{figure}
\end{frame}
\subsubsection{Potential Divider}
\begin{frame}
\frametitle{FMMD - Example - Failure mode analysis of Potential Divider}
\begin{table}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{Pot Div Effect} & & \textbf{Symptom} \\
\hline
FS1: R1 SHORT & & $LOW$ & & $PDLow$ \\ \hline
FS2: R1 OPEN & & $HIGH$ & & $PDHigh$ \\ \hline
FS3: R2 SHORT & & $HIGH$ & & $PDHigh$ \\ \hline
FS4: R2 OPEN & & $LOW$ & & $PDLow$ \\ \hline
\hline
\end{tabular}
\end{table}
\begin{figure}
\centering
\includegraphics[width=100pt,keepaspectratio=true]{./pd.png}
% pd.png: 361x241 pixel, 72dpi, 12.74x8.50 cm, bb=0 0 361 241
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Potential Divider as Derived Component}
\begin{figure}
\centering
\includegraphics[width=175pt]{./pd_failures_as_graph.png}
% pd_dc_failures_as_graph.png: 389x284 pixel, 93dpi, 10.63x7.76 cm, bb=0 0 301 220
\label{fig:pd}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Potential Divider as Derived Component}
\begin{figure}
\centering
\includegraphics[width=200pt]{./pd_dc_failures_as_graph.png}
% pd_dc_failures_as_graph.png: 389x284 pixel, 93dpi, 10.63x7.76 cm, bb=0 0 301 220
\label{fig:pd}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Potential Divider as Derived Component}
We can now use this pre-analysed potential divider `derived~component'
in a higher level design.
\begin{figure}
\centering
\includegraphics[width=100pt]{./pd_dc_failures_as_graph.png}
% pd_dc_failures_as_graph.png: 389x284 pixel, 93dpi, 10.63x7.76 cm, bb=0 0 301 220
\label{fig:pd}
\end{figure}
\end{frame}
\subsection{Non Inverting OP-AMP}
\begin{frame}
\frametitle{FMMD - Example - Non Inverting OP-AMP}
\begin{figure}
\centering
\includegraphics{./mvampcircuit.png}
% mvampcircuit.png: 243x143 pixel, 72dpi, 8.57x5.04 cm, bb=0 0 243 143
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Non Inverting OP-AMP}
\begin{figure}
\centering
\includegraphics[width=300pt]{./non_inv_amp_fmea.png}
% non_inv_amp_fmea.png: 964x492 pixel, 96dpi, 25.50x13.02 cm, bb=0 0 723 369
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Non Inverting OP-AMP}
% \begin{figure}
% \centering
% \includegraphics[width=200pt]{./opamp_failures_as_graph.png} // op amp failure modes
% % opamp_failures_as_graph.png: 329x440 pixel, 93dpi, 8.99x12.02 cm, bb=0 0 255 341
% \end{figure}
\begin{figure}
\centering
\includegraphics[width=150pt]{./fg_opamp_pd_as_graph.png}
% fg_opamp_pd_as_graph.png: 750x826 pixel, 93dpi, 20.49x22.56 cm, bb=0 0 581 640
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Non Inverting OP-AMP}
\begin{figure}
\centering
\includegraphics[width=150pt]{./n_inv_dc.png}
% n_inv_dc.png: 296x326 pixel, 72dpi, 10.44x11.50 cm, bb=0 0 296 326
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Example - Non Inverting OP-AMP}
\begin{figure}
\centering
\includegraphics[width=200pt]{./fmmd_exm_h.png}
% fmmd_exm_h.png: 376x241 pixel, 72dpi, 13.26x8.50 cm, bb=0 0 376 241
\end{figure}
\end{frame}
\begin{frame}
\frametitle{FMMD - Failure Mode Modular De-Composition}
We can view the functional groups in FMMD as forming a hierarchy.
@ -696,7 +854,7 @@ not all the components in the system.
\textbf{traceability}
Because each reasoning stage contains associations ($FailureMode \mapsto Sypmtom$)
we can trace the `reasoning' from base level component failure mode to top level/system
failure, by traversing the tree.
failure, by traversing the tree/hierarchy. This is in effect documenting the framework of the reasoning.
\end{frame}
@ -722,7 +880,7 @@ missed in an analysis.
\subsection{conclusion}
\begin{frame}
\frametitle{FMMD - Failure Mode Modular De-Composition}
\textbf{Conclusion: FMMD}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

BIN
presentations/fmea/pd.dia Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.