This commit is contained in:
Robin Clark 2010-11-30 19:32:00 +00:00
parent bcd8de0d7e
commit 7d0532fdf2

View File

@ -399,6 +399,125 @@ and let us say new symptom s5 can be caused by failure mode $\{K_{4 a} \}$.
We can create a derived component $DC^1_2$ using
$\bowtie fm(FG^0_2) = DC^1_2$.
Applying $fm$ to our {\dcs} gives $fm(DC^1_2) = \{ s3,s4,s5 \}$.
We can respresent this in the DAG in figure \ref{fig:dag2}.
%
% DAG INCLUDING DC^1_2
%
\begin{figure}
\centering
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
\tikzstyle{component}=[fmmde, fill=green!50];
\tikzstyle{failure}=[fmmde, fill=red!50];
\tikzstyle{symptom}=[fmmde, fill=blue!50];
\tikzstyle{annot} = [text width=4em, text centered]
% Draw the input layer nodes
%\foreach \name / \y in {1,...,4}
% This is the same as writing \foreach \name / \y in {1/1,2/2,3/3,4/4}
% \node[component, pin=left:Input \#\y] (I-\name) at (0,-\y) {};
\node[component] (C-1) at (0,-1) {$C^0_1$};
\node[component] (C-2) at (0,-3) {$C^0_2$};
\node[component] (C-3) at (0,-5) {$C^0_3$};
\node[component] (K-4) at (0,-8) {$K^0_4$};
%\node[component] (C-5) at (0,-10) {$C^0_5$};
%\node[component] (C-6) at (0,-12) {$C^0_6$};
%\node[component] (K-7) at (0,-15) {$K^0_7$};
% Draw the hidden layer nodes
%\foreach \name / \y in {1,...,5}
% \path[yshift=0.5cm]
\node[failure] (C-1a) at (\layersep,-1) {a};
\node[failure] (C-1b) at (\layersep,-2) {b};
\node[failure] (C-2a) at (\layersep,-3) {a};
\node[failure] (C-2b) at (\layersep,-4) {b};
\node[failure] (C-3a) at (\layersep,-5) {a};
\node[failure] (C-3b) at (\layersep,-6) {b};
\node[failure] (K-4a) at (\layersep,-7) {a};
\node[failure] (K-4b) at (\layersep,-8) {b};
\node[failure] (K-4d) at (\layersep,-9) {d};
% Draw the output layer node
% Connect every node in the input layer with every node in the
% hidden layer.
%\foreach \source in {1,...,4}
% \foreach \dest in {1,...,5}
\path (C-1) edge (C-1a);
\path (C-1) edge (C-1b);
\path (C-2) edge (C-2a);
\path (C-2) edge (C-2b);
\path (C-3) edge (C-3a);
\path (C-3) edge (C-3b);
\path (K-4) edge (K-4a);
\path (K-4) edge (K-4b);
\path (K-4) edge (K-4d);
%\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
\node[symptom, right of=C-1a] (s1) {s1};
\node[symptom, right of=C-2a] (s2) {s2};
\node[symptom, right of=C-3a] (s3) {s3};
\node[symptom, right of=C-3b] (s4) {s4};
\node[symptom, right of=K-4b] (s5) {s5};
\path (C-2b) edge (s1);
\path (C-1a) edge (s1);
\path (C-2a) edge (s2);
\path (C-1b) edge (s2);
\path (C-1a) edge (s3);
\path (C-3b) edge (s3);
\path (K-4b) edge (s3);
\path (C-1b) edge (s4);
\path (C-3a) edge (s4);
\path (K-4d) edge (s4);
\path (K-4a) edge (s5);
\node[component, right of=s1] (DC-1) {$C^1_1$};
\node[component, right of=s4] (DC-2) {$C^1_2$};
\path (s1) edge (DC-1);
\path (s2) edge (DC-1);
\path (s3) edge (DC-2);
\path (s4) edge (DC-2);
\path (s5) edge (DC-2);
% Connect every node in the hidden layer with the output layer
%\foreach \source in {1,...,5}
% \path (H-\source) edge (O);
% Annotate the layers
\node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
\node[annot,left of=hl] {Base Components};
\node[annot,right of=hl](s) {Symptoms};
\node[annot,right of=s](dcl) {Derived Component};
\end{tikzpicture}
% End of code
\caption{DAG representing failure modes and symptoms $FG^0_1 \rightarrow DC^1_1$ and $FG^0_2 \rightarrow DC^1_2$}
\label{fig:dag2}
\end{figure}
\paragraph{Applying FMMD $\bowtie fm(FG^0_3) $ :}
@ -410,16 +529,193 @@ We can create a derived component $DC^1_3$ using
$\bowtie fm(FG^0_3) = DC^1_3$
where $fm(DC^1_3) = \{ s6,s7,s8 \}$.
We can now represent the first stage of FMMD, all base component
failure modes analysed and our first set of derived components determined.
This is shown in the DAG in figure \ref{fig:dag3}.
\pagebreak[4]
\begin{figure}
\centering
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
\tikzstyle{component}=[fmmde, fill=green!50];
\tikzstyle{failure}=[fmmde, fill=red!50];
\tikzstyle{symptom}=[fmmde, fill=blue!50];
\tikzstyle{annot} = [text width=4em, text centered]
% Draw the input layer nodes
%\foreach \name / \y in {1,...,4}
% This is the same as writing \foreach \name / \y in {1/1,2/2,3/3,4/4}
% \node[component, pin=left:Input \#\y] (I-\name) at (0,-\y) {};
\node[component] (C-1) at (0,-1) {$C^0_1$};
\node[component] (C-2) at (0,-3) {$C^0_2$};
\node[component] (C-3) at (0,-5) {$C^0_3$};
\node[component] (K-4) at (0,-8) {$K^0_4$};
\node[component] (C-5) at (0,-10) {$C^0_5$};
\node[component] (C-6) at (0,-12) {$C^0_6$};
\node[component] (K-7) at (0,-15) {$K^0_7$};
% Draw the hidden layer nodes
%\foreach \name / \y in {1,...,5}
% \path[yshift=0.5cm]
\node[failure] (C-1a) at (\layersep,-1) {a};
\node[failure] (C-1b) at (\layersep,-2) {b};
\node[failure] (C-2a) at (\layersep,-3) {a};
\node[failure] (C-2b) at (\layersep,-4) {b};
\node[failure] (C-3a) at (\layersep,-5) {a};
\node[failure] (C-3b) at (\layersep,-6) {b};
\node[failure] (K-4a) at (\layersep,-7) {a};
\node[failure] (K-4b) at (\layersep,-8) {b};
\node[failure] (K-4d) at (\layersep,-9) {d};
\node[failure] (C-5a) at (\layersep,-10) {a};
\node[failure] (C-5b) at (\layersep,-11) {b};
\node[failure] (C-6a) at (\layersep,-12) {a};
\node[failure] (C-6b) at (\layersep,-13) {b};
\node[failure] (K-7a) at (\layersep,-15) {a};
\node[failure] (K-7b) at (\layersep,-16) {b};
\node[failure] (K-7d) at (\layersep,-17) {d};
% Draw the output layer node
% Connect every node in the input layer with every node in the
% hidden layer.
%\foreach \source in {1,...,4}
% \foreach \dest in {1,...,5}
\path (C-1) edge (C-1a);
\path (C-1) edge (C-1b);
\path (C-2) edge (C-2a);
\path (C-2) edge (C-2b);
\path (C-3) edge (C-3a);
\path (C-3) edge (C-3b);
\path (K-4) edge (K-4a);
\path (K-4) edge (K-4b);
\path (K-4) edge (K-4d);
\path (C-5) edge (C-5a);
\path (C-5) edge (C-5b);
\path (C-6) edge (C-6a);
\path (C-6) edge (C-6b);
\path (K-7) edge (K-7a);
\path (K-7) edge (K-7b);
\path (K-7) edge (K-7d);
%\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
\node[symptom, right of=C-1a] (s1) {s1};
\node[symptom, right of=C-2a] (s2) {s2};
\node[symptom, right of=C-3a] (s3) {s3};
\node[symptom, right of=C-3b] (s4) {s4};
\node[symptom, right of=K-4b] (s5) {s5};
\node[symptom, right of=C-5a] (s6) {s6};
\node[symptom, right of=C-6b] (s7) {s7};
\node[symptom, right of=K-7b] (s8) {s8};
\path (C-2b) edge (s1);
\path (C-1a) edge (s1);
\path (C-2a) edge (s2);
\path (C-1b) edge (s2);
\path (C-1a) edge (s3);
\path (C-3b) edge (s3);
\path (K-4b) edge (s3);
\path (C-1b) edge (s4);
\path (C-3a) edge (s4);
\path (K-4d) edge (s4);
\path (K-4a) edge (s5);
\path (C-5a) edge (s6);
\path (C-6b) edge (s6);
\path (K-7b) edge (s6);
\path (C-5b) edge (s7);
\path (C-6a) edge (s7);
\path (K-7d) edge (s7);
\path (K-7a) edge (s8);
\node[component, right of=s1] (DC-1) {$C^1_1$};
\node[component, right of=s4] (DC-2) {$C^1_2$};
\node[component, right of=s7] (DC-3) {$C^1_3$};
\path (s1) edge (DC-1);
\path (s2) edge (DC-1);
\path (s3) edge (DC-2);
\path (s4) edge (DC-2);
\path (s5) edge (DC-2);
\path (s6) edge (DC-3);
\path (s7) edge (DC-3);
\path (s8) edge (DC-3);
% Connect every node in the hidden layer with the output layer
%\foreach \source in {1,...,5}
% \path (H-\source) edge (O);
% Annotate the layers
\node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
\node[annot,left of=hl] {Base Components};
\node[annot,right of=hl](s) {Symptoms};
\node[annot,right of=s](dcl) {Derived Component};
\end{tikzpicture}
% End of code
\caption{DAG representing failure modes and symptoms $FG^0_1 \rightarrow DC^1_1$ and $FG^0_2 \rightarrow DC^1_2$}
\label{fig:dag3}
\end{figure}
\clearpage
%\pagebreak[4]
\subsection{Using Derived Components in Functional Groups}
The DAG we have in figure \ref{fig:dag3} does not yet give us SYSTEM or `top~level'
failure modes.
We can apply $fm$ to the derived components and
this returns the failure modes. We can notate
these with $a$ and $b$ etc as before, but can give them
a subscript representing the symptom they were sourced from thus:
$$ fm(DC^1_1) = \{ a_{s1}, b_{s2} \}, $$
$$ fm(DC^1_2) = \{ a_{s3}, b_{s4}, c_{s5} \}, $$
$$ fm(DC^1_3) = \{ a_{s6}, b_{s7}, c_{s8} \}. $$
HERE show how the hierarchy is built, how the inheritance works etc
In order to determine SYSTEM level symptoms, we need to
use the derived components to form a higher level functional
group and analyse that.
HAVE an example. totally theoretical. HAVE Common mode failure detection AND Common dependency detection
For the sake of example, let us assume that we
can use all three derived components to
create a top~level functional group.
\subsection{Directed Acyclic Graph}
Let
$ FG^1_1 = \{ DC^1_1, DC^1_1, DC^1_1 \} $.
Applying $fm(FG^1_1) = \{ a_{s1}, b_{s2}, a_{s3}, b_{s4}, c_{s5}, a_{s6}, b_{s7}, c_{s8} \}$.
To get our system level derived component we can apply $ \bowtie fm(FG^1_1) = DC^2_1 $.
NOW THINK ABOUT THIS
NEED INTERESTING FAULTS
TO RACE BACK DOWN THE DAG
\section{Directed Acyclic Graph}
Show how the hierarchy can be represented as a DAG