............dah stargate tiem

This commit is contained in:
Robin Clark 2010-12-02 15:47:18 +00:00
parent 56bd6c599d
commit 7ca6451121

View File

@ -60,6 +60,11 @@ if they have multiple causes.
}
%{ \huge This might become a chapter in its own right after fmmdset }
\[ \xrightarrow{\hspace*{3cm}} \]
\[ \xrightarrow{\hspace*{8cm}} \]
\[ \xrightarrow{\hspace*{10cm}} \]
\section{From UML Model to Object Model}
@ -538,11 +543,11 @@ Let us say new symptom s6 can be caused by failure modes $\{C_{5 a}, C_{6 b}, K
and let us say new symptom s8 can be caused by failure mode $\{K_{7 a} \}$.
%xrightarrow{\hspace*{3cm}}
We can represent this using a relationship $\stackrel{Collect Symptoms}{\longrightarrow}$, thus:
We can represent this using a relationship $\stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}}$, thus:
$$ \{ C_{5 a}, C_{6 b}, K_{4 b} \} \stackrel{Collect Symptoms}{\longrightarrow} S6, $$
$$ \{ C_{5 b}, C_{6 a}, K_{7 d} \} \stackrel{Collect Symptoms}{\longrightarrow} S7, $$
$$ \{ K_{7 a} \} \stackrel{Collect Symptoms}{\longrightarrow} S8. $$
$$ \{ C_{5 a}, C_{6 b}, K_{4 b} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S6, $$
$$ \{ C_{5 b}, C_{6 a}, K_{7 d} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S7, $$
$$ \{ K_{7 a} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S8. $$
We can create a derived component $C^1_3$ using
$\bowtie fm(FG^0_3) = C^1_3$
@ -733,12 +738,12 @@ Applying $fm(FG_1) = \{ a_{s1}, b_{s2}, a_{s3}, b_{s4}, c_{s5}, a_{s6}, b_{s7},
Again for the sake of example let us determine `arbitary' common symptoms s9,s10 and s11 from
$fm(FG^1_1)$.
$$ \{ b_{s2} \} \stackrel{Collect Symptoms}{\longrightarrow} S9$$
%$$ \{ b^1_{s2} \} \stackrel{Collect Symptoms}{\longrightarrow} S9$$
$$ \{ a_{s3}, b_{s4}, a_{s6}, b_{s7} \} \stackrel{Collect Symptoms}{\longrightarrow} S10 $$
%$$ \{ a^1_{s3}, b^1_{s4}, a^1_{s6}, b^1_{s7} \} \stackrel{Collect Symptoms}{\longrightarrow} S10 $$
$$ \{ c_{s5}, c_{s8} \} \stackrel{Collect Symptoms}{\longrightarrow} S11 $$
%$$ \{ c^1_{s5}, c^1_{s8} \} \stackrel{Collect Symptoms}{\longrightarrow} S11 $$
$$ \{ b_{s2} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S9$$
%$$ \{ b^1_{s2} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S9$$
$$ \{ a_{s3}, b_{s4}, a_{s6}, b_{s7} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S10 $$
%$$ \{ a^1_{s3}, b^1_{s4}, a^1_{s6}, b^1_{s7} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S10 $$
$$ \{ c_{s5}, c_{s8} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S11 $$
%$$ \{ c^1_{s5}, c^1_{s8} \} \stackrel{Collect Symptoms}{\xrightarrow{\hspace*{2cm}}} S11 $$
To get our system level derived component we can apply $ \bowtie fm(FG^1_1) = C^2_1 $.
Thus applying $fm$ to our newly derived component $ C^2_1 $
gives its derived failure modes thus: