.
This commit is contained in:
parent
219d4774b1
commit
63a37e5e9c
@ -495,13 +495,13 @@ Consider the set $S = \{a,b,c\}$.
|
|||||||
|
|
||||||
The powerset of S:
|
The powerset of S:
|
||||||
|
|
||||||
$$ \mathcal{P} S = \{ \emptyset, \{a,b,c\}, \{a,b\},\{b,c\},\{c,a\},\{a\},\{b\},\{c\} \} $$.
|
$$ \mathcal{P} S = \{ \emptyset, \{a,b,c\}, \{a,b\},\{b,c\},\{c,a\},\{a\},\{b\},\{c\} \} .$$
|
||||||
|
|
||||||
|
|
||||||
$\mathcal{P}_{\le 2} S $ means all non-empty subsets of S where the cardinality of the subsets is
|
$\mathcal{P}_{\le 2} S $ means all non-empty subsets of S where the cardinality of the subsets is
|
||||||
less than or equal to 2 or less.
|
less than or equal to 2 or less.
|
||||||
|
|
||||||
$$ \mathcal{P}_{\le 2} S = \{ \{a,b\},\{b,c\},\{c,a\},\{a\},\{b\},\{c\} \} $$.
|
$$ \mathcal{P}_{\le 2} S = \{ \{a,b\},\{b,c\},\{c,a\},\{a\},\{b\},\{c\} \} . $$
|
||||||
|
|
||||||
Note that $\mathcal{P}_{1} S $ (non-empty subsets where cardinality $\leq 1$) for this example is:
|
Note that $\mathcal{P}_{1} S $ (non-empty subsets where cardinality $\leq 1$) for this example is:
|
||||||
|
|
||||||
@ -514,9 +514,9 @@ The number of $k$ combinations (each of size $k$) from a set $S$
|
|||||||
with $n$ elements (size $n$) is the binomial coefficient~\cite{probstat} shown in equation \ref{bico}.
|
with $n$ elements (size $n$) is the binomial coefficient~\cite{probstat} shown in equation \ref{bico}.
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
C^n_k = {n \choose k} = \frac{n!}{k!(n-k)!}
|
C^n_k = {n \choose k} = \frac{n!}{k!(n-k)!} .
|
||||||
\label{bico}
|
\label{bico}
|
||||||
\end{equation} .
|
\end{equation}
|
||||||
|
|
||||||
To find the number of elements in a cardinality constrained subset S with up to $cc$ elements
|
To find the number of elements in a cardinality constrained subset S with up to $cc$ elements
|
||||||
in each combination sub-set,
|
in each combination sub-set,
|
||||||
@ -530,9 +530,9 @@ from $1$ to $cc$ thus
|
|||||||
%
|
%
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}S}| = \sum^{cc}_{k=1} \frac{|{S}|!}{ k! ( |{S}| - k)!}
|
|{\mathcal{P}_{cc}S}| = \sum^{cc}_{k=1} \frac{|{S}|!}{ k! ( |{S}| - k)!} .
|
||||||
\label{eqn:ccps}
|
\label{eqn:ccps}
|
||||||
\end{equation} .
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -556,7 +556,7 @@ $|{n \choose 2}|$ and $|{n \choose 3}|$ for each component in the functional~gro
|
|||||||
\subsubsection{Example: Two Component functional group cardinality Constraint of 2}
|
\subsubsection{Example: Two Component functional group cardinality Constraint of 2}
|
||||||
|
|
||||||
For example: suppose we have a simple functional group with two components R and T, of which
|
For example: suppose we have a simple functional group with two components R and T, of which
|
||||||
$$fm(R) = \{R_o, R_s\}$$ and $$fm(T) = \{T_o, T_s, T_h\}$$.
|
$$fm(R) = \{R_o, R_s\}$$ and $$fm(T) = \{T_o, T_s, T_h\}.$$
|
||||||
|
|
||||||
This means that the functional~group $FG=\{R,T\}$ will have a component failure mode set
|
This means that the functional~group $FG=\{R,T\}$ will have a component failure mode set
|
||||||
of $fm(FG) = \{R_o, R_s, T_o, T_s, T_h\}$
|
of $fm(FG) = \{R_o, R_s, T_o, T_s, T_h\}$
|
||||||
@ -564,7 +564,7 @@ of $fm(FG) = \{R_o, R_s, T_o, T_s, T_h\}$
|
|||||||
For a cardinality constrained powerset of 2, because there are 5 error modes ( $|fm(FG)|=5$),
|
For a cardinality constrained powerset of 2, because there are 5 error modes ( $|fm(FG)|=5$),
|
||||||
applying equation \ref{eqn:ccps} gives :-
|
applying equation \ref{eqn:ccps} gives :-
|
||||||
|
|
||||||
$$ | P_2 (fm(FG)) | = \frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15$$.
|
$$ | P_2 (fm(FG)) | = \frac{5!}{1!(5-1)!} + \frac{5!}{2!(5-2)!} = 15.$$
|
||||||
|
|
||||||
This is composed of ${5 \choose 1}$
|
This is composed of ${5 \choose 1}$
|
||||||
five single fault modes, and ${5 \choose 2}$ ten double fault modes.
|
five single fault modes, and ${5 \choose 2}$ ten double fault modes.
|
||||||
@ -585,7 +585,7 @@ $$ \mathcal{P}_{2}(fm(FG)) = \{
|
|||||||
\}
|
\}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
And whose cardinality is 11. % by inspection
|
and whose cardinality is 11. % by inspection
|
||||||
%$$
|
%$$
|
||||||
%|
|
%|
|
||||||
%\{
|
%\{
|
||||||
@ -628,18 +628,18 @@ components $C_j$ are in
|
|||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
- {\sum_{j \in J} {|FM({C_{j})}| \choose 2}}
|
- {\sum_{j \in J} {|FM({C_{j})}| \choose 2}} .
|
||||||
\label{eqn:correctedccps}
|
\label{eqn:correctedccps}
|
||||||
\end{equation} .
|
\end{equation}
|
||||||
|
|
||||||
Expanding the combination in equation \ref{eqn:correctedccps}
|
Expanding the combination in equation \ref{eqn:correctedccps}
|
||||||
|
|
||||||
|
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
|{\mathcal{P}_{cc}SU}| = {\sum^{cc}_{k=1} \frac{|{SU}|!}{k!(|{SU}| - k)!}}
|
||||||
- {{\sum_{j \in J} \frac{|FM({C_j})|!}{2!(|FM({C_j})| - 2)!}} }
|
- {{\sum_{j \in J} \frac{|FM({C_j})|!}{2!(|FM({C_j})| - 2)!}} } .
|
||||||
\label{eqn:correctedccps2}
|
\label{eqn:correctedccps2}
|
||||||
\end{equation} .
|
\end{equation}
|
||||||
|
|
||||||
\paragraph{Use of Equation \ref{eqn:correctedccps2} }
|
\paragraph{Use of Equation \ref{eqn:correctedccps2} }
|
||||||
Equation \ref{eqn:correctedccps2} is useful for an automated tool that
|
Equation \ref{eqn:correctedccps2} is useful for an automated tool that
|
||||||
@ -707,7 +707,7 @@ By definition while all components in a system are `working perfectly'
|
|||||||
that system will not exhibit faulty behaviour.
|
that system will not exhibit faulty behaviour.
|
||||||
Thus the statistical sample space $\Omega$ for a component or derived~component $C$ is
|
Thus the statistical sample space $\Omega$ for a component or derived~component $C$ is
|
||||||
%$$ \Omega = {OK, failure\_mode_{1},failure\_mode_{2},failure\_mode_{3} ... failure\_mode_{N} $$
|
%$$ \Omega = {OK, failure\_mode_{1},failure\_mode_{2},failure\_mode_{3} ... failure\_mode_{N} $$
|
||||||
$$ \Omega(C) = \{OK, failure\_mode_{1},failure\_mode_{2},failure\_mode_{3}, \ldots ,failure\_mode_{N}\} $$
|
$$ \Omega(C) = \{OK, failure\_mode_{1},failure\_mode_{2},failure\_mode_{3}, \ldots ,failure\_mode_{N}\} . $$
|
||||||
The failure mode set $F$ for a given component or derived~component $C$
|
The failure mode set $F$ for a given component or derived~component $C$
|
||||||
is therefore
|
is therefore
|
||||||
$ fm(C) = \Omega(C) \backslash \{OK\} $
|
$ fm(C) = \Omega(C) \backslash \{OK\} $
|
||||||
|
Loading…
Reference in New Issue
Block a user