Filling it out.
This commit is contained in:
parent
e58c220574
commit
5f0bc595c8
25
logic_diagram/CVS/Entries
Normal file
25
logic_diagram/CVS/Entries
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
/fmmd_hierarchy_cimg5040.eps/1.1/Sun Jul 13 17:13:12 2008//
|
||||||
|
/ldand.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldand.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/lddc.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/lddc.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldimp.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldimp.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldmeq.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldmeq.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldmeq2.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldmeq2.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldneg.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldneg.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldor.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldor.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldxor.dia/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/ldxor.eps/1.1/Sun Jul 13 17:13:14 2008//
|
||||||
|
/Makefile/1.2/Wed Nov 25 17:14:59 2009//
|
||||||
|
/paper.tex/1.4/Sat Nov 28 20:05:52 2009//
|
||||||
|
/inhibit.eps/1.1/Fri Jan 1 14:11:12 2010//
|
||||||
|
/inhibit.fig/1.1/Fri Jan 1 14:11:03 2010//
|
||||||
|
/repeated.eps/1.1/Fri Jan 1 14:20:31 2010//
|
||||||
|
/repeated.fig/1.1/Fri Jan 1 14:20:23 2010//
|
||||||
|
/logic_diagram.tex/1.17/Wed Jan 6 13:41:32 2010//
|
||||||
|
D
|
1
logic_diagram/CVS/Repository
Normal file
1
logic_diagram/CVS/Repository
Normal file
@ -0,0 +1 @@
|
|||||||
|
fmd_docs/phd_docs/logic_diagram
|
1
logic_diagram/CVS/Root
Normal file
1
logic_diagram/CVS/Root
Normal file
@ -0,0 +1 @@
|
|||||||
|
robin@192.168.2.44:/export/home/cvs/
|
17
logic_diagram/Makefile
Normal file
17
logic_diagram/Makefile
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
|
||||||
|
#
|
||||||
|
# Make the propositional logic diagram a paper
|
||||||
|
#
|
||||||
|
|
||||||
|
|
||||||
|
paper: paper.tex logic_diagram_paper.tex
|
||||||
|
#latex paper.tex
|
||||||
|
#dvipdf paper pdflatex cannot use eps ffs
|
||||||
|
pdflatex paper.tex
|
||||||
|
okular paper.pdf
|
||||||
|
|
||||||
|
|
||||||
|
# Remove the need for referncing graphics in subdirectories
|
||||||
|
#
|
||||||
|
logic_diagram_paper.tex: logic_diagram.tex
|
||||||
|
cat logic_diagram.tex | sed 's/logic_diagram\///' > logic_diagram_paper.tex
|
77275
logic_diagram/fmmd_hierarchy_cimg5040.eps
Normal file
77275
logic_diagram/fmmd_hierarchy_cimg5040.eps
Normal file
File diff suppressed because it is too large
Load Diff
158
logic_diagram/inhibit.eps
Normal file
158
logic_diagram/inhibit.eps
Normal file
@ -0,0 +1,158 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: inhibit.fig
|
||||||
|
%%Creator: fig2dev Version 3.2 Patchlevel 5
|
||||||
|
%%CreationDate: Fri Jan 1 14:11:12 2010
|
||||||
|
%%For: robin@NovaProspect (Robin,,,)
|
||||||
|
%%BoundingBox: 0 0 364 228
|
||||||
|
%Magnification: 1.0000
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
/$F2psDict 200 dict def
|
||||||
|
$F2psDict begin
|
||||||
|
$F2psDict /mtrx matrix put
|
||||||
|
/col-1 {0 setgray} bind def
|
||||||
|
/col0 {0.000 0.000 0.000 srgb} bind def
|
||||||
|
/col1 {0.000 0.000 1.000 srgb} bind def
|
||||||
|
/col2 {0.000 1.000 0.000 srgb} bind def
|
||||||
|
/col3 {0.000 1.000 1.000 srgb} bind def
|
||||||
|
/col4 {1.000 0.000 0.000 srgb} bind def
|
||||||
|
/col5 {1.000 0.000 1.000 srgb} bind def
|
||||||
|
/col6 {1.000 1.000 0.000 srgb} bind def
|
||||||
|
/col7 {1.000 1.000 1.000 srgb} bind def
|
||||||
|
/col8 {0.000 0.000 0.560 srgb} bind def
|
||||||
|
/col9 {0.000 0.000 0.690 srgb} bind def
|
||||||
|
/col10 {0.000 0.000 0.820 srgb} bind def
|
||||||
|
/col11 {0.530 0.810 1.000 srgb} bind def
|
||||||
|
/col12 {0.000 0.560 0.000 srgb} bind def
|
||||||
|
/col13 {0.000 0.690 0.000 srgb} bind def
|
||||||
|
/col14 {0.000 0.820 0.000 srgb} bind def
|
||||||
|
/col15 {0.000 0.560 0.560 srgb} bind def
|
||||||
|
/col16 {0.000 0.690 0.690 srgb} bind def
|
||||||
|
/col17 {0.000 0.820 0.820 srgb} bind def
|
||||||
|
/col18 {0.560 0.000 0.000 srgb} bind def
|
||||||
|
/col19 {0.690 0.000 0.000 srgb} bind def
|
||||||
|
/col20 {0.820 0.000 0.000 srgb} bind def
|
||||||
|
/col21 {0.560 0.000 0.560 srgb} bind def
|
||||||
|
/col22 {0.690 0.000 0.690 srgb} bind def
|
||||||
|
/col23 {0.820 0.000 0.820 srgb} bind def
|
||||||
|
/col24 {0.500 0.190 0.000 srgb} bind def
|
||||||
|
/col25 {0.630 0.250 0.000 srgb} bind def
|
||||||
|
/col26 {0.750 0.380 0.000 srgb} bind def
|
||||||
|
/col27 {1.000 0.500 0.500 srgb} bind def
|
||||||
|
/col28 {1.000 0.630 0.630 srgb} bind def
|
||||||
|
/col29 {1.000 0.750 0.750 srgb} bind def
|
||||||
|
/col30 {1.000 0.880 0.880 srgb} bind def
|
||||||
|
/col31 {1.000 0.840 0.000 srgb} bind def
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
/tnt {dup dup currentrgbcolor
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
|
||||||
|
bind def
|
||||||
|
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
|
||||||
|
4 -2 roll mul srgb} bind def
|
||||||
|
/DrawEllipse {
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def
|
||||||
|
/savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc 0 0 1 startangle endangle arc
|
||||||
|
closepath
|
||||||
|
savematrix setmatrix
|
||||||
|
} def
|
||||||
|
|
||||||
|
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
|
||||||
|
/$F2psEnd {$F2psEnteredState restore end} def
|
||||||
|
|
||||||
|
/pageheader {
|
||||||
|
save
|
||||||
|
newpath 0 228 moveto 0 0 lineto 364 0 lineto 364 228 lineto closepath clip newpath
|
||||||
|
-60.0 263.1 translate
|
||||||
|
1 -1 scale
|
||||||
|
$F2psBegin
|
||||||
|
10 setmiterlimit
|
||||||
|
0 slj 0 slc
|
||||||
|
0.06299 0.06299 sc
|
||||||
|
} bind def
|
||||||
|
/pagefooter {
|
||||||
|
$F2psEnd
|
||||||
|
restore
|
||||||
|
} bind def
|
||||||
|
%%EndProlog
|
||||||
|
pageheader
|
||||||
|
%
|
||||||
|
% Fig objects follow
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% here starts figure with depth 50
|
||||||
|
% Ellipse
|
||||||
|
7.500 slw
|
||||||
|
n 2475 2610 720 720 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 2520 2610 1559 1559 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 5850 2520 864 864 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2295 1665 m
|
||||||
|
gs 1 -1 sc (C) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2205 720 m
|
||||||
|
gs 1 -1 sc (A) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5625 1305 m
|
||||||
|
gs 1 -1 sc (D) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2385 2700 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5760 2610 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
1260 2655 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2250 2295 m
|
||||||
|
gs 1 -1 sc (R1) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
1170 2205 m
|
||||||
|
gs 1 -1 sc (R2) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5760 2205 m
|
||||||
|
gs 1 -1 sc (R3) col0 sh gr
|
||||||
|
% here ends figure;
|
||||||
|
pagefooter
|
||||||
|
showpage
|
||||||
|
%%Trailer
|
||||||
|
%EOF
|
21
logic_diagram/inhibit.fig
Normal file
21
logic_diagram/inhibit.fig
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
#FIG 3.2 Produced by xfig version 3.2.5
|
||||||
|
Landscape
|
||||||
|
Center
|
||||||
|
Metric
|
||||||
|
A4
|
||||||
|
100.00
|
||||||
|
Single
|
||||||
|
-2
|
||||||
|
1200 2
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 2475 2610 720 720 2475 2610 2475 1890
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 2520 2610 1559 1559 2520 2610 3600 1485
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 5850 2520 864 864 5850 2520 6525 1980
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 2295 1665 C\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 2205 720 A\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 5625 1305 D\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 2385 2700 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 5760 2610 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 1260 2655 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 2250 2295 R1\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 1170 2205 R2\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 5760 2205 R3\001
|
BIN
logic_diagram/inhibit.jpg
Normal file
BIN
logic_diagram/inhibit.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
logic_diagram/ldand.dia
Normal file
BIN
logic_diagram/ldand.dia
Normal file
Binary file not shown.
239
logic_diagram/ldand.eps
Normal file
239
logic_diagram/ldand.eps
Normal file
@ -0,0 +1,239 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldand.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:57:04 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 522 393
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-2.100000 -15.200000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 7.450000 9.375000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 13.775000 9.775000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 7.450000 2.750000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 13.580000 4.607500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 9.470000 8.817500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 9.470000 10.917500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldand.jpg
Normal file
BIN
logic_diagram/ldand.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 8.8 KiB |
BIN
logic_diagram/lddc.dia
Normal file
BIN
logic_diagram/lddc.dia
Normal file
Binary file not shown.
311
logic_diagram/lddc.eps
Normal file
311
logic_diagram/lddc.eps
Normal file
@ -0,0 +1,311 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/lddc.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:53:45 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 807 406
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-5.120000 -13.920000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 9.185000 8.095000 4.015000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 21.220000 7.465000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 26.860000 7.995000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 8.435000 1.007500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 16.920000 1.977500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 27.555000 2.947500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
448 2955 moveto
|
||||||
|
448 4405 1286 5210 conicto
|
||||||
|
2125 6016 3371 6016 conicto
|
||||||
|
4424 6016 5376 5376 conicto
|
||||||
|
5087 4608 lineto
|
||||||
|
4267 5120 3384 5120 conicto
|
||||||
|
2547 5120 2009 4529 conicto
|
||||||
|
1472 3938 1472 2952 conicto
|
||||||
|
1472 1950 2025 1359 conicto
|
||||||
|
2578 768 3410 768 conicto
|
||||||
|
4260 768 5196 1344 conicto
|
||||||
|
5504 576 lineto
|
||||||
|
4512 -128 3412 -128 conicto
|
||||||
|
2096 -128 1272 717 conicto
|
||||||
|
448 1562 448 2955 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 7.357500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 9.457500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 6.627500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 8.727500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldimp.dia
Normal file
BIN
logic_diagram/ldimp.dia
Normal file
Binary file not shown.
347
logic_diagram/ldimp.eps
Normal file
347
logic_diagram/ldimp.eps
Normal file
@ -0,0 +1,347 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldimp.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:56:27 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 614 383
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-1.250000 -15.650000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 5.750000 9.525000 4.450000 5.175000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 18.275000 10.275000 4.575000 5.325000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 4.050000 3.550000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6080 2048 moveto
|
||||||
|
5184 2048 lineto
|
||||||
|
5184 4608 lineto
|
||||||
|
640 4608 lineto
|
||||||
|
640 5504 lineto
|
||||||
|
6080 5504 lineto
|
||||||
|
6080 2048 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 4.944159 3.550000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.030000 4.157500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.870000 8.567500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.870000 10.667500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 15.290000 8.047500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 15.290000 10.147500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
0.100000 slw
|
||||||
|
[] 0 sd
|
||||||
|
[] 0 sd
|
||||||
|
0 slc
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
n 8.600000 9.850000 m 15.055100 9.485720 l s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 11.500000 9.200000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6656 0 moveto
|
||||||
|
6175 -128 5584 -128 conicto
|
||||||
|
4974 -128 4449 504 conicto
|
||||||
|
3924 1137 2820 2944 conicto
|
||||||
|
2112 2944 lineto
|
||||||
|
2112 1248 lineto
|
||||||
|
2112 589 2290 390 conicto
|
||||||
|
2469 192 3136 192 conicto
|
||||||
|
3136 0 lineto
|
||||||
|
192 0 lineto
|
||||||
|
192 192 lineto
|
||||||
|
675 192 869 275 conicto
|
||||||
|
1063 358 1107 550 conicto
|
||||||
|
1152 742 1152 1229 conicto
|
||||||
|
1152 5299 lineto
|
||||||
|
1152 5786 1107 5978 conicto
|
||||||
|
1063 6170 869 6253 conicto
|
||||||
|
675 6336 192 6336 conicto
|
||||||
|
192 6528 lineto
|
||||||
|
2930 6528 lineto
|
||||||
|
4121 6528 4716 6109 conicto
|
||||||
|
5312 5691 5312 4855 conicto
|
||||||
|
5312 4265 4885 3764 conicto
|
||||||
|
4459 3263 3832 3091 conicto
|
||||||
|
4837 1589 5140 1191 conicto
|
||||||
|
5443 793 5789 492 conicto
|
||||||
|
6136 192 6391 192 conicto
|
||||||
|
6463 192 6656 192 conicto
|
||||||
|
6656 0 lineto
|
||||||
|
2112 3264 moveto
|
||||||
|
2407 3264 lineto
|
||||||
|
3242 3264 3733 3657 conicto
|
||||||
|
4224 4051 4224 4775 conicto
|
||||||
|
4224 5436 3792 5822 conicto
|
||||||
|
3360 6208 2706 6208 conicto
|
||||||
|
2468 6208 2112 6130 conicto
|
||||||
|
2112 3264 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldmeq.dia
Normal file
BIN
logic_diagram/ldmeq.dia
Normal file
Binary file not shown.
416
logic_diagram/ldmeq.eps
Normal file
416
logic_diagram/ldmeq.eps
Normal file
@ -0,0 +1,416 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldmeq.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 23 15:26:34 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 807 473
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-5.120000 -16.280625 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 9.185000 8.095000 4.015000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 21.220000 7.465000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 26.860000 7.995000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 8.435000 1.007500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 16.920000 1.977500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 27.555000 2.947500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
448 2955 moveto
|
||||||
|
448 4405 1286 5210 conicto
|
||||||
|
2125 6016 3371 6016 conicto
|
||||||
|
4424 6016 5376 5376 conicto
|
||||||
|
5087 4608 lineto
|
||||||
|
4267 5120 3384 5120 conicto
|
||||||
|
2547 5120 2009 4529 conicto
|
||||||
|
1472 3938 1472 2952 conicto
|
||||||
|
1472 1950 2025 1359 conicto
|
||||||
|
2578 768 3410 768 conicto
|
||||||
|
4260 768 5196 1344 conicto
|
||||||
|
5504 576 lineto
|
||||||
|
4512 -128 3412 -128 conicto
|
||||||
|
2096 -128 1272 717 conicto
|
||||||
|
448 1562 448 2955 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 7.357500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 9.457500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 6.627500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 8.727500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.315000 6.097500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
10704 7936 moveto
|
||||||
|
8457 0 lineto
|
||||||
|
7446 0 lineto
|
||||||
|
5472 6625 lineto
|
||||||
|
3352 0 lineto
|
||||||
|
2344 0 lineto
|
||||||
|
176 7936 lineto
|
||||||
|
1279 7936 lineto
|
||||||
|
2912 1569 lineto
|
||||||
|
4950 7936 lineto
|
||||||
|
6004 7936 lineto
|
||||||
|
7968 1569 lineto
|
||||||
|
9665 7936 lineto
|
||||||
|
10704 7936 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.315000 8.197500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 28.480000 6.907500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6656 0 moveto
|
||||||
|
384 0 lineto
|
||||||
|
384 752 lineto
|
||||||
|
5200 7040 lineto
|
||||||
|
576 7040 lineto
|
||||||
|
576 7936 lineto
|
||||||
|
6464 7936 lineto
|
||||||
|
6464 7161 lineto
|
||||||
|
1665 896 lineto
|
||||||
|
6656 896 lineto
|
||||||
|
6656 0 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 28.480000 9.007500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
0.150000 slw
|
||||||
|
[] 0 sd
|
||||||
|
[] 0 sd
|
||||||
|
0 slc
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
n 23.669484 8.718768 5.135178 5.135178 357.558353 189.174568 ellipse s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 24.130000 15.157500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
8080 0 moveto
|
||||||
|
6780 0 lineto
|
||||||
|
4042 3200 lineto
|
||||||
|
1920 3200 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
4095 7936 lineto
|
||||||
|
5513 7936 6308 7327 conicto
|
||||||
|
7104 6718 7104 5591 conicto
|
||||||
|
7104 4747 6585 4161 conicto
|
||||||
|
6067 3575 5211 3353 conicto
|
||||||
|
8080 0 lineto
|
||||||
|
1920 4096 moveto
|
||||||
|
4027 4096 lineto
|
||||||
|
4977 4096 5496 4481 conicto
|
||||||
|
6016 4866 6016 5579 conicto
|
||||||
|
6016 7040 3948 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4096 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldmeq2.dia
Normal file
BIN
logic_diagram/ldmeq2.dia
Normal file
Binary file not shown.
385
logic_diagram/ldmeq2.eps
Normal file
385
logic_diagram/ldmeq2.eps
Normal file
@ -0,0 +1,385 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldmeq2.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 23 16:04:47 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 807 473
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-5.120000 -16.280625 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 9.185000 8.095000 4.015000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 21.220000 7.465000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 26.860000 7.995000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 8.435000 1.007500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 16.920000 1.977500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 27.555000 2.947500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
448 2955 moveto
|
||||||
|
448 4405 1286 5210 conicto
|
||||||
|
2125 6016 3371 6016 conicto
|
||||||
|
4424 6016 5376 5376 conicto
|
||||||
|
5087 4608 lineto
|
||||||
|
4267 5120 3384 5120 conicto
|
||||||
|
2547 5120 2009 4529 conicto
|
||||||
|
1472 3938 1472 2952 conicto
|
||||||
|
1472 1950 2025 1359 conicto
|
||||||
|
2578 768 3410 768 conicto
|
||||||
|
4260 768 5196 1344 conicto
|
||||||
|
5504 576 lineto
|
||||||
|
4512 -128 3412 -128 conicto
|
||||||
|
2096 -128 1272 717 conicto
|
||||||
|
448 1562 448 2955 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 7.357500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 23.185000 9.457500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 6.627500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 7.820000 8.727500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.315000 8.197500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 28.480000 9.007500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
0.150000 slw
|
||||||
|
[] 0 sd
|
||||||
|
[] 0 sd
|
||||||
|
0 slc
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
n 23.669484 8.718768 5.135178 5.135178 357.558353 189.174568 ellipse s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 24.130000 15.157500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
8080 0 moveto
|
||||||
|
6780 0 lineto
|
||||||
|
4042 3200 lineto
|
||||||
|
1920 3200 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
4095 7936 lineto
|
||||||
|
5513 7936 6308 7327 conicto
|
||||||
|
7104 6718 7104 5591 conicto
|
||||||
|
7104 4747 6585 4161 conicto
|
||||||
|
6067 3575 5211 3353 conicto
|
||||||
|
8080 0 lineto
|
||||||
|
1920 4096 moveto
|
||||||
|
4027 4096 lineto
|
||||||
|
4977 4096 5496 4481 conicto
|
||||||
|
6016 4866 6016 5579 conicto
|
||||||
|
6016 7040 3948 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4096 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldmeq2.jpg
Normal file
BIN
logic_diagram/ldmeq2.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
BIN
logic_diagram/ldneg.dia
Normal file
BIN
logic_diagram/ldneg.dia
Normal file
Binary file not shown.
271
logic_diagram/ldneg.eps
Normal file
271
logic_diagram/ldneg.eps
Normal file
@ -0,0 +1,271 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldneg.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:52:27 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 495 436
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-2.240000 -15.660000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 7.590000 7.435000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 12.365000 7.135000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 12.790000 9.835000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 3.990000 1.697500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 12.880000 2.307500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.040000 13.797500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6080 2048 moveto
|
||||||
|
5184 2048 lineto
|
||||||
|
5184 4608 lineto
|
||||||
|
640 4608 lineto
|
||||||
|
640 5504 lineto
|
||||||
|
6080 5504 lineto
|
||||||
|
6080 2048 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.934159 13.797500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
448 2955 moveto
|
||||||
|
448 4405 1286 5210 conicto
|
||||||
|
2125 6016 3371 6016 conicto
|
||||||
|
4424 6016 5376 5376 conicto
|
||||||
|
5087 4608 lineto
|
||||||
|
4267 5120 3384 5120 conicto
|
||||||
|
2547 5120 2009 4529 conicto
|
||||||
|
1472 3938 1472 2952 conicto
|
||||||
|
1472 1950 2025 1359 conicto
|
||||||
|
2578 768 3410 768 conicto
|
||||||
|
4260 768 5196 1344 conicto
|
||||||
|
5504 576 lineto
|
||||||
|
4512 -128 3412 -128 conicto
|
||||||
|
2096 -128 1272 717 conicto
|
||||||
|
448 1562 448 2955 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 10.090000 7.097500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 10.090000 9.197500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldor.dia
Normal file
BIN
logic_diagram/ldor.dia
Normal file
Binary file not shown.
319
logic_diagram/ldor.eps
Normal file
319
logic_diagram/ldor.eps
Normal file
@ -0,0 +1,319 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldor.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:54:52 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 512 371
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-1.350000 -14.550000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 4.900000 9.225000 3.500000 5.275000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 15.675000 9.975000 3.675000 3.975000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 4.550000 2.900000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 15.730000 5.157500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 4.770000 7.717500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 4.770000 9.817500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 14.790000 9.247500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 14.790000 11.347500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
0.100000 slw
|
||||||
|
[] 0 sd
|
||||||
|
[] 0 sd
|
||||||
|
0 slj
|
||||||
|
0 slc
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
n 5.050000 9.100000 m 5.348800 9.100000 14.601200 10.400000 14.900000 10.400000 c s
|
||||||
|
gsave 9.825000 9.475000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
8080 0 moveto
|
||||||
|
6780 0 lineto
|
||||||
|
4042 3200 lineto
|
||||||
|
1920 3200 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
4095 7936 lineto
|
||||||
|
5513 7936 6308 7327 conicto
|
||||||
|
7104 6718 7104 5591 conicto
|
||||||
|
7104 4747 6585 4161 conicto
|
||||||
|
6067 3575 5211 3353 conicto
|
||||||
|
8080 0 lineto
|
||||||
|
1920 4096 moveto
|
||||||
|
4027 4096 lineto
|
||||||
|
4977 4096 5496 4481 conicto
|
||||||
|
6016 4866 6016 5579 conicto
|
||||||
|
6016 7040 3948 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4096 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
BIN
logic_diagram/ldor.jpg
Normal file
BIN
logic_diagram/ldor.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
logic_diagram/ldxor.dia
Normal file
BIN
logic_diagram/ldxor.dia
Normal file
Binary file not shown.
410
logic_diagram/ldxor.eps
Normal file
410
logic_diagram/ldxor.eps
Normal file
@ -0,0 +1,410 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: /home/robin/proj/fmd_docs/papers/logic_diagram/ldxor.dia
|
||||||
|
%%Creator: Dia v0.96.1
|
||||||
|
%%CreationDate: Fri May 9 15:55:47 2008
|
||||||
|
%%For: robin
|
||||||
|
%%Orientation: Portrait
|
||||||
|
%%Magnification: 1.0000
|
||||||
|
%%BoundingBox: 0 0 830 744
|
||||||
|
%%BeginSetup
|
||||||
|
%%EndSetup
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
[ /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /space /exclam /quotedbl /numbersign /dollar /percent /ampersand /quoteright
|
||||||
|
/parenleft /parenright /asterisk /plus /comma /hyphen /period /slash /zero /one
|
||||||
|
/two /three /four /five /six /seven /eight /nine /colon /semicolon
|
||||||
|
/less /equal /greater /question /at /A /B /C /D /E
|
||||||
|
/F /G /H /I /J /K /L /M /N /O
|
||||||
|
/P /Q /R /S /T /U /V /W /X /Y
|
||||||
|
/Z /bracketleft /backslash /bracketright /asciicircum /underscore /quoteleft /a /b /c
|
||||||
|
/d /e /f /g /h /i /j /k /l /m
|
||||||
|
/n /o /p /q /r /s /t /u /v /w
|
||||||
|
/x /y /z /braceleft /bar /braceright /asciitilde /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef /.notdef
|
||||||
|
/space /exclamdown /cent /sterling /currency /yen /brokenbar /section /dieresis /copyright
|
||||||
|
/ordfeminine /guillemotleft /logicalnot /hyphen /registered /macron /degree /plusminus /twosuperior /threesuperior
|
||||||
|
/acute /mu /paragraph /periodcentered /cedilla /onesuperior /ordmasculine /guillemotright /onequarter /onehalf
|
||||||
|
/threequarters /questiondown /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla
|
||||||
|
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex /Idieresis /Eth /Ntilde
|
||||||
|
/Ograve /Oacute /Ocircumflex /Otilde /Odieresis /multiply /Oslash /Ugrave /Uacute /Ucircumflex
|
||||||
|
/Udieresis /Yacute /Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis /aring
|
||||||
|
/ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave /iacute /icircumflex /idieresis
|
||||||
|
/eth /ntilde /ograve /oacute /ocircumflex /otilde /odieresis /divide /oslash /ugrave
|
||||||
|
/uacute /ucircumflex /udieresis /yacute /thorn /ydieresis] /isolatin1encoding exch def
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/c {curveto} bind def
|
||||||
|
/f {fill} bind def
|
||||||
|
/a {arc} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/ex {exch} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth pop} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
|
||||||
|
/ellipsedict 8 dict def
|
||||||
|
ellipsedict /mtrx matrix put
|
||||||
|
/ellipse
|
||||||
|
{ ellipsedict begin
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def /savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc
|
||||||
|
0 0 1 startangle endangle arc
|
||||||
|
savematrix setmatrix
|
||||||
|
end
|
||||||
|
} def
|
||||||
|
|
||||||
|
/mergeprocs {
|
||||||
|
dup length
|
||||||
|
3 -1 roll
|
||||||
|
dup
|
||||||
|
length
|
||||||
|
dup
|
||||||
|
5 1 roll
|
||||||
|
3 -1 roll
|
||||||
|
add
|
||||||
|
array cvx
|
||||||
|
dup
|
||||||
|
3 -1 roll
|
||||||
|
0 exch
|
||||||
|
putinterval
|
||||||
|
dup
|
||||||
|
4 2 roll
|
||||||
|
putinterval
|
||||||
|
} bind def
|
||||||
|
/dpi_x 300 def
|
||||||
|
/dpi_y 300 def
|
||||||
|
/conicto {
|
||||||
|
/to_y exch def
|
||||||
|
/to_x exch def
|
||||||
|
/conic_cntrl_y exch def
|
||||||
|
/conic_cntrl_x exch def
|
||||||
|
currentpoint
|
||||||
|
/p0_y exch def
|
||||||
|
/p0_x exch def
|
||||||
|
/p1_x p0_x conic_cntrl_x p0_x sub 2 3 div mul add def
|
||||||
|
/p1_y p0_y conic_cntrl_y p0_y sub 2 3 div mul add def
|
||||||
|
/p2_x p1_x to_x p0_x sub 1 3 div mul add def
|
||||||
|
/p2_y p1_y to_y p0_y sub 1 3 div mul add def
|
||||||
|
p1_x p1_y p2_x p2_y to_x to_y curveto
|
||||||
|
} bind def
|
||||||
|
/start_ol { gsave 1.1 dpi_x div dup scale} bind def
|
||||||
|
/end_ol { closepath fill grestore } bind def
|
||||||
|
28.346000 -28.346000 scale
|
||||||
|
-2.100000 -27.575000 translate
|
||||||
|
%%EndProlog
|
||||||
|
|
||||||
|
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 7.450000 9.375000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 13.775000 9.775000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 7.450000 2.750000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 13.580000 4.607500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6080 2048 moveto
|
||||||
|
5184 2048 lineto
|
||||||
|
5184 4608 lineto
|
||||||
|
640 4608 lineto
|
||||||
|
640 5504 lineto
|
||||||
|
6080 5504 lineto
|
||||||
|
6080 2048 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 14.474159 4.607500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 10.120000 8.967500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
896 7936 moveto
|
||||||
|
4259 7936 lineto
|
||||||
|
5511 7936 6275 7278 conicto
|
||||||
|
7040 6620 7040 5598 conicto
|
||||||
|
7040 4565 6292 3850 conicto
|
||||||
|
5545 3136 4239 3136 conicto
|
||||||
|
1920 3136 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
1920 4032 moveto
|
||||||
|
4155 4032 lineto
|
||||||
|
5046 4032 5531 4443 conicto
|
||||||
|
6016 4854 6016 5587 conicto
|
||||||
|
6016 6235 5522 6637 conicto
|
||||||
|
5028 7040 4155 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4032 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 10.120000 11.067500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 22.340000 21.547500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4544 -128 moveto
|
||||||
|
4510 -128 lineto
|
||||||
|
2713 -128 1612 1029 conicto
|
||||||
|
512 2187 512 3966 conicto
|
||||||
|
512 5794 1572 6929 conicto
|
||||||
|
2633 8064 4488 8064 conicto
|
||||||
|
6298 8064 7373 6935 conicto
|
||||||
|
8448 5806 8448 3968 conicto
|
||||||
|
8448 2559 7691 1475 conicto
|
||||||
|
6934 391 5632 27 conicto
|
||||||
|
6184 -768 7153 -768 conicto
|
||||||
|
7641 -768 8105 -704 conicto
|
||||||
|
8256 -1502 lineto
|
||||||
|
7612 -1664 7171 -1664 conicto
|
||||||
|
6177 -1664 5631 -1305 conicto
|
||||||
|
5086 -946 4544 -128 conicto
|
||||||
|
4485 768 moveto
|
||||||
|
5826 768 6593 1625 conicto
|
||||||
|
7360 2483 7360 3966 conicto
|
||||||
|
7360 5419 6587 6293 conicto
|
||||||
|
5815 7168 4485 7168 conicto
|
||||||
|
3145 7168 2372 6296 conicto
|
||||||
|
1600 5425 1600 3966 conicto
|
||||||
|
1600 2500 2353 1634 conicto
|
||||||
|
3106 768 4485 768 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 22.340000 23.647500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
4224 4910 moveto
|
||||||
|
3830 4288 lineto
|
||||||
|
2560 5130 lineto
|
||||||
|
2560 3584 lineto
|
||||||
|
1856 3584 lineto
|
||||||
|
1856 5119 lineto
|
||||||
|
569 4288 lineto
|
||||||
|
192 4910 lineto
|
||||||
|
1559 5792 lineto
|
||||||
|
192 6679 lineto
|
||||||
|
569 7296 lineto
|
||||||
|
1856 6459 lineto
|
||||||
|
1856 7936 lineto
|
||||||
|
2560 7936 lineto
|
||||||
|
2560 6459 lineto
|
||||||
|
3830 7296 lineto
|
||||||
|
4224 6679 lineto
|
||||||
|
2869 5792 lineto
|
||||||
|
4224 4910 lineto
|
||||||
|
end_ol grestore
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
0.098039 0.027451 0.027451 srgb
|
||||||
|
n 26.010000 21.750000 5.300000 5.775000 0 360 ellipse cp s
|
||||||
|
0.100000 slw
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
[1.000000 0.400000 0.200000 0.400000] 0 sd
|
||||||
|
n 18.985000 22.400000 6.675000 4.125000 0 360 ellipse cp s
|
||||||
|
0.000000 0.000000 0.000000 srgb
|
||||||
|
gsave 17.460000 17.562500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
6080 2048 moveto
|
||||||
|
5184 2048 lineto
|
||||||
|
5184 4608 lineto
|
||||||
|
640 4608 lineto
|
||||||
|
640 5504 lineto
|
||||||
|
6080 5504 lineto
|
||||||
|
6080 2048 lineto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 18.354159 17.562500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
5904 0 moveto
|
||||||
|
4880 0 lineto
|
||||||
|
4768 142 4688 402 conicto
|
||||||
|
4608 662 4608 832 conicto
|
||||||
|
3563 -128 2310 -128 conicto
|
||||||
|
1480 -128 964 297 conicto
|
||||||
|
448 723 448 1479 conicto
|
||||||
|
448 2080 757 2494 conicto
|
||||||
|
1067 2908 1688 3142 conicto
|
||||||
|
2310 3376 3269 3437 conicto
|
||||||
|
4608 3520 lineto
|
||||||
|
4608 3701 lineto
|
||||||
|
4608 4498 4276 4809 conicto
|
||||||
|
3945 5120 3110 5120 conicto
|
||||||
|
2710 5120 2118 4946 conicto
|
||||||
|
1526 4772 1120 4544 conicto
|
||||||
|
832 5312 lineto
|
||||||
|
1309 5624 1997 5820 conicto
|
||||||
|
2686 6016 3260 6016 conicto
|
||||||
|
4440 6016 5004 5486 conicto
|
||||||
|
5568 4956 5568 3868 conicto
|
||||||
|
5568 1398 lineto
|
||||||
|
5568 479 5904 0 conicto
|
||||||
|
4608 1728 moveto
|
||||||
|
4608 2752 lineto
|
||||||
|
3335 2683 2940 2643 conicto
|
||||||
|
2545 2604 2170 2472 conicto
|
||||||
|
1795 2340 1601 2112 conicto
|
||||||
|
1408 1885 1408 1546 conicto
|
||||||
|
1408 1197 1698 982 conicto
|
||||||
|
1988 768 2443 768 conicto
|
||||||
|
3023 768 3631 1032 conicto
|
||||||
|
4239 1297 4608 1728 conicto
|
||||||
|
end_ol grestore
|
||||||
|
gsave 26.210000 14.962500 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
1728 5184 moveto
|
||||||
|
2455 6016 3533 6016 conicto
|
||||||
|
4566 6016 5259 5199 conicto
|
||||||
|
5952 4382 5952 3062 conicto
|
||||||
|
5952 1596 5256 734 conicto
|
||||||
|
4561 -128 3499 -128 conicto
|
||||||
|
2414 -128 1728 704 conicto
|
||||||
|
1728 0 lineto
|
||||||
|
768 0 lineto
|
||||||
|
768 8384 lineto
|
||||||
|
1728 8384 lineto
|
||||||
|
1728 5184 lineto
|
||||||
|
1728 4288 moveto
|
||||||
|
1728 1728 lineto
|
||||||
|
1955 1330 2383 1049 conicto
|
||||||
|
2811 768 3265 768 conicto
|
||||||
|
4043 768 4485 1348 conicto
|
||||||
|
4928 1928 4928 2972 conicto
|
||||||
|
4928 3999 4491 4559 conicto
|
||||||
|
4054 5120 3265 5120 conicto
|
||||||
|
2868 5120 2451 4888 conicto
|
||||||
|
2034 4657 1728 4288 conicto
|
||||||
|
end_ol grestore
|
||||||
|
0.100000 slw
|
||||||
|
[] 0 sd
|
||||||
|
[] 0 sd
|
||||||
|
0 slj
|
||||||
|
0 slc
|
||||||
|
1.000000 0.000000 0.000000 srgb
|
||||||
|
n 10.850000 10.800000 m 13.667000 10.800000 19.418000 22.900000 22.235000 22.900000 c s
|
||||||
|
gsave 14.600000 17.050000 translate 0.035278 -0.035278 scale
|
||||||
|
start_ol
|
||||||
|
8080 0 moveto
|
||||||
|
6780 0 lineto
|
||||||
|
4042 3200 lineto
|
||||||
|
1920 3200 lineto
|
||||||
|
1920 0 lineto
|
||||||
|
896 0 lineto
|
||||||
|
896 7936 lineto
|
||||||
|
4095 7936 lineto
|
||||||
|
5513 7936 6308 7327 conicto
|
||||||
|
7104 6718 7104 5591 conicto
|
||||||
|
7104 4747 6585 4161 conicto
|
||||||
|
6067 3575 5211 3353 conicto
|
||||||
|
8080 0 lineto
|
||||||
|
1920 4096 moveto
|
||||||
|
4027 4096 lineto
|
||||||
|
4977 4096 5496 4481 conicto
|
||||||
|
6016 4866 6016 5579 conicto
|
||||||
|
6016 7040 3948 7040 conicto
|
||||||
|
1920 7040 lineto
|
||||||
|
1920 4096 lineto
|
||||||
|
end_ol grestore
|
||||||
|
showpage
|
11497
logic_diagram/logic_diagram.log
Normal file
11497
logic_diagram/logic_diagram.log
Normal file
File diff suppressed because it is too large
Load Diff
749
logic_diagram/logic_diagram.tex
Normal file
749
logic_diagram/logic_diagram.tex
Normal file
@ -0,0 +1,749 @@
|
|||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.17 2010/01/06 13:41:32 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
%This chapter describes using diagrams to represent propositional logic.
|
||||||
|
Propositial Logic Diagrams have been designed to provide an intuitive method for visualising and manipulating
|
||||||
|
logic equations, to express fault modes in Mechanical and Electronic Systems.
|
||||||
|
%To aid hierarchical stages of fault analysis, it has been specifically developed for the purpose of
|
||||||
|
%joining conjunctive conditions with disjuctive conditions
|
||||||
|
%to group the effects of failure modes.
|
||||||
|
Diagrams of this type can also be used to model the logical conditions
|
||||||
|
that control the flow of a computer program. This type of diagram can therefore
|
||||||
|
integrate logical models from mechanical, electronic and software domains.
|
||||||
|
Nearly all modern safety critical systems involve these three disiplines.
|
||||||
|
%
|
||||||
|
It is intended to be used for analysis of automated safety critical systen
|
||||||
|
Many types of safety critical systems now legally
|
||||||
|
require fault mode effects analysis\cite{FMEA},
|
||||||
|
but few formal systems exist and wide-spread take-up is
|
||||||
|
not yet the norm.\cite{takeup}.
|
||||||
|
%
|
||||||
|
Because of its visual nature, it is easy to manipulate and model
|
||||||
|
complicated conditions that can lead to dangerous failures in
|
||||||
|
automated systems.
|
||||||
|
|
||||||
|
% No need to talk about abstraction yet, just define PLD PROPERLY
|
||||||
|
|
||||||
|
The Diagrams described here form the mathematical basis for a new visual and formal system
|
||||||
|
for the analysis of safety critical software and hardware systems.
|
||||||
|
\end{abstract}
|
||||||
|
|
||||||
|
%\title{Propositional Logic Diagrams}
|
||||||
|
%\begin{keyword}
|
||||||
|
% fault~tree fault~mode EN298 EN61508 EN12067 EN230 UL1998 safety~critical logic euler venn propositional
|
||||||
|
%\end{keyword}
|
||||||
|
%\end{frontmatter}
|
||||||
|
|
||||||
|
% In software looking at one condition means lots of dont care situations
|
||||||
|
% in static analysis we look at given sub-sets of faults and assume the other faults
|
||||||
|
% are not active.
|
||||||
|
% This is a major cultural difference !
|
||||||
|
% it deserves a whole chapter.
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
Propositional Logic Diagrams (PLDs) have been devised
|
||||||
|
to collect and simplfy fault~modes in safety critical systems undergoing
|
||||||
|
static analysis\cite{FMEA}\cite{SIL}.
|
||||||
|
|
||||||
|
This type of analysis treats failure modes within a system as logical
|
||||||
|
states. PLD provides a visual method for modelling failure~mode analysis
|
||||||
|
within these systems, and specifically
|
||||||
|
identifying common failure symptoms in a user friendly way.
|
||||||
|
Contrasting this to looking at many propositional logic equations directly
|
||||||
|
in a text editor or spreadsheet, a visual method is percieved as being more intuitive.
|
||||||
|
|
||||||
|
|
||||||
|
%Traditional set theory is often represented by Euler\cite{euler} or Spider\cite{spider}
|
||||||
|
%diagrams. These use contours to describe inclusion in a set.may be merged and create a
|
||||||
|
%Propositional Logic Diagrams (PLDs) use named contours represent a logical conditions.
|
||||||
|
%Where an Euler diagram would use
|
||||||
|
%overlapping contours to represent inclusion in sets,
|
||||||
|
%PLDs use these to represent conjunction of the conditions.
|
||||||
|
|
||||||
|
%Named reference points may be placed onto the diagram,
|
||||||
|
%these represent test cases for conjunction.
|
||||||
|
%These can be joined by lines to apply disjunction.
|
||||||
|
%In a spider diagram the lines would represent that the object represented coul;d belong to either set.
|
||||||
|
%in a PLD it means that the logical conditions represent disjuction; a boolean OR condition.
|
||||||
|
%these points may be joined.
|
||||||
|
|
||||||
|
PLDs use three visual features that
|
||||||
|
can be combined to represent logic equations. Closed contours (using dashed lines), test cases, and lines that
|
||||||
|
link test cases.
|
||||||
|
All features may be labelled, and the labels must be unique within a diagram, however contours may be repeated in the diagram.
|
||||||
|
%Aditionally a label begining with the `$\neg$' character, applied only to a contour, represents negation.
|
||||||
|
|
||||||
|
|
||||||
|
%Regions defined by contours are used to represent given conjunctive logical conditions.
|
||||||
|
|
||||||
|
Test cases are marked by asterisks. These are used as a visual `anchor'
|
||||||
|
to mark a logical condition, the logical condition being defined by the contours
|
||||||
|
that enclose the region on which the test~case has been placed.
|
||||||
|
The contours that enclose represent conjuction.
|
||||||
|
Test~cases may be connected by joining lines. These lines represent disjunction (Boolean `OR') of
|
||||||
|
test~cases.
|
||||||
|
|
||||||
|
With these three visual syntax elements, we have the basic building blocks for all logic equations possible.
|
||||||
|
\begin{description}
|
||||||
|
\item Test cases - Points on the plane indicating a logical condition.
|
||||||
|
\item Conjunction - Overlapping contours
|
||||||
|
\item Disjunction - Joining of named test cases.
|
||||||
|
%\item Negation - Countours negatively named
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
% Because of this
|
||||||
|
% we have the complete suite of logical primitives here, conjunction, disjuction and negation.
|
||||||
|
% Form these complex logic equations can be respresented in 2D.
|
||||||
|
|
||||||
|
% Another advantage of this is being able to describe `don't care' conditions.
|
||||||
|
% Very often in digital hardware design, or in a computer program
|
||||||
|
% many logical conditions are `don't care'.
|
||||||
|
% These are difficult to specify in set theory.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Formal Description of PLD}
|
||||||
|
|
||||||
|
Definitions of conrete and abstract PLD's follow.
|
||||||
|
Well-formedness conditions for PLD's are separated from this definition, because of
|
||||||
|
practical differences between the way they are used to represent software as opposed to
|
||||||
|
representing electronics and mechanical systems.
|
||||||
|
|
||||||
|
\subsection{Concrete PLD Definition}
|
||||||
|
|
||||||
|
A concrete {\em Propositional logic diagram} is a set of labeled {\em contours}
|
||||||
|
(closed curves) in the plane. The minimal regions formed by the closed curves
|
||||||
|
can by occupied by `test points'.
|
||||||
|
The `test points' may be joined by joining lines.
|
||||||
|
A group of `test points' connected by joining lines
|
||||||
|
is defined as a `test point disjunction' or Spider.
|
||||||
|
Spiders may be labeled.
|
||||||
|
|
||||||
|
To differentiate these from common Euler diagram notation (normally used to represent set theory)
|
||||||
|
the curves are drawn using dotted and dashed lines.
|
||||||
|
|
||||||
|
\subsection{ PLD Definition}
|
||||||
|
In English:
|
||||||
|
The elements that can be found in a PLD diagram are a number of contours,
|
||||||
|
a number of test points and joining lines that connect
|
||||||
|
test points.
|
||||||
|
{
|
||||||
|
\definition{A concrete PLD $d$ is a set comprising of a set of
|
||||||
|
closed curves $C=C(d)$, a set of test points $T=T(d)$ and
|
||||||
|
a set of test point joining lines $J=J(d)$.
|
||||||
|
$$d=\{C,T,J\}$$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Each element of the diagram has a unique label within the diagram.
|
||||||
|
%Thus the set of labels found in a diagram is
|
||||||
|
%a subset of the powerset of characters that can be present in a label.
|
||||||
|
|
||||||
|
%{
|
||||||
|
%\definition{ $ \mathcal{F}_{d}:C(d) \rightarrow \mathcal{P}\Lambda$ is a
|
||||||
|
%function associating a label drawn from an infinite
|
||||||
|
%set of labels $\Lambda$.
|
||||||
|
%}
|
||||||
|
%}
|
||||||
|
|
||||||
|
%In English:
|
||||||
|
%A minimal region of a PLD diagram d is a
|
||||||
|
%region bounded by curves.
|
||||||
|
%connected component of $\mathbb{R}^{2} - \; \bigcup_{c \in C(d)} c$
|
||||||
|
|
||||||
|
%That is to say the complement of all other regions is subtracted from the plane.
|
||||||
|
%- Or in another way- that smallest area defined by the curves that enclose it
|
||||||
|
|
||||||
|
|
||||||
|
%% \hat is used to indicate CONCRETE
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
A minimal region of concrete PLD diagram d is a connected component of
|
||||||
|
|
||||||
|
$$ \mathbb{R}^{2} - \; \bigcup_{\hat{c} \in \hat{C}(\hat{d})}\hat{c}$$
|
||||||
|
|
||||||
|
% I.e. The contours break the connectivity
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition
|
||||||
|
{
|
||||||
|
Let d be a PLD and $ \mathcal{X} \subseteq \hat{C}(\hat{d})$ a set of countours.
|
||||||
|
If the set
|
||||||
|
$$ \hat{z} = \bigcap_{c \in \mathcal{X}}
|
||||||
|
{interior}
|
||||||
|
(\hat{c})
|
||||||
|
\; \cup \;
|
||||||
|
\bigcap_{\hat{c} \in \hat{C}-X}
|
||||||
|
exterior (\hat{c})
|
||||||
|
$$
|
||||||
|
|
||||||
|
is non empty, then $\hat{z}$ is a concrete zone of $\hat{d}$. A zone is a union of minimal regions. The set of all concrete zones of $\hat{d}$
|
||||||
|
is denoted $ \hat{\mathcal{Z}} $.
|
||||||
|
|
||||||
|
% NOT interested in labelling the zones.
|
||||||
|
% but am interested in
|
||||||
|
%The set of labels associated with the contours in $\mathcal{X}$ is the zone label set $\hat{\mathcal{Z}}(\hat{z})$
|
||||||
|
%of $\hat{z}$.
|
||||||
|
%$$ \hat{\mathcal{L}}(\hat{z}) = \bigcup_{\hat{c} \in \mathcal{X}} \mathcal{F}_{d}(\hat{c}) $$
|
||||||
|
%
|
||||||
|
% So Z is the set of all available for use ZONES; great !
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Each minimal region in the plane may be inhabited by one or more `test points'.
|
||||||
|
% One or more because in software the same logical conditions mean existing in the same
|
||||||
|
% region. For electroincs or mechanical, one test point per region is
|
||||||
|
% mandatory. How to describe ?????
|
||||||
|
Each test point can be associated with the set of contours that enclose it.
|
||||||
|
%defined the minimal region it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{ $ \mathcal{Z}_{d}:T(d)\rightarrow \mathcal{C}$ is a function
|
||||||
|
associating a testpoint with a set of contours in the plane. This corresponds to the interior of the contours defining the zone.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Pairs of test points may be joined by joining lines.
|
||||||
|
The operator $\stackrel{join}{\leftrightarrow}$ is used to
|
||||||
|
show that two points are joined by a line in the concrete diagram.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
$ \mathcal{F}_{j}$ is a function
|
||||||
|
associating a joining line with a pair of test points. The Join t1,t2 is defined as
|
||||||
|
|
||||||
|
%$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 %\wedge t1 \stackrel{join}{\leftrightarrow} t2\} $$
|
||||||
|
$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 \} $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Test points on the concrete diagram pair-wise connected by a `joining line'
|
||||||
|
|
||||||
|
|
||||||
|
A collection of test points connected by joining lines, is an Fuctionally Merged Group, $FMG$
|
||||||
|
or `test point disjunction'.
|
||||||
|
An $FMG$ has members which are test points.
|
||||||
|
|
||||||
|
{may be merged
|
||||||
|
and create a
|
||||||
|
\definition{
|
||||||
|
%A spider is a set of test points where,
|
||||||
|
%a test point is a member of a spider where it can trace a path connected by joining lines
|
||||||
|
%to another member of the spider. A singleton test point can be considered a spider.
|
||||||
|
Let d be a PLD : An $FMG$ is a maximal set of test points in d where
|
||||||
|
the test points belong to a sequence connected by joining lines such that:
|
||||||
|
|
||||||
|
$$ t_i \stackrel{join}{\leftrightarrow} t_n, for \; i = 1, ..., n $$
|
||||||
|
|
||||||
|
|
||||||
|
OR consider an $FMG$ as a tree whose nodes are test points.
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
A singleton test point can be considered a sequence of one test point and is therefore also an $FMG$.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection{Abstract Description of PLD}
|
||||||
|
%
|
||||||
|
% An Abstract PLD {\em Propositional logic diagram} consists of contours $C$ defining zones $Z$, test points $T$ (which
|
||||||
|
% are defined by the zone they inhabit) and pair wise connections $W$, which connect test points.
|
||||||
|
% Collections of test points, linked by shared conecting lines, form a set of test point groups $G$.
|
||||||
|
%
|
||||||
|
% A Zone defined by the contours that enclose it in the concrete diagram.
|
||||||
|
%
|
||||||
|
% $$ Z \subseteq C $$
|
||||||
|
%
|
||||||
|
% A test point $t \in T$ in habits a zone on the diagram.
|
||||||
|
%
|
||||||
|
% $$ \eta(t) = Z $$
|
||||||
|
%
|
||||||
|
% A joining line $$ w \in W $$ joins test points.
|
||||||
|
%
|
||||||
|
% $$ w = t1 \stackrel{join}{\rightarrow} t2 | t1 \neq t2 \wedge t1 \in T \wedge t2 \in T $$
|
||||||
|
%
|
||||||
|
% A test point group $g \in G$ is defined by test points linked by shared connecting lines.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Semantics of PLD}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item A closed curve in a PLD represents a condition (logical state) being modelled.
|
||||||
|
\item A test point represents the conjunction of the conditions represented by the curves that enclose it.
|
||||||
|
\item A $FMG$ represents the disjunction of all test points that are members of it.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
To obtain the set of propositions from a PLD, each $FMG$ must be processed. For each test case
|
||||||
|
in the $FMG$ a new section of the equation is disjuctively appended to it.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Let conjunctive logic equation associated with a test point
|
||||||
|
be determined from the contours that enclose it.
|
||||||
|
i.e. the contours $\mathcal{X}$ from the zone it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
Let $\mathcal{F}_{t}$ be a function mapping a test point to a proposition / logical equation $p \in P$.
|
||||||
|
The test point inhabits the zone $\mathcal{Z}$ which is a collection of contours (the contours that enclose the test point.
|
||||||
|
|
||||||
|
$$ \mathcal{F}:T \rightarrow P $$
|
||||||
|
|
||||||
|
%$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} \Lambda c $$
|
||||||
|
|
||||||
|
$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} c $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Thus a `test point' enclosed by contours labelled $a,b,c$ would be represented by the logic equation
|
||||||
|
$ a \wedge b \wedge c $.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
Let $\mathcal{G}_{fmg}$ be a function that returns a logic equation for a given $FMG$
|
||||||
|
$fmg$ in the diagram, where an FMG is a non empty set of test points
|
||||||
|
% $t$ is a `test point'
|
||||||
|
|
||||||
|
$$ \mathcal{G}:FMG \rightarrow P_{fmg} $$
|
||||||
|
|
||||||
|
The logic equation representing an FMG $p_{fmg}$ can be determined thus.
|
||||||
|
|
||||||
|
$$\mathcal{G}_{fmg}(fmg) = \bigvee_{t \in fmg} (\; \mathcal{F}_{t} (t) \;) $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
The abstract PLD diagram is a set of logic equations representing all FMGs,
|
||||||
|
along with unused zones (i.e. zones that are not inhabited by FMGs).
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
\label{FMGderivation}
|
||||||
|
A diagram can be reduced to a collection of $FMG$s.
|
||||||
|
A new diagram can be derived from this, replacing a contour for each FMG.
|
||||||
|
This diagram is at one higher level of abstraction then the diagram that
|
||||||
|
it was produced from.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Example Diagrams}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection {How to read a PLD diagram}
|
||||||
|
|
||||||
|
PLD diagrams are read by first looking at the test case points.
|
||||||
|
The test case asterisk will be enclosed by one or more contours.
|
||||||
|
These contours are collected and form the logical conjunction
|
||||||
|
equation for the test case.
|
||||||
|
These test case points thus represent the conjunctive aspects
|
||||||
|
of an equation defined in a PLD. Where these test cases are joined by lines;
|
||||||
|
these represent disjunction of the conjunctive aspects defined by the test cases.
|
||||||
|
Joining lines thus represent dis-junction in a PLD.
|
||||||
|
|
||||||
|
%Where negation and assertion of a logical condition is required in the same diagram, a separate contour can be created, which is
|
||||||
|
%..assigned the same name as its positive counter part, but preceded by a negation `$\neg$' sign.
|
||||||
|
%Obviously were a drawing to show conjunction of a contour and its complement
|
||||||
|
%this would result in a contradiction for any test case placed on it, and would be a visual `syntax error'.
|
||||||
|
|
||||||
|
%Note that negation is handled explicitly. This is to allow `don't care'
|
||||||
|
%conditions. Should a test case be outside a contour, that contour is a `don't care' condition.
|
||||||
|
%In a PLD, contours may be represented in complement, to provide
|
||||||
|
%logical negation. Here the contour name is begun with the negation symbol `$\neg$'.
|
||||||
|
%%To represent conjunction of logical conditions (Boolean `AND'), contours may be overlapped.
|
||||||
|
|
||||||
|
%Providing explicit negation, in addition to disjunction and conjunction
|
||||||
|
%allows us to represent `don't care' or `tri-state' logical conditions. Simply by
|
||||||
|
%not using the conditions we are not interested in they are `don't care'.
|
||||||
|
%
|
||||||
|
|
||||||
|
%\section{Example Logic Diagrams}
|
||||||
|
|
||||||
|
\subsection{ Logical AND example }
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldand.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%\includegraphics[scale=0.6]{ldand.eps}
|
||||||
|
\caption{Logical AND}
|
||||||
|
\label{fig:ld_and}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
In the diagram \ref{fig:ld_and} the area of intersection between the contours $a$ and $b$
|
||||||
|
represents the conjunction of those conditions. The point $P$ represents the logic equation
|
||||||
|
$$ P = (a \wedge b) $$
|
||||||
|
There are no disjunctive joining lines and so this diagram represents one equation only, $ P = (a \wedge b) $.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where both failure~modes are active.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection { Logical OR example }
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{ldor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldor.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.60]{ldor.eps}
|
||||||
|
\caption{Logical OR}
|
||||||
|
\label{fig:ld_or}
|
||||||
|
\end{figure} % OR
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_or} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (a) $$
|
||||||
|
$$ Q = (b) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R = P \vee Q $$
|
||||||
|
substituting the test cases for their Boolean logic equations gives
|
||||||
|
$$ R = ((a) \vee (b)) $$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection {Labels and useage}
|
||||||
|
|
||||||
|
In diagram \ref{fig:ld_meq} Z and W were labeled but were not necessary for the final expression
|
||||||
|
of $ R = b \vee c $. The intended use of these diagrams, is that resultant logical conditions be used in a later stage of reasoning.
|
||||||
|
Test cases joined by disjunction, all become represented in one, resultant equation.
|
||||||
|
Therefore only test cases not linked by any disjunctive joining lines need be named.
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_meq} can therefore be represented as in diagram \ref{fig:ld_meq2}, with
|
||||||
|
two unnamed test cases.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{millivolt_sensor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq2.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.4]{ldmeq2.eps}
|
||||||
|
\caption{Several Logical Expressions with unamed test cases}
|
||||||
|
\label{fig:ld_meq2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where either failure~mode is active.
|
||||||
|
Additionally it says that either failure mode $a$ or $b$ being active
|
||||||
|
will have a resultant effect $R$ on the sub-system. Note that the effect
|
||||||
|
of $a$ and $b$ both being active is not defined on this diagram.
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Repeated Contour example }
|
||||||
|
|
||||||
|
|
||||||
|
Repeated contours are allowed in PLD diagrams.
|
||||||
|
Logical contradictions or tautologies can be detected automatically by
|
||||||
|
a software tool which assists in drawing these diagrams.
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 486 206]{./repeated.eps}
|
||||||
|
% repeated.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 486 206
|
||||||
|
\label{fig:repeated}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:repeat} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (b) $$
|
||||||
|
$$ Q = (a) \wedge (c) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R1$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R1 = P \vee Q $$
|
||||||
|
$$ R1 = b \vee ( a \wedge c ) $$.
|
||||||
|
|
||||||
|
$R2$ joins two other test cases
|
||||||
|
$$R2 = a \vee c $$
|
||||||
|
|
||||||
|
The test~case residing in the intersection of countours $B$ and $A$
|
||||||
|
represents the logic equation $R3 = a \wedge b$.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
There is an additional symptom, that of the test case in $A \wedge B$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Inhibit Failure }
|
||||||
|
|
||||||
|
|
||||||
|
Very often a failure mode can only occurr
|
||||||
|
given a searate environmental condition.
|
||||||
|
In Fault Tree Analysis (FTA) this is represented by an inhibit gate.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 364 228]{./inhibit.eps}
|
||||||
|
% inhibit.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 364 228
|
||||||
|
\label{fig:inhibit}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The diagram \ref{fig:inhibit} has a test case in the contour $C$.
|
||||||
|
Contour $C$ is enclosed by contour $A$. This says
|
||||||
|
that for failure~mode $C$ to occur failure mode $A$
|
||||||
|
must have occurred.
|
||||||
|
A well known example of this is the space shuttle `O' ring failure that
|
||||||
|
caused the 1986 challenger disaster \cite{wdycwopt}.
|
||||||
|
For the failure mode to occurr the ambiant temperature had to
|
||||||
|
be below a critical value.
|
||||||
|
If we take the failure mode of the `O' ring to be $C$
|
||||||
|
and the temperature below critical to be $A$, we can see that
|
||||||
|
the low temperature failure~mode $C$ can only occurr if $A$ is true.
|
||||||
|
The `O' ring could fail in a different way independant of the critical temperature and this is
|
||||||
|
represented, for the sake of this example, by contour $D$.
|
||||||
|
|
||||||
|
In terms of propositional logic, the inhibit gate of FTA, and the countour enclosure
|
||||||
|
of PLD represent {\em implication}.
|
||||||
|
\\
|
||||||
|
\tiny
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
{\em $c$ } & {\em $a$ } & {\em $R1$ } \\ \hline
|
||||||
|
F & F & T \\ \hline
|
||||||
|
F & T & T \\ \hline
|
||||||
|
T & F & F \\ \hline
|
||||||
|
T & T & T \\ \hline \hline
|
||||||
|
\end{tabular}
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\normalsize
|
||||||
|
|
||||||
|
$$ R1 = c \implies a $$
|
||||||
|
$$ R2 = a $$
|
||||||
|
$$ R3 = d $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
Note that although R2 is a symptom of the sub-system, on its own
|
||||||
|
it will not lead to a dangerous failure~mode of the subsystem.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection { Representing Logical Negation }
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{ldor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldneg.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.60]{ldneg.eps}
|
||||||
|
% \caption{Logical Negation}
|
||||||
|
% \label{fig:ld_neg}
|
||||||
|
% \end{figure} % OR
|
||||||
|
%
|
||||||
|
% Diagram \ref{fig:ld_neg} represents the logical equation $$ P = a \wedge b \wedge \neg c $$.
|
||||||
|
%
|
||||||
|
% \paragraph{How this would be interpreted in failure analysis}
|
||||||
|
% In failure analysis this test case represents the scenario where failure modes $a$ and $b$
|
||||||
|
% are active but $c$ is not.
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical XOR example }
|
||||||
|
%
|
||||||
|
% An exclusive or condition is represented by diagram \ref{fig:ld_xor}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% firstly looking at the test case points
|
||||||
|
% $$ P = (\neg a \wedge b) $$
|
||||||
|
% $$ Q = (\neg b \wedge a) $$
|
||||||
|
%
|
||||||
|
% now joining them with the disjuctive line
|
||||||
|
% $$ R = P \vee Q $$
|
||||||
|
%
|
||||||
|
% Giving R as a Boolean equation
|
||||||
|
% $$ R = (\neg a \wedge b) \vee (\neg b \wedge a) $$
|
||||||
|
% or taking the symbol $\oplus$ to mean exclusive-or
|
||||||
|
% $$R = a \oplus b $$
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% % \begin{figure}[h] %% SOMETHING IS WRONG says latex. very helpful tell me what it fucking is then
|
||||||
|
% % \centering
|
||||||
|
% % \caption{Example `XOR' Diagram}
|
||||||
|
% % \includegraphics[scale=0.80]{ldxor.eps}
|
||||||
|
% % \label{fig:ld_xor}
|
||||||
|
% % \end{figure} % XOR
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% % bb= llx lly urx ury;
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 800pt 800pt]{logic_diagram/ldxor.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
%
|
||||||
|
% %\includegraphics[scale=0.4]{ldxor.eps}
|
||||||
|
% \caption{Logical XOR}
|
||||||
|
% \label{fig:ld_xor}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical IMPLICATION example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% An implication $a \rightarrow b$ is represented by diagram \ref{fig:ld_imp}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% Looking at the conjuctive environment of the test cases
|
||||||
|
% $$P = (\neg a)$$
|
||||||
|
% $$Q = (b)$$
|
||||||
|
% From the joining `disjunctive' line R in the diagram.
|
||||||
|
% $$R = P \vee Q$$
|
||||||
|
% Leading to
|
||||||
|
% $$R = (\neg a) \vee (b)$$
|
||||||
|
% which is the standard logic equation for implication.
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldimp.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldimp.eps}
|
||||||
|
% \caption{Logical Implication}
|
||||||
|
% \label{fig:ld_imp}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \tiny
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
%
|
||||||
|
% {\em $a$ } & {\em $b$ } & {implication \em $(\neg a) \vee (b) $ } \\ \hline
|
||||||
|
% F & F & T \\ \hline
|
||||||
|
% F & T & T \\ \hline
|
||||||
|
% T & F & F \\ \hline
|
||||||
|
% T & T & T \\ \hline \hline
|
||||||
|
% \end{tabular}
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \normalsize
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Diagram representing several Logic Equations Example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% bb=0 0 450 404
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldmeq.eps}
|
||||||
|
% \caption{Several Logical Expressions}
|
||||||
|
% \label{fig:ld_meq}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% %The effect of using explicit negation, means that a test case being outside a given contour does not imply negation, it implies a `don't care'
|
||||||
|
% %condition.
|
||||||
|
%
|
||||||
|
% Three simple equations are represented in the diagram \ref{fig:ld_dc}.
|
||||||
|
%
|
||||||
|
% %The Set of contours $\mho$ represent the `don't care' conditions.
|
||||||
|
%
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% %$$ Q = a \; | \; \mho\{b,c\} $$
|
||||||
|
%
|
||||||
|
% %$$ P = b \wedge c \; | \; \mho\{a\} $$
|
||||||
|
%
|
||||||
|
% $$ Q = a $$
|
||||||
|
% $$ P = b \wedge c $$
|
||||||
|
% $$ R = b \vee c $$
|
||||||
|
%
|
||||||
|
% % XXXXXX gives annoying impossible to understand syntax messages
|
||||||
|
% %\small
|
||||||
|
% %\bibliography{vmgbibliography,mybib}
|
||||||
|
% %\bibliography{vmgbibliography}
|
||||||
|
% %\normalsize
|
||||||
|
%
|
||||||
|
\section{Intended use in FMMD}
|
||||||
|
|
||||||
|
The intention for these diagrams is that they are used to collect
|
||||||
|
component faults and combinations thereof, into faults that,
|
||||||
|
at the module level have the same symptoms.
|
||||||
|
|
||||||
|
\subsection{Example Sub-system}
|
||||||
|
|
||||||
|
For instance were a `power supply' being analysed there could be several
|
||||||
|
individual component faults or combinations that lead to
|
||||||
|
a situation where there is no power. This can be described as a state
|
||||||
|
of the powersupply being modeelled as NO\_POWER.
|
||||||
|
These can all be collected by DISJUCNTION, i.e. that this this or this
|
||||||
|
fault occuring will cause the NO\_POWER fault. Visually this disjuction is
|
||||||
|
indicated by the joining lines.
|
||||||
|
As far as the user of the `power supply' is concerned, the power supply has failed
|
||||||
|
with the failure mode $NO\_POWER$.
|
||||||
|
The `power supply' module, after this process will have a defined set of
|
||||||
|
fault modes and may be considered as a component at a higher
|
||||||
|
level of abstraction. This module can then be combined
|
||||||
|
with others at the same abstraction level.
|
||||||
|
Note that because this is a fault collection process
|
||||||
|
the number of component faults for a module
|
||||||
|
must be less than or equal to the sum of the number of component faults.
|
||||||
|
|
||||||
|
%Typeset in \ \ {\huge \LaTeX} \ \ on \ \ \today
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.17 2010/01/06 13:41:32 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
Compiled last \today
|
||||||
|
%\end{document}
|
||||||
|
|
||||||
|
%\theend
|
||||||
|
|
||||||
|
|
||||||
|
|
723
logic_diagram/logic_diagram.tex.backup
Normal file
723
logic_diagram/logic_diagram.tex.backup
Normal file
@ -0,0 +1,723 @@
|
|||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.15 2009/02/09 07:33:27 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
%This chapter describes using diagrams to represent propositional logic.
|
||||||
|
Propositial Logic Diagrams have been designed to provide an intuitive method for visualising and manipulating
|
||||||
|
logic equations, to express fault modes in Mechanical and Electronic Systems.
|
||||||
|
%To aid hierarchical stages of fault analysis, it has been specifically developed for the purpose of
|
||||||
|
%joining conjunctive conditions with disjuctive conditions
|
||||||
|
%to group the effects of failure modes.
|
||||||
|
Diagrams of this type can also be used to model the logical conditions
|
||||||
|
that control the flow of a computer program. This type of diagram can therefore
|
||||||
|
integrate logical models from mechanical, electronic and software domains.
|
||||||
|
Nearly all modern safety critical systems involve these three disiplines.
|
||||||
|
%
|
||||||
|
It is intended to be used for analysis of automated safety critical systen
|
||||||
|
Many types of safety critical systems now legally
|
||||||
|
require fault mode effects analysis\cite{FMEA},
|
||||||
|
but few formal systems exist and wide-spread take-up is
|
||||||
|
not yet the norm.\cite{takeup}.
|
||||||
|
%
|
||||||
|
Because of its visual nature, it is easy to manipulate and model
|
||||||
|
complicated conditions that can lead to dangerous failures in
|
||||||
|
automated systems.
|
||||||
|
|
||||||
|
% No need to talk about abstraction yet, just define PLD PROPERLY
|
||||||
|
|
||||||
|
The Diagrams described here form the mathematical basis for a new visual and formal system
|
||||||
|
for the analysis of safety critical software and hardware systems.
|
||||||
|
\end{abstract}
|
||||||
|
|
||||||
|
%\title{Propositional Logic Diagrams}
|
||||||
|
%\begin{keyword}
|
||||||
|
% fault~tree fault~mode EN298 EN61508 EN12067 EN230 UL1998 safety~critical logic euler venn propositional
|
||||||
|
%\end{keyword}
|
||||||
|
%\end{frontmatter}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
Propositional Logic Diagrams (PLDs) have been devised
|
||||||
|
to collect and simplfy fault~modes in safety critical systems undergoing
|
||||||
|
static analysis\cite{FMEA}\cite{SIL}.
|
||||||
|
|
||||||
|
This type of analysis treats failure modes within a system as logical
|
||||||
|
states. PLD provides a visual method for modelling failure~mode analysis
|
||||||
|
within these systems, and specifically
|
||||||
|
identifying common failure symptoms in a user friendly way.
|
||||||
|
Contrasting this to looking at many propositional logic equations directly
|
||||||
|
in a text editor or spreadsheet, a visual method is prefferred.
|
||||||
|
|
||||||
|
|
||||||
|
%Traditional set theory is often represented by Euler\cite{euler} or Spider\cite{spider}
|
||||||
|
%diagrams. These use contours to describe inclusion in a set.may be merged and create a
|
||||||
|
%Propositional Logic Diagrams (PLDs) use named contours represent a logical conditions.
|
||||||
|
%Where an Euler diagram would use
|
||||||
|
%overlapping contours to represent inclusion in sets,
|
||||||
|
%PLDs use these to represent conjunction of the conditions.
|
||||||
|
|
||||||
|
%Named reference points may be placed onto the diagram,
|
||||||
|
%these represent test cases for conjunction.
|
||||||
|
%These can be joined by lines to apply disjunction.
|
||||||
|
%In a spider diagram the lines would represent that the object represented coul;d belong to either set.
|
||||||
|
%in a PLD it means that the logical conditions represent disjuction; a boolean OR condition.
|
||||||
|
%these points may be joined.
|
||||||
|
|
||||||
|
PLDs use three visual features that
|
||||||
|
can be combined to represent logic equations. Closed contours (using dashed lines), test cases, and joining lines.
|
||||||
|
All features may be labelled, and the labels must be unique within a diagram, however contours may be repeated in the diagram.
|
||||||
|
%Aditionally a label begining with the `$\neg$' character, applied only to a contour, represents negation.
|
||||||
|
|
||||||
|
|
||||||
|
%Regions defined by contours are used to represent given conjunctive logical conditions.
|
||||||
|
|
||||||
|
Test cases are marked by asterisks. These are used as a visual `anchor'
|
||||||
|
to mark a logical condition, the logical condition being defined by the countours
|
||||||
|
that enclose the region on which the test case has been placed.
|
||||||
|
Test cases may be pair-wise connected by named lines representing disjunction (Boolean `OR') of
|
||||||
|
the conditions defined by the placement of the test case markers.
|
||||||
|
|
||||||
|
With these three visual syntax elements, we have the basic building blocks for all logic equations possible.
|
||||||
|
\begin{description}
|
||||||
|
\item Test cases - Points on the plane indicating a logical condition.
|
||||||
|
\item Conjunction - Overlapping contours
|
||||||
|
\item Disjunction - Joining of named test cases.
|
||||||
|
%\item Negation - Countours negatively named
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
% Because of this
|
||||||
|
% we have the complete suite of logical primitives here, conjunction, disjuction and negation.
|
||||||
|
% Form these complex logic equations can be respresented in 2D.
|
||||||
|
|
||||||
|
% Another advantage of this is being able to describe `don't care' conditions.
|
||||||
|
% Very often in digital hardware design, or in a computer program
|
||||||
|
% many logical conditions are `don't care'.
|
||||||
|
% These are difficult to specify in set theory.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Formal Description of PLD}
|
||||||
|
|
||||||
|
Definitions of conrete and abstract PLD's follow.
|
||||||
|
Well-formedness conditions for PLD's are separated from this definition, because of
|
||||||
|
practical differences between the way they are used to represent software as opposed to
|
||||||
|
representing electronics and mechanical systems.
|
||||||
|
|
||||||
|
\subsection{Concrete PLD Definition}
|
||||||
|
|
||||||
|
A concrete {\em Propositional logic diagram} is a set of labeled {\em contours}
|
||||||
|
(closed curves) in the plane. The minimal regions formed by the closed curves
|
||||||
|
can by occupied by `test points'.
|
||||||
|
The `test points' may be joined by joining lines.
|
||||||
|
A group of `test points' connected by joining lines
|
||||||
|
is defined as a `test point disjunction' or Spider.
|
||||||
|
Spiders may be labeled.
|
||||||
|
|
||||||
|
To differentiate these from common Euler diagram notation (normally used to represent set theory)
|
||||||
|
the curves are drawn using dotted and dashed lines.
|
||||||
|
|
||||||
|
\subsection{ PLD Definition}
|
||||||
|
In English:
|
||||||
|
The elements that can be found in a PLD diagram are a number of contours,
|
||||||
|
a number of test points and joining lines that connect
|
||||||
|
test points.
|
||||||
|
{
|
||||||
|
\definition{A concrete PLD $d$ is a set comprising of a set of
|
||||||
|
closed curves $C=C(d)$, a set of test points $T=T(d)$ and
|
||||||
|
a set of test point joining lines $J=J(d)$.
|
||||||
|
$$d=\{C,T,J\}$$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Each element of the diagram has a unique label within the diagram.
|
||||||
|
%Thus the set of labels found in a diagram is
|
||||||
|
%a subset of the powerset of characters that can be present in a label.
|
||||||
|
|
||||||
|
%{
|
||||||
|
%\definition{ $ \mathcal{F}_{d}:C(d) \rightarrow \mathcal{P}\Lambda$ is a
|
||||||
|
%function associating a label drawn from an infinite
|
||||||
|
%set of labels $\Lambda$.
|
||||||
|
%}
|
||||||
|
%}
|
||||||
|
|
||||||
|
%In English:
|
||||||
|
%A minimal region of a PLD diagram d is a
|
||||||
|
%region bounded by curves.
|
||||||
|
%connected component of $\mathbb{R}^{2} - \; \bigcup_{c \in C(d)} c$
|
||||||
|
|
||||||
|
%That is to say the complement of all other regions is subtracted from the plane.
|
||||||
|
%- Or in another way- that smallest area defined by the curves that enclose it
|
||||||
|
|
||||||
|
|
||||||
|
%% \hat is used to indicate CONCRETE
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
A minimal region of concrete PLD diagram d is a connected component of
|
||||||
|
|
||||||
|
$$ \mathbb{R}^{2} - \; \bigcup_{\hat{c} \in \hat{C}(\hat{d})}\hat{c}$$
|
||||||
|
|
||||||
|
% I.e. The contours break the connectivity
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition
|
||||||
|
{
|
||||||
|
Let d be a PLD and $ \mathcal{X} \subseteq \hat{C}(\hat{d})$ a set of countours.
|
||||||
|
If the set
|
||||||
|
$$ \hat{z} = \bigcap_{c \in \mathcal{X}}
|
||||||
|
{interior}
|
||||||
|
(\hat{c})
|
||||||
|
\; \cup \;
|
||||||
|
\bigcap_{\hat{c} \in \hat{C}-X}
|
||||||
|
exterior (\hat{c})
|
||||||
|
$$
|
||||||
|
|
||||||
|
is non empty, then $\hat{z}$ is a concrete zone of $\hat{d}$. A zone is a union of minimal regions. The set of all concrete zones of $\hat{d}$
|
||||||
|
is denoted $ \hat{\mathcal{Z}} $.
|
||||||
|
|
||||||
|
% NOT interested in labelling the zones.
|
||||||
|
% but am interested in
|
||||||
|
%The set of labels associated with the contours in $\mathcal{X}$ is the zone label set $\hat{\mathcal{Z}}(\hat{z})$
|
||||||
|
%of $\hat{z}$.
|
||||||
|
%$$ \hat{\mathcal{L}}(\hat{z}) = \bigcup_{\hat{c} \in \mathcal{X}} \mathcal{F}_{d}(\hat{c}) $$
|
||||||
|
%
|
||||||
|
% So Z is the set of all available for use ZONES; great !
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Each minimal region in the plane may be inhabited by one or more `test points'.
|
||||||
|
% One or more because in software the same logical conditions mean existing in the same
|
||||||
|
% region. For electroincs or mechanical, one test point per region is
|
||||||
|
% mandatory. How to describe ?????
|
||||||
|
Each test point can be associated with the set of contours that enclose it.
|
||||||
|
%defined the minimal region it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{ $ \mathcal{Z}_{d}:T(d)\rightarrow \mathcal{C}$ is a function
|
||||||
|
associating a testpoint with a set of contours in the plane. This corresponds to the interior of the contours defining the zone.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Pairs of test points may be joined by joining lines.
|
||||||
|
The operator $\stackrel{join}{\leftrightarrow}$ is used to
|
||||||
|
show that two points are joined by a line in the concrete diagram.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
$ \mathcal{F}_{j}$ is a function
|
||||||
|
associating a joining line with a pair of test points. The Join t1,t2 is defined as
|
||||||
|
|
||||||
|
%$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 %\wedge t1 \stackrel{join}{\leftrightarrow} t2\} $$
|
||||||
|
$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 \} $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Test points on the concrete diagram pair-wise connected by a `joining line'
|
||||||
|
|
||||||
|
|
||||||
|
A collection of test points connected by joining lines, is an Fuctionally Merged Group, $FMG$
|
||||||
|
or `test point disjunction'.
|
||||||
|
An $FMG$ has members which are test points.
|
||||||
|
|
||||||
|
{may be merged
|
||||||
|
and create a
|
||||||
|
\definition{
|
||||||
|
%A spider is a set of test points where,
|
||||||
|
%a test point is a member of a spider where it can trace a path connected by joining lines
|
||||||
|
%to another member of the spider. A singleton test point can be considered a spider.
|
||||||
|
Let d be a PLD : An $FMG$ is a maximal set of test points in d where
|
||||||
|
the test points belong to a sequence connected by joining lines such that:
|
||||||
|
|
||||||
|
$$ t_i \stackrel{join}{\leftrightarrow} t_n, for \; i = 1, ..., n $$
|
||||||
|
|
||||||
|
|
||||||
|
OR consider an $FMG$ as a tree whose nodes are test points.
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
A singleton test point can be considered a sequence of one test point and is therefore also an $FMG$.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection{Abstract Description of PLD}
|
||||||
|
%
|
||||||
|
% An Abstract PLD {\em Propositional logic diagram} consists of contours $C$ defining zones $Z$, test points $T$ (which
|
||||||
|
% are defined by the zone they inhabit) and pair wise connections $W$, which connect test points.
|
||||||
|
% Collections of test points, linked by shared conecting lines, form a set of test point groups $G$.
|
||||||
|
%
|
||||||
|
% A Zone defined by the contours that enclose it in the concrete diagram.
|
||||||
|
%
|
||||||
|
% $$ Z \subseteq C $$
|
||||||
|
%
|
||||||
|
% A test point $t \in T$ in habits a zone on the diagram.
|
||||||
|
%
|
||||||
|
% $$ \eta(t) = Z $$
|
||||||
|
%
|
||||||
|
% A joining line $$ w \in W $$ joins test points.
|
||||||
|
%
|
||||||
|
% $$ w = t1 \stackrel{join}{\rightarrow} t2 | t1 \neq t2 \wedge t1 \in T \wedge t2 \in T $$
|
||||||
|
%
|
||||||
|
% A test point group $g \in G$ is defined by test points linked by shared connecting lines.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Semantics of PLD}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item A closed curve in a PLD represents a condition (logical state) being modelled.
|
||||||
|
\item A test point represents the conjunction of the conditions represented by the curves that enclose it.
|
||||||
|
\item A $FMG$ represents the disjunction of all test points that are members of it.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
To obtain the set of propositions from a PLD, each $FMG$ must be processed. For each test case
|
||||||
|
in the $FMG$ a new section of the equation is disjuctively appended to it.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Let conjunctive logic equation associated with a test point
|
||||||
|
be determined from the contours that enclose it.
|
||||||
|
i.e. the contours $\mathcal{X}$ from the zone it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
Let $\mathcal{F}_{t}$ be a function mapping a test point to a proposition / logical equation $p \in P$.
|
||||||
|
The test point inhabits the zone $\mathcal{Z}$ which is a collection of contours (the contours that enclose the test point.
|
||||||
|
|
||||||
|
$$ \mathcal{F}:T \rightarrow P $$
|
||||||
|
|
||||||
|
%$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} \Lambda c $$
|
||||||
|
|
||||||
|
$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} c $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Thus a `test point' enclosed by contours labelled $a,b,c$ would be represented by the logic equation
|
||||||
|
$ a \wedge b \wedge c $.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
Let $\mathcal{G}_{fmg}$ be a function that returns a logic equation for a given $FMG$
|
||||||
|
$fmg$ in the diagram, where an FMG is a non empty set of test points
|
||||||
|
% $t$ is a `test point'
|
||||||
|
|
||||||
|
$$ \mathcal{G}:FMG \rightarrow P_{fmg} $$
|
||||||
|
|
||||||
|
The logic equation representing an FMG $p_{fmg}$ can be determined thus.
|
||||||
|
|
||||||
|
$$\mathcal{G}_{fmg}(fmg) = \bigvee_{t \in fmg} (\; \mathcal{F}_{t} (t) \;) $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
The abstract PLD diagram is a set of logic equations representing all FMGs,
|
||||||
|
along with unused zones (i.e. zones that are not inhabited by FMGs).
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
\label{FMGderivation}
|
||||||
|
A diagram can be reduced to a collection of $FMG$s.
|
||||||
|
A new diagram can be derived from this, replacing a contour for each FMG.
|
||||||
|
This diagram is at one higher level of abstraction then the diagram that
|
||||||
|
it was produced from.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Example Diagrams}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection {How to read a PLD diagram}
|
||||||
|
|
||||||
|
PLD diagrams are read by first looking at the test case points.
|
||||||
|
The test case asterisk will be enclosed by one or more contours.
|
||||||
|
These contours are collected and form the logical conjunction
|
||||||
|
equation for the test case.
|
||||||
|
These test case points thus represent the conjunctive aspects
|
||||||
|
of an equation defined in a PLD. Where these test cases are joined by lines;
|
||||||
|
these represent disjunction of the conjunctive aspects defined by the test cases.
|
||||||
|
Joining lines thus represent dis-junction in a PLD.
|
||||||
|
|
||||||
|
%Where negation and assertion of a logical condition is required in the same diagram, a separate contour can be created, which is
|
||||||
|
%..assigned the same name as its positive counter part, but preceded by a negation `$\neg$' sign.
|
||||||
|
%Obviously were a drawing to show conjunction of a contour and its complement
|
||||||
|
%this would result in a contradiction for any test case placed on it, and would be a visual `syntax error'.
|
||||||
|
|
||||||
|
%Note that negation is handled explicitly. This is to allow `don't care'
|
||||||
|
%conditions. Should a test case be outside a contour, that contour is a `don't care' condition.
|
||||||
|
%In a PLD, contours may be represented in complement, to provide
|
||||||
|
%logical negation. Here the contour name is begun with the negation symbol `$\neg$'.
|
||||||
|
%%To represent conjunction of logical conditions (Boolean `AND'), contours may be overlapped.
|
||||||
|
|
||||||
|
%Providing explicit negation, in addition to disjunction and conjunction
|
||||||
|
%allows us to represent `don't care' or `tri-state' logical conditions. Simply by
|
||||||
|
%not using the conditions we are not interested in they are `don't care'.
|
||||||
|
%
|
||||||
|
|
||||||
|
%\section{Example Logic Diagrams}
|
||||||
|
|
||||||
|
\subsection{ Logical AND example }
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldand.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%\includegraphics[scale=0.6]{ldand.eps}
|
||||||
|
\caption{Logical AND}
|
||||||
|
\label{fig:ld_and}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
In the diagram \ref{fig:ld_and} the area of intersection between the contours $a$ and $b$
|
||||||
|
represents the conjunction of those conditions. The point $P$ represents the logic equation
|
||||||
|
$$ P = (a \wedge b) $$
|
||||||
|
There are no disjunctive joining lines and so this diagram represents one equation only, $ P = (a \wedge b) $.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where both failure~modes are active.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection { Logical OR example }
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{ldor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldor.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.60]{ldor.eps}
|
||||||
|
\caption{Logical OR}
|
||||||
|
\label{fig:ld_or}
|
||||||
|
\end{figure} % OR
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_or} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (a) $$
|
||||||
|
$$ Q = (b) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R = P \vee Q $$
|
||||||
|
substituting the test cases for their Boolean logic equations gives
|
||||||
|
$$ R = ((a) \vee (b)) $$.
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where either failure~mode is active.
|
||||||
|
Additionally it says that either failure mode $a$ or $b$ being active
|
||||||
|
will have a resultant effect $R$ on the sub-system. Note that the effect
|
||||||
|
of $a$ and $b$ both being active is not defined on this diagram.
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Repeated Contour example }
|
||||||
|
|
||||||
|
|
||||||
|
Repeated contours are allowed in PLD diagrams.
|
||||||
|
Logical contradictions or tautologies can be detected automatically by
|
||||||
|
a software tool which assists in drawing these diagrams.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 640 480]{./repeated.jpg}
|
||||||
|
% repeated.jpg: 640x480 pixel, 72dpi, 22.58x16.93 cm, bb=0 0 640 480
|
||||||
|
\caption{Repeated Contours}
|
||||||
|
\label{fig:repeat}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:repeat} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (a) $$
|
||||||
|
$$ Q = (b) \wedge (c) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R1$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R1 = P \vee Q $$
|
||||||
|
$$ R1 = b \wedge ( a \vee c ) $$.
|
||||||
|
|
||||||
|
$R2$ joins two other test cases
|
||||||
|
$$R2 = a \vee c $$
|
||||||
|
|
||||||
|
The test~case residing in the intersection of countours $B$ and $A$
|
||||||
|
represents the logic equation $R = a \wedge b$.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
There is an additional symptom, that of the test case in $A \wedge B$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Inhibit Failure }
|
||||||
|
|
||||||
|
|
||||||
|
Very often a failure mode can only occurr
|
||||||
|
given a searate environmental condition.
|
||||||
|
In Fault Tree Analysis (FTA) this is represented by an inhibit gate.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 640 480]{./inhibit.jpg}
|
||||||
|
% repeated.jpg: 640x480 pixel, 72dpi, 22.58x16.93 cm, bb=0 0 640 480
|
||||||
|
\caption{Inhibit Contours}
|
||||||
|
\label{fig:inhibit}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:inhibit} has a test case in the contour $C$.
|
||||||
|
Contour $C$ is enclosed by contour $A$. This says
|
||||||
|
that for failure~mode $C$ to occur failure mode $A$
|
||||||
|
must have occurred.
|
||||||
|
A well known example of this is the space shuttle `O' ring failure that
|
||||||
|
caused the 1986 challenger disaster \cite {wdycwopt}.
|
||||||
|
For the failure mode to occurr the ambiant temperature had to
|
||||||
|
be below a critical value.
|
||||||
|
If we take the failure mode of the `O' ring to be $C$
|
||||||
|
and the temperature below critical to be $A$, we can see that
|
||||||
|
the low temperature failure~mode $C$ can only occurr if $A$ is true.
|
||||||
|
The `O' ring could fail in a different way above the critical temperature and this is
|
||||||
|
represented, for the sake of this example, by contour $D$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
There is an additional symptom, that of the test case in $A \wedge B$.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection { Representing Logical Negation }
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{ldor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldneg.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.60]{ldneg.eps}
|
||||||
|
% \caption{Logical Negation}
|
||||||
|
% \label{fig:ld_neg}
|
||||||
|
% \end{figure} % OR
|
||||||
|
%
|
||||||
|
% Diagram \ref{fig:ld_neg} represents the logical equation $$ P = a \wedge b \wedge \neg c $$.
|
||||||
|
%
|
||||||
|
% \paragraph{How this would be interpreted in failure analysis}
|
||||||
|
% In failure analysis this test case represents the scenario where failure modes $a$ and $b$
|
||||||
|
% are active but $c$ is not.
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical XOR example }
|
||||||
|
%
|
||||||
|
% An exclusive or condition is represented by diagram \ref{fig:ld_xor}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% firstly looking at the test case points
|
||||||
|
% $$ P = (\neg a \wedge b) $$
|
||||||
|
% $$ Q = (\neg b \wedge a) $$
|
||||||
|
%
|
||||||
|
% now joining them with the disjuctive line
|
||||||
|
% $$ R = P \vee Q $$
|
||||||
|
%
|
||||||
|
% Giving R as a Boolean equation
|
||||||
|
% $$ R = (\neg a \wedge b) \vee (\neg b \wedge a) $$
|
||||||
|
% or taking the symbol $\oplus$ to mean exclusive-or
|
||||||
|
% $$R = a \oplus b $$
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% % \begin{figure}[h] %% SOMETHING IS WRONG says latex. very helpful tell me what it fucking is then
|
||||||
|
% % \centering
|
||||||
|
% % \caption{Example `XOR' Diagram}
|
||||||
|
% % \includegraphics[scale=0.80]{ldxor.eps}
|
||||||
|
% % \label{fig:ld_xor}
|
||||||
|
% % \end{figure} % XOR
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% % bb= llx lly urx ury;
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 800pt 800pt]{logic_diagram/ldxor.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
%
|
||||||
|
% %\includegraphics[scale=0.4]{ldxor.eps}
|
||||||
|
% \caption{Logical XOR}
|
||||||
|
% \label{fig:ld_xor}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical IMPLICATION example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% An implication $a \rightarrow b$ is represented by diagram \ref{fig:ld_imp}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% Looking at the conjuctive environment of the test cases
|
||||||
|
% $$P = (\neg a)$$
|
||||||
|
% $$Q = (b)$$
|
||||||
|
% From the joining `disjunctive' line R in the diagram.
|
||||||
|
% $$R = P \vee Q$$
|
||||||
|
% Leading to
|
||||||
|
% $$R = (\neg a) \vee (b)$$
|
||||||
|
% which is the standard logic equation for implication.
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldimp.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldimp.eps}
|
||||||
|
% \caption{Logical Implication}
|
||||||
|
% \label{fig:ld_imp}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \tiny
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
%
|
||||||
|
% {\em $a$ } & {\em $b$ } & {implication \em $(\neg a) \vee (b) $ } \\ \hline
|
||||||
|
% F & F & T \\ \hline
|
||||||
|
% F & T & T \\ \hline
|
||||||
|
% T & F & F \\ \hline
|
||||||
|
% T & T & T \\ \hline \hline
|
||||||
|
% \end{tabular}
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \normalsize
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Diagram representing several Logic Equations Example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% bb=0 0 450 404
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldmeq.eps}
|
||||||
|
% \caption{Several Logical Expressions}
|
||||||
|
% \label{fig:ld_meq}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% %The effect of using explicit negation, means that a test case being outside a given contour does not imply negation, it implies a `don't care'
|
||||||
|
% %condition.
|
||||||
|
%
|
||||||
|
% Three simple equations are represented in the diagram \ref{fig:ld_dc}.
|
||||||
|
%
|
||||||
|
% %The Set of contours $\mho$ represent the `don't care' conditions.
|
||||||
|
%
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% %$$ Q = a \; | \; \mho\{b,c\} $$
|
||||||
|
%
|
||||||
|
% %$$ P = b \wedge c \; | \; \mho\{a\} $$
|
||||||
|
%
|
||||||
|
% $$ Q = a $$
|
||||||
|
% $$ P = b \wedge c $$
|
||||||
|
% $$ R = b \vee c $$
|
||||||
|
%
|
||||||
|
% % XXXXXX gives annoying impossible to understand syntax messages
|
||||||
|
% %\small
|
||||||
|
% %\bibliography{vmgbibliography,mybib}
|
||||||
|
% %\bibliography{vmgbibliography}
|
||||||
|
% %\normalsize
|
||||||
|
%
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection {Labels and useage}
|
||||||
|
|
||||||
|
In diagram \ref{fig:ld_meq} Z and W were labeled but were not necessary for the final expression
|
||||||
|
of $ R = b \vee c $. The intended use of these diagrams, is that resultant logical conditions be used in a later stage of reasoning.
|
||||||
|
Test cases joined by disjunction, all become represented in one, resultant equation.
|
||||||
|
Therefore only test cases not linked by any disjunctive joining lines need be named.
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_meq} can therefore be represented as in diagram \ref{fig:ld_meq2}, with
|
||||||
|
two unnamed test cases.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{millivolt_sensor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq2.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.4]{ldmeq2.eps}
|
||||||
|
\caption{Several Logical Expressions with unamed test cases}
|
||||||
|
\label{fig:ld_meq2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Intended use in FMMD}
|
||||||
|
|
||||||
|
The intention for these diagrams is that they are used to collect
|
||||||
|
component faults and combinations thereof, into faults that,
|
||||||
|
at the module level have the same symptoms.
|
||||||
|
|
||||||
|
\subsection{Example Sub-system}
|
||||||
|
|
||||||
|
For instance were a `power supply' being analysed there could be several
|
||||||
|
individual component faults or combinations that lead to
|
||||||
|
a situation where there is no power. This can be described as a state
|
||||||
|
of the powersupply being modeelled as NO\_POWER.
|
||||||
|
These can all be collected by DISJUCNTION, i.e. that this this or this
|
||||||
|
fault occuring will cause the NO\_POWER fault. Visually this disjuction is
|
||||||
|
indicated by the joining lines.
|
||||||
|
As far as the user of the `power supply' is concerned, the power supply has failed
|
||||||
|
with the failure mode $NO\_POWER$.
|
||||||
|
The `power supply' module, after this process will have a defined set of
|
||||||
|
fault modes and may be considered as a component at a higher
|
||||||
|
level of abstraction. This module can then be combined
|
||||||
|
with others at the same abstraction level.
|
||||||
|
Note that because this is a fault collection process
|
||||||
|
the number of component faults for a module
|
||||||
|
must be less than or equal to the sum of the number of component faults.
|
||||||
|
|
||||||
|
%Typeset in \ \ {\huge \LaTeX} \ \ on \ \ \today
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.15 2009/02/09 07:33:27 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
Compiled last \today
|
||||||
|
%\end{document}
|
||||||
|
|
||||||
|
%\theend
|
||||||
|
|
||||||
|
|
||||||
|
|
742
logic_diagram/logic_diagram.tex~
Normal file
742
logic_diagram/logic_diagram.tex~
Normal file
@ -0,0 +1,742 @@
|
|||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.15 2009/02/09 07:33:27 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
%This chapter describes using diagrams to represent propositional logic.
|
||||||
|
Propositial Logic Diagrams have been designed to provide an intuitive method for visualising and manipulating
|
||||||
|
logic equations, to express fault modes in Mechanical and Electronic Systems.
|
||||||
|
%To aid hierarchical stages of fault analysis, it has been specifically developed for the purpose of
|
||||||
|
%joining conjunctive conditions with disjuctive conditions
|
||||||
|
%to group the effects of failure modes.
|
||||||
|
Diagrams of this type can also be used to model the logical conditions
|
||||||
|
that control the flow of a computer program. This type of diagram can therefore
|
||||||
|
integrate logical models from mechanical, electronic and software domains.
|
||||||
|
Nearly all modern safety critical systems involve these three disiplines.
|
||||||
|
%
|
||||||
|
It is intended to be used for analysis of automated safety critical systen
|
||||||
|
Many types of safety critical systems now legally
|
||||||
|
require fault mode effects analysis\cite{FMEA},
|
||||||
|
but few formal systems exist and wide-spread take-up is
|
||||||
|
not yet the norm.\cite{takeup}.
|
||||||
|
%
|
||||||
|
Because of its visual nature, it is easy to manipulate and model
|
||||||
|
complicated conditions that can lead to dangerous failures in
|
||||||
|
automated systems.
|
||||||
|
|
||||||
|
% No need to talk about abstraction yet, just define PLD PROPERLY
|
||||||
|
|
||||||
|
The Diagrams described here form the mathematical basis for a new visual and formal system
|
||||||
|
for the analysis of safety critical software and hardware systems.
|
||||||
|
\end{abstract}
|
||||||
|
|
||||||
|
%\title{Propositional Logic Diagrams}
|
||||||
|
%\begin{keyword}
|
||||||
|
% fault~tree fault~mode EN298 EN61508 EN12067 EN230 UL1998 safety~critical logic euler venn propositional
|
||||||
|
%\end{keyword}
|
||||||
|
%\end{frontmatter}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
Propositional Logic Diagrams (PLDs) have been devised
|
||||||
|
to collect and simplfy fault~modes in safety critical systems undergoing
|
||||||
|
static analysis\cite{FMEA}\cite{SIL}.
|
||||||
|
|
||||||
|
This type of analysis treats failure modes within a system as logical
|
||||||
|
states. PLD provides a visual method for modelling failure~mode analysis
|
||||||
|
within these systems, and specifically
|
||||||
|
identifying common failure symptoms in a user friendly way.
|
||||||
|
Contrasting this to looking at many propositional logic equations directly
|
||||||
|
in a text editor or spreadsheet, a visual method is prefferred.
|
||||||
|
|
||||||
|
|
||||||
|
%Traditional set theory is often represented by Euler\cite{euler} or Spider\cite{spider}
|
||||||
|
%diagrams. These use contours to describe inclusion in a set.may be merged and create a
|
||||||
|
%Propositional Logic Diagrams (PLDs) use named contours represent a logical conditions.
|
||||||
|
%Where an Euler diagram would use
|
||||||
|
%overlapping contours to represent inclusion in sets,
|
||||||
|
%PLDs use these to represent conjunction of the conditions.
|
||||||
|
|
||||||
|
%Named reference points may be placed onto the diagram,
|
||||||
|
%these represent test cases for conjunction.
|
||||||
|
%These can be joined by lines to apply disjunction.
|
||||||
|
%In a spider diagram the lines would represent that the object represented coul;d belong to either set.
|
||||||
|
%in a PLD it means that the logical conditions represent disjuction; a boolean OR condition.
|
||||||
|
%these points may be joined.
|
||||||
|
|
||||||
|
PLDs use three visual features that
|
||||||
|
can be combined to represent logic equations. Closed contours (using dashed lines), test cases, and joining lines.
|
||||||
|
All features may be labelled, and the labels must be unique within a diagram, however contours may be repeated in the diagram.
|
||||||
|
%Aditionally a label begining with the `$\neg$' character, applied only to a contour, represents negation.
|
||||||
|
|
||||||
|
|
||||||
|
%Regions defined by contours are used to represent given conjunctive logical conditions.
|
||||||
|
|
||||||
|
Test cases are marked by asterisks. These are used as a visual `anchor'
|
||||||
|
to mark a logical condition, the logical condition being defined by the countours
|
||||||
|
that enclose the region on which the test case has been placed.
|
||||||
|
Test cases may be pair-wise connected by named lines representing disjunction (Boolean `OR') of
|
||||||
|
the conditions defined by the placement of the test case markers.
|
||||||
|
|
||||||
|
With these three visual syntax elements, we have the basic building blocks for all logic equations possible.
|
||||||
|
\begin{description}
|
||||||
|
\item Test cases - Points on the plane indicating a logical condition.
|
||||||
|
\item Conjunction - Overlapping contours
|
||||||
|
\item Disjunction - Joining of named test cases.
|
||||||
|
%\item Negation - Countours negatively named
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
% Because of this
|
||||||
|
% we have the complete suite of logical primitives here, conjunction, disjuction and negation.
|
||||||
|
% Form these complex logic equations can be respresented in 2D.
|
||||||
|
|
||||||
|
% Another advantage of this is being able to describe `don't care' conditions.
|
||||||
|
% Very often in digital hardware design, or in a computer program
|
||||||
|
% many logical conditions are `don't care'.
|
||||||
|
% These are difficult to specify in set theory.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Formal Description of PLD}
|
||||||
|
|
||||||
|
Definitions of conrete and abstract PLD's follow.
|
||||||
|
Well-formedness conditions for PLD's are separated from this definition, because of
|
||||||
|
practical differences between the way they are used to represent software as opposed to
|
||||||
|
representing electronics and mechanical systems.
|
||||||
|
|
||||||
|
\subsection{Concrete PLD Definition}
|
||||||
|
|
||||||
|
A concrete {\em Propositional logic diagram} is a set of labeled {\em contours}
|
||||||
|
(closed curves) in the plane. The minimal regions formed by the closed curves
|
||||||
|
can by occupied by `test points'.
|
||||||
|
The `test points' may be joined by joining lines.
|
||||||
|
A group of `test points' connected by joining lines
|
||||||
|
is defined as a `test point disjunction' or Spider.
|
||||||
|
Spiders may be labeled.
|
||||||
|
|
||||||
|
To differentiate these from common Euler diagram notation (normally used to represent set theory)
|
||||||
|
the curves are drawn using dotted and dashed lines.
|
||||||
|
|
||||||
|
\subsection{ PLD Definition}
|
||||||
|
In English:
|
||||||
|
The elements that can be found in a PLD diagram are a number of contours,
|
||||||
|
a number of test points and joining lines that connect
|
||||||
|
test points.
|
||||||
|
{
|
||||||
|
\definition{A concrete PLD $d$ is a set comprising of a set of
|
||||||
|
closed curves $C=C(d)$, a set of test points $T=T(d)$ and
|
||||||
|
a set of test point joining lines $J=J(d)$.
|
||||||
|
$$d=\{C,T,J\}$$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Each element of the diagram has a unique label within the diagram.
|
||||||
|
%Thus the set of labels found in a diagram is
|
||||||
|
%a subset of the powerset of characters that can be present in a label.
|
||||||
|
|
||||||
|
%{
|
||||||
|
%\definition{ $ \mathcal{F}_{d}:C(d) \rightarrow \mathcal{P}\Lambda$ is a
|
||||||
|
%function associating a label drawn from an infinite
|
||||||
|
%set of labels $\Lambda$.
|
||||||
|
%}
|
||||||
|
%}
|
||||||
|
|
||||||
|
%In English:
|
||||||
|
%A minimal region of a PLD diagram d is a
|
||||||
|
%region bounded by curves.
|
||||||
|
%connected component of $\mathbb{R}^{2} - \; \bigcup_{c \in C(d)} c$
|
||||||
|
|
||||||
|
%That is to say the complement of all other regions is subtracted from the plane.
|
||||||
|
%- Or in another way- that smallest area defined by the curves that enclose it
|
||||||
|
|
||||||
|
|
||||||
|
%% \hat is used to indicate CONCRETE
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
A minimal region of concrete PLD diagram d is a connected component of
|
||||||
|
|
||||||
|
$$ \mathbb{R}^{2} - \; \bigcup_{\hat{c} \in \hat{C}(\hat{d})}\hat{c}$$
|
||||||
|
|
||||||
|
% I.e. The contours break the connectivity
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition
|
||||||
|
{
|
||||||
|
Let d be a PLD and $ \mathcal{X} \subseteq \hat{C}(\hat{d})$ a set of countours.
|
||||||
|
If the set
|
||||||
|
$$ \hat{z} = \bigcap_{c \in \mathcal{X}}
|
||||||
|
{interior}
|
||||||
|
(\hat{c})
|
||||||
|
\; \cup \;
|
||||||
|
\bigcap_{\hat{c} \in \hat{C}-X}
|
||||||
|
exterior (\hat{c})
|
||||||
|
$$
|
||||||
|
|
||||||
|
is non empty, then $\hat{z}$ is a concrete zone of $\hat{d}$. A zone is a union of minimal regions. The set of all concrete zones of $\hat{d}$
|
||||||
|
is denoted $ \hat{\mathcal{Z}} $.
|
||||||
|
|
||||||
|
% NOT interested in labelling the zones.
|
||||||
|
% but am interested in
|
||||||
|
%The set of labels associated with the contours in $\mathcal{X}$ is the zone label set $\hat{\mathcal{Z}}(\hat{z})$
|
||||||
|
%of $\hat{z}$.
|
||||||
|
%$$ \hat{\mathcal{L}}(\hat{z}) = \bigcup_{\hat{c} \in \mathcal{X}} \mathcal{F}_{d}(\hat{c}) $$
|
||||||
|
%
|
||||||
|
% So Z is the set of all available for use ZONES; great !
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Each minimal region in the plane may be inhabited by one or more `test points'.
|
||||||
|
% One or more because in software the same logical conditions mean existing in the same
|
||||||
|
% region. For electroincs or mechanical, one test point per region is
|
||||||
|
% mandatory. How to describe ?????
|
||||||
|
Each test point can be associated with the set of contours that enclose it.
|
||||||
|
%defined the minimal region it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{ $ \mathcal{Z}_{d}:T(d)\rightarrow \mathcal{C}$ is a function
|
||||||
|
associating a testpoint with a set of contours in the plane. This corresponds to the interior of the contours defining the zone.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Pairs of test points may be joined by joining lines.
|
||||||
|
The operator $\stackrel{join}{\leftrightarrow}$ is used to
|
||||||
|
show that two points are joined by a line in the concrete diagram.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
$ \mathcal{F}_{j}$ is a function
|
||||||
|
associating a joining line with a pair of test points. The Join t1,t2 is defined as
|
||||||
|
|
||||||
|
%$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 %\wedge t1 \stackrel{join}{\leftrightarrow} t2\} $$
|
||||||
|
$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 \} $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Test points on the concrete diagram pair-wise connected by a `joining line'
|
||||||
|
|
||||||
|
|
||||||
|
A collection of test points connected by joining lines, is an Fuctionally Merged Group, $FMG$
|
||||||
|
or `test point disjunction'.
|
||||||
|
An $FMG$ has members which are test points.
|
||||||
|
|
||||||
|
{may be merged
|
||||||
|
and create a
|
||||||
|
\definition{
|
||||||
|
%A spider is a set of test points where,
|
||||||
|
%a test point is a member of a spider where it can trace a path connected by joining lines
|
||||||
|
%to another member of the spider. A singleton test point can be considered a spider.
|
||||||
|
Let d be a PLD : An $FMG$ is a maximal set of test points in d where
|
||||||
|
the test points belong to a sequence connected by joining lines such that:
|
||||||
|
|
||||||
|
$$ t_i \stackrel{join}{\leftrightarrow} t_n, for \; i = 1, ..., n $$
|
||||||
|
|
||||||
|
|
||||||
|
OR consider an $FMG$ as a tree whose nodes are test points.
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
A singleton test point can be considered a sequence of one test point and is therefore also an $FMG$.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection{Abstract Description of PLD}
|
||||||
|
%
|
||||||
|
% An Abstract PLD {\em Propositional logic diagram} consists of contours $C$ defining zones $Z$, test points $T$ (which
|
||||||
|
% are defined by the zone they inhabit) and pair wise connections $W$, which connect test points.
|
||||||
|
% Collections of test points, linked by shared conecting lines, form a set of test point groups $G$.
|
||||||
|
%
|
||||||
|
% A Zone defined by the contours that enclose it in the concrete diagram.
|
||||||
|
%
|
||||||
|
% $$ Z \subseteq C $$
|
||||||
|
%
|
||||||
|
% A test point $t \in T$ in habits a zone on the diagram.
|
||||||
|
%
|
||||||
|
% $$ \eta(t) = Z $$
|
||||||
|
%
|
||||||
|
% A joining line $$ w \in W $$ joins test points.
|
||||||
|
%
|
||||||
|
% $$ w = t1 \stackrel{join}{\rightarrow} t2 | t1 \neq t2 \wedge t1 \in T \wedge t2 \in T $$
|
||||||
|
%
|
||||||
|
% A test point group $g \in G$ is defined by test points linked by shared connecting lines.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Semantics of PLD}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item A closed curve in a PLD represents a condition (logical state) being modelled.
|
||||||
|
\item A test point represents the conjunction of the conditions represented by the curves that enclose it.
|
||||||
|
\item A $FMG$ represents the disjunction of all test points that are members of it.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
To obtain the set of propositions from a PLD, each $FMG$ must be processed. For each test case
|
||||||
|
in the $FMG$ a new section of the equation is disjuctively appended to it.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Let conjunctive logic equation associated with a test point
|
||||||
|
be determined from the contours that enclose it.
|
||||||
|
i.e. the contours $\mathcal{X}$ from the zone it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
Let $\mathcal{F}_{t}$ be a function mapping a test point to a proposition / logical equation $p \in P$.
|
||||||
|
The test point inhabits the zone $\mathcal{Z}$ which is a collection of contours (the contours that enclose the test point.
|
||||||
|
|
||||||
|
$$ \mathcal{F}:T \rightarrow P $$
|
||||||
|
|
||||||
|
%$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} \Lambda c $$
|
||||||
|
|
||||||
|
$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} c $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Thus a `test point' enclosed by contours labelled $a,b,c$ would be represented by the logic equation
|
||||||
|
$ a \wedge b \wedge c $.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
Let $\mathcal{G}_{fmg}$ be a function that returns a logic equation for a given $FMG$
|
||||||
|
$fmg$ in the diagram, where an FMG is a non empty set of test points
|
||||||
|
% $t$ is a `test point'
|
||||||
|
|
||||||
|
$$ \mathcal{G}:FMG \rightarrow P_{fmg} $$
|
||||||
|
|
||||||
|
The logic equation representing an FMG $p_{fmg}$ can be determined thus.
|
||||||
|
|
||||||
|
$$\mathcal{G}_{fmg}(fmg) = \bigvee_{t \in fmg} (\; \mathcal{F}_{t} (t) \;) $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
The abstract PLD diagram is a set of logic equations representing all FMGs,
|
||||||
|
along with unused zones (i.e. zones that are not inhabited by FMGs).
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
\label{FMGderivation}
|
||||||
|
A diagram can be reduced to a collection of $FMG$s.
|
||||||
|
A new diagram can be derived from this, replacing a contour for each FMG.
|
||||||
|
This diagram is at one higher level of abstraction then the diagram that
|
||||||
|
it was produced from.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Example Diagrams}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection {How to read a PLD diagram}
|
||||||
|
|
||||||
|
PLD diagrams are read by first looking at the test case points.
|
||||||
|
The test case asterisk will be enclosed by one or more contours.
|
||||||
|
These contours are collected and form the logical conjunction
|
||||||
|
equation for the test case.
|
||||||
|
These test case points thus represent the conjunctive aspects
|
||||||
|
of an equation defined in a PLD. Where these test cases are joined by lines;
|
||||||
|
these represent disjunction of the conjunctive aspects defined by the test cases.
|
||||||
|
Joining lines thus represent dis-junction in a PLD.
|
||||||
|
|
||||||
|
%Where negation and assertion of a logical condition is required in the same diagram, a separate contour can be created, which is
|
||||||
|
%..assigned the same name as its positive counter part, but preceded by a negation `$\neg$' sign.
|
||||||
|
%Obviously were a drawing to show conjunction of a contour and its complement
|
||||||
|
%this would result in a contradiction for any test case placed on it, and would be a visual `syntax error'.
|
||||||
|
|
||||||
|
%Note that negation is handled explicitly. This is to allow `don't care'
|
||||||
|
%conditions. Should a test case be outside a contour, that contour is a `don't care' condition.
|
||||||
|
%In a PLD, contours may be represented in complement, to provide
|
||||||
|
%logical negation. Here the contour name is begun with the negation symbol `$\neg$'.
|
||||||
|
%%To represent conjunction of logical conditions (Boolean `AND'), contours may be overlapped.
|
||||||
|
|
||||||
|
%Providing explicit negation, in addition to disjunction and conjunction
|
||||||
|
%allows us to represent `don't care' or `tri-state' logical conditions. Simply by
|
||||||
|
%not using the conditions we are not interested in they are `don't care'.
|
||||||
|
%
|
||||||
|
|
||||||
|
%\section{Example Logic Diagrams}
|
||||||
|
|
||||||
|
\subsection{ Logical AND example }
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldand.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%\includegraphics[scale=0.6]{ldand.eps}
|
||||||
|
\caption{Logical AND}
|
||||||
|
\label{fig:ld_and}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
In the diagram \ref{fig:ld_and} the area of intersection between the contours $a$ and $b$
|
||||||
|
represents the conjunction of those conditions. The point $P$ represents the logic equation
|
||||||
|
$$ P = (a \wedge b) $$
|
||||||
|
There are no disjunctive joining lines and so this diagram represents one equation only, $ P = (a \wedge b) $.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where both failure~modes are active.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection { Logical OR example }
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{ldor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldor.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.60]{ldor.eps}
|
||||||
|
\caption{Logical OR}
|
||||||
|
\label{fig:ld_or}
|
||||||
|
\end{figure} % OR
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_or} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (a) $$
|
||||||
|
$$ Q = (b) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R = P \vee Q $$
|
||||||
|
substituting the test cases for their Boolean logic equations gives
|
||||||
|
$$ R = ((a) \vee (b)) $$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection {Labels and useage}
|
||||||
|
|
||||||
|
In diagram \ref{fig:ld_meq} Z and W were labeled but were not necessary for the final expression
|
||||||
|
of $ R = b \vee c $. The intended use of these diagrams, is that resultant logical conditions be used in a later stage of reasoning.
|
||||||
|
Test cases joined by disjunction, all become represented in one, resultant equation.
|
||||||
|
Therefore only test cases not linked by any disjunctive joining lines need be named.
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_meq} can therefore be represented as in diagram \ref{fig:ld_meq2}, with
|
||||||
|
two unnamed test cases.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{millivolt_sensor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq2.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.4]{ldmeq2.eps}
|
||||||
|
\caption{Several Logical Expressions with unamed test cases}
|
||||||
|
\label{fig:ld_meq2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where either failure~mode is active.
|
||||||
|
Additionally it says that either failure mode $a$ or $b$ being active
|
||||||
|
will have a resultant effect $R$ on the sub-system. Note that the effect
|
||||||
|
of $a$ and $b$ both being active is not defined on this diagram.
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Repeated Contour example }
|
||||||
|
|
||||||
|
|
||||||
|
Repeated contours are allowed in PLD diagrams.
|
||||||
|
Logical contradictions or tautologies can be detected automatically by
|
||||||
|
a software tool which assists in drawing these diagrams.
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 550 250]{./repeated.eps}
|
||||||
|
% repeated.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 550 250
|
||||||
|
\label{fig:repeat}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:repeat} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (b) $$
|
||||||
|
$$ Q = (a) \wedge (c) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R1$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R1 = P \vee Q $$
|
||||||
|
$$ R1 = b \vee ( a \wedge c ) $$.
|
||||||
|
|
||||||
|
$R2$ joins two other test cases
|
||||||
|
$$R2 = a \vee c $$
|
||||||
|
|
||||||
|
The test~case residing in the intersection of countours $B$ and $A$
|
||||||
|
represents the logic equation $R3 = a \wedge b$.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
There is an additional symptom, that of the test case in $A \wedge B$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Inhibit Failure }
|
||||||
|
|
||||||
|
|
||||||
|
Very often a failure mode can only occurr
|
||||||
|
given a searate environmental condition.
|
||||||
|
In Fault Tree Analysis (FTA) this is represented by an inhibit gate.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 364 228]{./inhibit.eps}
|
||||||
|
% inhibit.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 364 228
|
||||||
|
\label{fig:inhibit}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The diagram \ref{fig:inhibit} has a test case in the contour $C$.
|
||||||
|
Contour $C$ is enclosed by contour $A$. This says
|
||||||
|
that for failure~mode $C$ to occur failure mode $A$
|
||||||
|
must have occurred.
|
||||||
|
A well known example of this is the space shuttle `O' ring failure that
|
||||||
|
caused the 1986 challenger disaster \cite{wdycwopt}.
|
||||||
|
For the failure mode to occurr the ambiant temperature had to
|
||||||
|
be below a critical value.
|
||||||
|
If we take the failure mode of the `O' ring to be $C$
|
||||||
|
and the temperature below critical to be $A$, we can see that
|
||||||
|
the low temperature failure~mode $C$ can only occurr if $A$ is true.
|
||||||
|
The `O' ring could fail in a different way independant of the critical temperature and this is
|
||||||
|
represented, for the sake of this example, by contour $D$.
|
||||||
|
|
||||||
|
In terms of propositional logic, the inhibit gate of FTA, and the countour enclosure
|
||||||
|
of PLD represent {\em implication}.
|
||||||
|
\\
|
||||||
|
\tiny
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
{\em $c$ } & {\em $a$ } & {\em $R1$ } \\ \hline
|
||||||
|
F & F & T \\ \hline
|
||||||
|
F & T & T \\ \hline
|
||||||
|
T & F & F \\ \hline
|
||||||
|
T & T & T \\ \hline \hline
|
||||||
|
\end{tabular}
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\normalsize
|
||||||
|
|
||||||
|
$$ R1 = c \implies a $$
|
||||||
|
$$ R2 = a $$
|
||||||
|
$$ R3 = d $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
Note that although R2 is a symptom of the sub-system, on its own
|
||||||
|
it will not lead to a dangerous failure~mode of the subsystem.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection { Representing Logical Negation }
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{ldor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldneg.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.60]{ldneg.eps}
|
||||||
|
% \caption{Logical Negation}
|
||||||
|
% \label{fig:ld_neg}
|
||||||
|
% \end{figure} % OR
|
||||||
|
%
|
||||||
|
% Diagram \ref{fig:ld_neg} represents the logical equation $$ P = a \wedge b \wedge \neg c $$.
|
||||||
|
%
|
||||||
|
% \paragraph{How this would be interpreted in failure analysis}
|
||||||
|
% In failure analysis this test case represents the scenario where failure modes $a$ and $b$
|
||||||
|
% are active but $c$ is not.
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical XOR example }
|
||||||
|
%
|
||||||
|
% An exclusive or condition is represented by diagram \ref{fig:ld_xor}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% firstly looking at the test case points
|
||||||
|
% $$ P = (\neg a \wedge b) $$
|
||||||
|
% $$ Q = (\neg b \wedge a) $$
|
||||||
|
%
|
||||||
|
% now joining them with the disjuctive line
|
||||||
|
% $$ R = P \vee Q $$
|
||||||
|
%
|
||||||
|
% Giving R as a Boolean equation
|
||||||
|
% $$ R = (\neg a \wedge b) \vee (\neg b \wedge a) $$
|
||||||
|
% or taking the symbol $\oplus$ to mean exclusive-or
|
||||||
|
% $$R = a \oplus b $$
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% % \begin{figure}[h] %% SOMETHING IS WRONG says latex. very helpful tell me what it fucking is then
|
||||||
|
% % \centering
|
||||||
|
% % \caption{Example `XOR' Diagram}
|
||||||
|
% % \includegraphics[scale=0.80]{ldxor.eps}
|
||||||
|
% % \label{fig:ld_xor}
|
||||||
|
% % \end{figure} % XOR
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% % bb= llx lly urx ury;
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 800pt 800pt]{logic_diagram/ldxor.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
%
|
||||||
|
% %\includegraphics[scale=0.4]{ldxor.eps}
|
||||||
|
% \caption{Logical XOR}
|
||||||
|
% \label{fig:ld_xor}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical IMPLICATION example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% An implication $a \rightarrow b$ is represented by diagram \ref{fig:ld_imp}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% Looking at the conjuctive environment of the test cases
|
||||||
|
% $$P = (\neg a)$$
|
||||||
|
% $$Q = (b)$$
|
||||||
|
% From the joining `disjunctive' line R in the diagram.
|
||||||
|
% $$R = P \vee Q$$
|
||||||
|
% Leading to
|
||||||
|
% $$R = (\neg a) \vee (b)$$
|
||||||
|
% which is the standard logic equation for implication.
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{logic_diagram/ldimp.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldimp.eps}
|
||||||
|
% \caption{Logical Implication}
|
||||||
|
% \label{fig:ld_imp}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \tiny
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
%
|
||||||
|
% {\em $a$ } & {\em $b$ } & {implication \em $(\neg a) \vee (b) $ } \\ \hline
|
||||||
|
% F & F & T \\ \hline
|
||||||
|
% F & T & T \\ \hline
|
||||||
|
% T & F & F \\ \hline
|
||||||
|
% T & T & T \\ \hline \hline
|
||||||
|
% \end{tabular}
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \normalsize
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Diagram representing several Logic Equations Example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% bb=0 0 450 404
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{logic_diagram/ldmeq.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldmeq.eps}
|
||||||
|
% \caption{Several Logical Expressions}
|
||||||
|
% \label{fig:ld_meq}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% %The effect of using explicit negation, means that a test case being outside a given contour does not imply negation, it implies a `don't care'
|
||||||
|
% %condition.
|
||||||
|
%
|
||||||
|
% Three simple equations are represented in the diagram \ref{fig:ld_dc}.
|
||||||
|
%
|
||||||
|
% %The Set of contours $\mho$ represent the `don't care' conditions.
|
||||||
|
%
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% %$$ Q = a \; | \; \mho\{b,c\} $$
|
||||||
|
%
|
||||||
|
% %$$ P = b \wedge c \; | \; \mho\{a\} $$
|
||||||
|
%
|
||||||
|
% $$ Q = a $$
|
||||||
|
% $$ P = b \wedge c $$
|
||||||
|
% $$ R = b \vee c $$
|
||||||
|
%
|
||||||
|
% % XXXXXX gives annoying impossible to understand syntax messages
|
||||||
|
% %\small
|
||||||
|
% %\bibliography{vmgbibliography,mybib}
|
||||||
|
% %\bibliography{vmgbibliography}
|
||||||
|
% %\normalsize
|
||||||
|
%
|
||||||
|
\section{Intended use in FMMD}
|
||||||
|
|
||||||
|
The intention for these diagrams is that they are used to collect
|
||||||
|
component faults and combinations thereof, into faults that,
|
||||||
|
at the module level have the same symptoms.
|
||||||
|
|
||||||
|
\subsection{Example Sub-system}
|
||||||
|
|
||||||
|
For instance were a `power supply' being analysed there could be several
|
||||||
|
individual component faults or combinations that lead to
|
||||||
|
a situation where there is no power. This can be described as a state
|
||||||
|
of the powersupply being modeelled as NO\_POWER.
|
||||||
|
These can all be collected by DISJUCNTION, i.e. that this this or this
|
||||||
|
fault occuring will cause the NO\_POWER fault. Visually this disjuction is
|
||||||
|
indicated by the joining lines.
|
||||||
|
As far as the user of the `power supply' is concerned, the power supply has failed
|
||||||
|
with the failure mode $NO\_POWER$.
|
||||||
|
The `power supply' module, after this process will have a defined set of
|
||||||
|
fault modes and may be considered as a component at a higher
|
||||||
|
level of abstraction. This module can then be combined
|
||||||
|
with others at the same abstraction level.
|
||||||
|
Note that because this is a fault collection process
|
||||||
|
the number of component faults for a module
|
||||||
|
must be less than or equal to the sum of the number of component faults.
|
||||||
|
|
||||||
|
%Typeset in \ \ {\huge \LaTeX} \ \ on \ \ \today
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.15 2009/02/09 07:33:27 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
Compiled last \today
|
||||||
|
%\end{document}
|
||||||
|
|
||||||
|
%\theend
|
||||||
|
|
||||||
|
|
||||||
|
|
743
logic_diagram/logic_diagram_paper.tex
Normal file
743
logic_diagram/logic_diagram_paper.tex
Normal file
@ -0,0 +1,743 @@
|
|||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.16 2010/01/01 14:09:02 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\begin{abstract}
|
||||||
|
%This chapter describes using diagrams to represent propositional logic.
|
||||||
|
Propositial Logic Diagrams have been designed to provide an intuitive method for visualising and manipulating
|
||||||
|
logic equations, to express fault modes in Mechanical and Electronic Systems.
|
||||||
|
%To aid hierarchical stages of fault analysis, it has been specifically developed for the purpose of
|
||||||
|
%joining conjunctive conditions with disjuctive conditions
|
||||||
|
%to group the effects of failure modes.
|
||||||
|
Diagrams of this type can also be used to model the logical conditions
|
||||||
|
that control the flow of a computer program. This type of diagram can therefore
|
||||||
|
integrate logical models from mechanical, electronic and software domains.
|
||||||
|
Nearly all modern safety critical systems involve these three disiplines.
|
||||||
|
%
|
||||||
|
It is intended to be used for analysis of automated safety critical systen
|
||||||
|
Many types of safety critical systems now legally
|
||||||
|
require fault mode effects analysis\cite{FMEA},
|
||||||
|
but few formal systems exist and wide-spread take-up is
|
||||||
|
not yet the norm.\cite{takeup}.
|
||||||
|
%
|
||||||
|
Because of its visual nature, it is easy to manipulate and model
|
||||||
|
complicated conditions that can lead to dangerous failures in
|
||||||
|
automated systems.
|
||||||
|
|
||||||
|
% No need to talk about abstraction yet, just define PLD PROPERLY
|
||||||
|
|
||||||
|
The Diagrams described here form the mathematical basis for a new visual and formal system
|
||||||
|
for the analysis of safety critical software and hardware systems.
|
||||||
|
\end{abstract}
|
||||||
|
|
||||||
|
%\title{Propositional Logic Diagrams}
|
||||||
|
%\begin{keyword}
|
||||||
|
% fault~tree fault~mode EN298 EN61508 EN12067 EN230 UL1998 safety~critical logic euler venn propositional
|
||||||
|
%\end{keyword}
|
||||||
|
%\end{frontmatter}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Introduction}
|
||||||
|
|
||||||
|
Propositional Logic Diagrams (PLDs) have been devised
|
||||||
|
to collect and simplfy fault~modes in safety critical systems undergoing
|
||||||
|
static analysis\cite{FMEA}\cite{SIL}.
|
||||||
|
|
||||||
|
This type of analysis treats failure modes within a system as logical
|
||||||
|
states. PLD provides a visual method for modelling failure~mode analysis
|
||||||
|
within these systems, and specifically
|
||||||
|
identifying common failure symptoms in a user friendly way.
|
||||||
|
Contrasting this to looking at many propositional logic equations directly
|
||||||
|
in a text editor or spreadsheet, a visual method is percieved as being more intuitive.
|
||||||
|
|
||||||
|
|
||||||
|
%Traditional set theory is often represented by Euler\cite{euler} or Spider\cite{spider}
|
||||||
|
%diagrams. These use contours to describe inclusion in a set.may be merged and create a
|
||||||
|
%Propositional Logic Diagrams (PLDs) use named contours represent a logical conditions.
|
||||||
|
%Where an Euler diagram would use
|
||||||
|
%overlapping contours to represent inclusion in sets,
|
||||||
|
%PLDs use these to represent conjunction of the conditions.
|
||||||
|
|
||||||
|
%Named reference points may be placed onto the diagram,
|
||||||
|
%these represent test cases for conjunction.
|
||||||
|
%These can be joined by lines to apply disjunction.
|
||||||
|
%In a spider diagram the lines would represent that the object represented coul;d belong to either set.
|
||||||
|
%in a PLD it means that the logical conditions represent disjuction; a boolean OR condition.
|
||||||
|
%these points may be joined.
|
||||||
|
|
||||||
|
PLDs use three visual features that
|
||||||
|
can be combined to represent logic equations. Closed contours (using dashed lines), test cases, and lines that
|
||||||
|
link test cases.
|
||||||
|
All features may be labelled, and the labels must be unique within a diagram, however contours may be repeated in the diagram.
|
||||||
|
Aditionally a label begining with the `$\neg$' character, applied only to a contour, represents negation.
|
||||||
|
|
||||||
|
|
||||||
|
%Regions defined by contours are used to represent given conjunctive logical conditions.
|
||||||
|
|
||||||
|
Test cases are marked by asterisks. These are used as a visual `anchor'
|
||||||
|
to mark a logical condition, the logical condition being defined by the contours
|
||||||
|
that enclose the region on which the test~case has been placed.
|
||||||
|
The contours that enclose represent conjuction.
|
||||||
|
Test~cases may be connected by joining lines. These lines represent disjunction (Boolean `OR') of
|
||||||
|
test~cases.
|
||||||
|
|
||||||
|
With these three visual syntax elements, we have the basic building blocks for all logic equations possible.
|
||||||
|
\begin{description}
|
||||||
|
\item Test cases - Points on the plane indicating a logical condition.
|
||||||
|
\item Conjunction - Overlapping contours
|
||||||
|
\item Disjunction - Joining of named test cases.
|
||||||
|
%\item Negation - Countours negatively named
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
% Because of this
|
||||||
|
% we have the complete suite of logical primitives here, conjunction, disjuction and negation.
|
||||||
|
% Form these complex logic equations can be respresented in 2D.
|
||||||
|
|
||||||
|
% Another advantage of this is being able to describe `don't care' conditions.
|
||||||
|
% Very often in digital hardware design, or in a computer program
|
||||||
|
% many logical conditions are `don't care'.
|
||||||
|
% These are difficult to specify in set theory.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\section{Formal Description of PLD}
|
||||||
|
|
||||||
|
Definitions of conrete and abstract PLD's follow.
|
||||||
|
Well-formedness conditions for PLD's are separated from this definition, because of
|
||||||
|
practical differences between the way they are used to represent software as opposed to
|
||||||
|
representing electronics and mechanical systems.
|
||||||
|
|
||||||
|
\subsection{Concrete PLD Definition}
|
||||||
|
|
||||||
|
A concrete {\em Propositional logic diagram} is a set of labeled {\em contours}
|
||||||
|
(closed curves) in the plane. The minimal regions formed by the closed curves
|
||||||
|
can by occupied by `test points'.
|
||||||
|
The `test points' may be joined by joining lines.
|
||||||
|
A group of `test points' connected by joining lines
|
||||||
|
is defined as a `test point disjunction' or Spider.
|
||||||
|
Spiders may be labeled.
|
||||||
|
|
||||||
|
To differentiate these from common Euler diagram notation (normally used to represent set theory)
|
||||||
|
the curves are drawn using dotted and dashed lines.
|
||||||
|
|
||||||
|
\subsection{ PLD Definition}
|
||||||
|
In English:
|
||||||
|
The elements that can be found in a PLD diagram are a number of contours,
|
||||||
|
a number of test points and joining lines that connect
|
||||||
|
test points.
|
||||||
|
{
|
||||||
|
\definition{A concrete PLD $d$ is a set comprising of a set of
|
||||||
|
closed curves $C=C(d)$, a set of test points $T=T(d)$ and
|
||||||
|
a set of test point joining lines $J=J(d)$.
|
||||||
|
$$d=\{C,T,J\}$$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Each element of the diagram has a unique label within the diagram.
|
||||||
|
%Thus the set of labels found in a diagram is
|
||||||
|
%a subset of the powerset of characters that can be present in a label.
|
||||||
|
|
||||||
|
%{
|
||||||
|
%\definition{ $ \mathcal{F}_{d}:C(d) \rightarrow \mathcal{P}\Lambda$ is a
|
||||||
|
%function associating a label drawn from an infinite
|
||||||
|
%set of labels $\Lambda$.
|
||||||
|
%}
|
||||||
|
%}
|
||||||
|
|
||||||
|
%In English:
|
||||||
|
%A minimal region of a PLD diagram d is a
|
||||||
|
%region bounded by curves.
|
||||||
|
%connected component of $\mathbb{R}^{2} - \; \bigcup_{c \in C(d)} c$
|
||||||
|
|
||||||
|
%That is to say the complement of all other regions is subtracted from the plane.
|
||||||
|
%- Or in another way- that smallest area defined by the curves that enclose it
|
||||||
|
|
||||||
|
|
||||||
|
%% \hat is used to indicate CONCRETE
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
A minimal region of concrete PLD diagram d is a connected component of
|
||||||
|
|
||||||
|
$$ \mathbb{R}^{2} - \; \bigcup_{\hat{c} \in \hat{C}(\hat{d})}\hat{c}$$
|
||||||
|
|
||||||
|
% I.e. The contours break the connectivity
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition
|
||||||
|
{
|
||||||
|
Let d be a PLD and $ \mathcal{X} \subseteq \hat{C}(\hat{d})$ a set of countours.
|
||||||
|
If the set
|
||||||
|
$$ \hat{z} = \bigcap_{c \in \mathcal{X}}
|
||||||
|
{interior}
|
||||||
|
(\hat{c})
|
||||||
|
\; \cup \;
|
||||||
|
\bigcap_{\hat{c} \in \hat{C}-X}
|
||||||
|
exterior (\hat{c})
|
||||||
|
$$
|
||||||
|
|
||||||
|
is non empty, then $\hat{z}$ is a concrete zone of $\hat{d}$. A zone is a union of minimal regions. The set of all concrete zones of $\hat{d}$
|
||||||
|
is denoted $ \hat{\mathcal{Z}} $.
|
||||||
|
|
||||||
|
% NOT interested in labelling the zones.
|
||||||
|
% but am interested in
|
||||||
|
%The set of labels associated with the contours in $\mathcal{X}$ is the zone label set $\hat{\mathcal{Z}}(\hat{z})$
|
||||||
|
%of $\hat{z}$.
|
||||||
|
%$$ \hat{\mathcal{L}}(\hat{z}) = \bigcup_{\hat{c} \in \mathcal{X}} \mathcal{F}_{d}(\hat{c}) $$
|
||||||
|
%
|
||||||
|
% So Z is the set of all available for use ZONES; great !
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Each minimal region in the plane may be inhabited by one or more `test points'.
|
||||||
|
% One or more because in software the same logical conditions mean existing in the same
|
||||||
|
% region. For electroincs or mechanical, one test point per region is
|
||||||
|
% mandatory. How to describe ?????
|
||||||
|
Each test point can be associated with the set of contours that enclose it.
|
||||||
|
%defined the minimal region it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{ $ \mathcal{Z}_{d}:T(d)\rightarrow \mathcal{C}$ is a function
|
||||||
|
associating a testpoint with a set of contours in the plane. This corresponds to the interior of the contours defining the zone.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Pairs of test points may be joined by joining lines.
|
||||||
|
The operator $\stackrel{join}{\leftrightarrow}$ is used to
|
||||||
|
show that two points are joined by a line in the concrete diagram.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
$ \mathcal{F}_{j}$ is a function
|
||||||
|
associating a joining line with a pair of test points. The Join t1,t2 is defined as
|
||||||
|
|
||||||
|
%$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 %\wedge t1 \stackrel{join}{\leftrightarrow} t2\} $$
|
||||||
|
$$ \mathcal{F}_{d}:J(d)\rightarrow \{t1,t2\ | t1 \in T(d) \wedge t2 \in T(d) \wedge t1 \neq t2 \} $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Test points on the concrete diagram pair-wise connected by a `joining line'
|
||||||
|
|
||||||
|
|
||||||
|
A collection of test points connected by joining lines, is an Fuctionally Merged Group, $FMG$
|
||||||
|
or `test point disjunction'.
|
||||||
|
An $FMG$ has members which are test points.
|
||||||
|
|
||||||
|
{may be merged
|
||||||
|
and create a
|
||||||
|
\definition{
|
||||||
|
%A spider is a set of test points where,
|
||||||
|
%a test point is a member of a spider where it can trace a path connected by joining lines
|
||||||
|
%to another member of the spider. A singleton test point can be considered a spider.
|
||||||
|
Let d be a PLD : An $FMG$ is a maximal set of test points in d where
|
||||||
|
the test points belong to a sequence connected by joining lines such that:
|
||||||
|
|
||||||
|
$$ t_i \stackrel{join}{\leftrightarrow} t_n, for \; i = 1, ..., n $$
|
||||||
|
|
||||||
|
|
||||||
|
OR consider an $FMG$ as a tree whose nodes are test points.
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
A singleton test point can be considered a sequence of one test point and is therefore also an $FMG$.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection{Abstract Description of PLD}
|
||||||
|
%
|
||||||
|
% An Abstract PLD {\em Propositional logic diagram} consists of contours $C$ defining zones $Z$, test points $T$ (which
|
||||||
|
% are defined by the zone they inhabit) and pair wise connections $W$, which connect test points.
|
||||||
|
% Collections of test points, linked by shared conecting lines, form a set of test point groups $G$.
|
||||||
|
%
|
||||||
|
% A Zone defined by the contours that enclose it in the concrete diagram.
|
||||||
|
%
|
||||||
|
% $$ Z \subseteq C $$
|
||||||
|
%
|
||||||
|
% A test point $t \in T$ in habits a zone on the diagram.
|
||||||
|
%
|
||||||
|
% $$ \eta(t) = Z $$
|
||||||
|
%
|
||||||
|
% A joining line $$ w \in W $$ joins test points.
|
||||||
|
%
|
||||||
|
% $$ w = t1 \stackrel{join}{\rightarrow} t2 | t1 \neq t2 \wedge t1 \in T \wedge t2 \in T $$
|
||||||
|
%
|
||||||
|
% A test point group $g \in G$ is defined by test points linked by shared connecting lines.
|
||||||
|
|
||||||
|
|
||||||
|
\subsection{Semantics of PLD}
|
||||||
|
|
||||||
|
\begin{itemize}
|
||||||
|
\item A closed curve in a PLD represents a condition (logical state) being modelled.
|
||||||
|
\item A test point represents the conjunction of the conditions represented by the curves that enclose it.
|
||||||
|
\item A $FMG$ represents the disjunction of all test points that are members of it.
|
||||||
|
\end{itemize}
|
||||||
|
|
||||||
|
To obtain the set of propositions from a PLD, each $FMG$ must be processed. For each test case
|
||||||
|
in the $FMG$ a new section of the equation is disjuctively appended to it.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Let conjunctive logic equation associated with a test point
|
||||||
|
be determined from the contours that enclose it.
|
||||||
|
i.e. the contours $\mathcal{X}$ from the zone it inhabits.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
|
||||||
|
Let $\mathcal{F}_{t}$ be a function mapping a test point to a proposition / logical equation $p \in P$.
|
||||||
|
The test point inhabits the zone $\mathcal{Z}$ which is a collection of contours (the contours that enclose the test point.
|
||||||
|
|
||||||
|
$$ \mathcal{F}:T \rightarrow P $$
|
||||||
|
|
||||||
|
%$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} \Lambda c $$
|
||||||
|
|
||||||
|
$$ \mathcal{F}(t): p = \bigwedge_{c \in \mathcal{Z}} c $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
In English:
|
||||||
|
Thus a `test point' enclosed by contours labelled $a,b,c$ would be represented by the logic equation
|
||||||
|
$ a \wedge b \wedge c $.
|
||||||
|
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
Let $\mathcal{G}_{fmg}$ be a function that returns a logic equation for a given $FMG$
|
||||||
|
$fmg$ in the diagram, where an FMG is a non empty set of test points
|
||||||
|
% $t$ is a `test point'
|
||||||
|
|
||||||
|
$$ \mathcal{G}:FMG \rightarrow P_{fmg} $$
|
||||||
|
|
||||||
|
The logic equation representing an FMG $p_{fmg}$ can be determined thus.
|
||||||
|
|
||||||
|
$$\mathcal{G}_{fmg}(fmg) = \bigvee_{t \in fmg} (\; \mathcal{F}_{t} (t) \;) $$
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
The abstract PLD diagram is a set of logic equations representing all FMGs,
|
||||||
|
along with unused zones (i.e. zones that are not inhabited by FMGs).
|
||||||
|
{
|
||||||
|
\definition{
|
||||||
|
\label{FMGderivation}
|
||||||
|
A diagram can be reduced to a collection of $FMG$s.
|
||||||
|
A new diagram can be derived from this, replacing a contour for each FMG.
|
||||||
|
This diagram is at one higher level of abstraction then the diagram that
|
||||||
|
it was produced from.
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\section{Example Diagrams}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection {How to read a PLD diagram}
|
||||||
|
|
||||||
|
PLD diagrams are read by first looking at the test case points.
|
||||||
|
The test case asterisk will be enclosed by one or more contours.
|
||||||
|
These contours are collected and form the logical conjunction
|
||||||
|
equation for the test case.
|
||||||
|
These test case points thus represent the conjunctive aspects
|
||||||
|
of an equation defined in a PLD. Where these test cases are joined by lines;
|
||||||
|
these represent disjunction of the conjunctive aspects defined by the test cases.
|
||||||
|
Joining lines thus represent dis-junction in a PLD.
|
||||||
|
|
||||||
|
%Where negation and assertion of a logical condition is required in the same diagram, a separate contour can be created, which is
|
||||||
|
%..assigned the same name as its positive counter part, but preceded by a negation `$\neg$' sign.
|
||||||
|
%Obviously were a drawing to show conjunction of a contour and its complement
|
||||||
|
%this would result in a contradiction for any test case placed on it, and would be a visual `syntax error'.
|
||||||
|
|
||||||
|
%Note that negation is handled explicitly. This is to allow `don't care'
|
||||||
|
%conditions. Should a test case be outside a contour, that contour is a `don't care' condition.
|
||||||
|
%In a PLD, contours may be represented in complement, to provide
|
||||||
|
%logical negation. Here the contour name is begun with the negation symbol `$\neg$'.
|
||||||
|
%%To represent conjunction of logical conditions (Boolean `AND'), contours may be overlapped.
|
||||||
|
|
||||||
|
%Providing explicit negation, in addition to disjunction and conjunction
|
||||||
|
%allows us to represent `don't care' or `tri-state' logical conditions. Simply by
|
||||||
|
%not using the conditions we are not interested in they are `don't care'.
|
||||||
|
%
|
||||||
|
|
||||||
|
%\section{Example Logic Diagrams}
|
||||||
|
|
||||||
|
\subsection{ Logical AND example }
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{ldand.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
%\includegraphics[scale=0.6]{ldand.eps}
|
||||||
|
\caption{Logical AND}
|
||||||
|
\label{fig:ld_and}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
In the diagram \ref{fig:ld_and} the area of intersection between the contours $a$ and $b$
|
||||||
|
represents the conjunction of those conditions. The point $P$ represents the logic equation
|
||||||
|
$$ P = (a \wedge b) $$
|
||||||
|
There are no disjunctive joining lines and so this diagram represents one equation only, $ P = (a \wedge b) $.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where both failure~modes are active.
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection { Logical OR example }
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{ldor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0 0 450 404]{ldor.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.60]{ldor.eps}
|
||||||
|
\caption{Logical OR}
|
||||||
|
\label{fig:ld_or}
|
||||||
|
\end{figure} % OR
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_or} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (a) $$
|
||||||
|
$$ Q = (b) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R = P \vee Q $$
|
||||||
|
substituting the test cases for their Boolean logic equations gives
|
||||||
|
$$ R = ((a) \vee (b)) $$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
\subsection {Labels and useage}
|
||||||
|
|
||||||
|
In diagram \ref{fig:ld_meq} Z and W were labeled but were not necessary for the final expression
|
||||||
|
of $ R = b \vee c $. The intended use of these diagrams, is that resultant logical conditions be used in a later stage of reasoning.
|
||||||
|
Test cases joined by disjunction, all become represented in one, resultant equation.
|
||||||
|
Therefore only test cases not linked by any disjunctive joining lines need be named.
|
||||||
|
|
||||||
|
The diagram \ref{fig:ld_meq} can therefore be represented as in diagram \ref{fig:ld_meq2}, with
|
||||||
|
two unnamed test cases.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
%\centering
|
||||||
|
%\input{millivolt_sensor.tex}
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{ldmeq2.eps}
|
||||||
|
% resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
\end{center}
|
||||||
|
%\includegraphics[scale=0.4]{ldmeq2.eps}
|
||||||
|
\caption{Several Logical Expressions with unamed test cases}
|
||||||
|
\label{fig:ld_meq2}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, this could be considered to be a sub-system with two failure states $a$ and $b$.
|
||||||
|
The proposition $P$ considers the scenario where either failure~mode is active.
|
||||||
|
Additionally it says that either failure mode $a$ or $b$ being active
|
||||||
|
will have a resultant effect $R$ on the sub-system. Note that the effect
|
||||||
|
of $a$ and $b$ both being active is not defined on this diagram.
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Repeated Contour example }
|
||||||
|
|
||||||
|
|
||||||
|
Repeated contours are allowed in PLD diagrams.
|
||||||
|
Logical contradictions or tautologies can be detected automatically by
|
||||||
|
a software tool which assists in drawing these diagrams.
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 486 206]{./repeated.eps}
|
||||||
|
% repeated.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 486 206
|
||||||
|
\label{fig:repeated}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
The diagram \ref{fig:repeat} is converted to Boolean logic by first looking at the test cases, and
|
||||||
|
the contours they are placed on.
|
||||||
|
$$ P = (b) $$
|
||||||
|
$$ Q = (a) \wedge (c) $$
|
||||||
|
|
||||||
|
The two test cases are joined by a the line named $R1$.
|
||||||
|
we thus apply disjunction to the test cases.
|
||||||
|
$$ R1 = P \vee Q $$
|
||||||
|
$$ R1 = b \vee ( a \wedge c ) $$.
|
||||||
|
|
||||||
|
$R2$ joins two other test cases
|
||||||
|
$$R2 = a \vee c $$
|
||||||
|
|
||||||
|
The test~case residing in the intersection of countours $B$ and $A$
|
||||||
|
represents the logic equation $R3 = a \wedge b$.
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
There is an additional symptom, that of the test case in $A \wedge B$.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\clearpage
|
||||||
|
|
||||||
|
|
||||||
|
\subsection { Inhibit Failure }
|
||||||
|
|
||||||
|
|
||||||
|
Very often a failure mode can only occurr
|
||||||
|
given a searate environmental condition.
|
||||||
|
In Fault Tree Analysis (FTA) this is represented by an inhibit gate.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{figure}[h]
|
||||||
|
\centering
|
||||||
|
\includegraphics[bb=0 0 364 228]{./inhibit.eps}
|
||||||
|
% inhibit.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 364 228
|
||||||
|
\label{fig:inhibit}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
The diagram \ref{fig:inhibit} has a test case in the contour $C$.
|
||||||
|
Contour $C$ is enclosed by contour $A$. This says
|
||||||
|
that for failure~mode $C$ to occur failure mode $A$
|
||||||
|
must have occurred.
|
||||||
|
A well known example of this is the space shuttle `O' ring failure that
|
||||||
|
caused the 1986 challenger disaster \cite{wdycwopt}.
|
||||||
|
For the failure mode to occurr the ambiant temperature had to
|
||||||
|
be below a critical value.
|
||||||
|
If we take the failure mode of the `O' ring to be $C$
|
||||||
|
and the temperature below critical to be $A$, we can see that
|
||||||
|
the low temperature failure~mode $C$ can only occurr if $A$ is true.
|
||||||
|
The `O' ring could fail in a different way independant of the critical temperature and this is
|
||||||
|
represented, for the sake of this example, by contour $D$.
|
||||||
|
|
||||||
|
In terms of propositional logic, the inhibit gate of FTA, and the countour enclosure
|
||||||
|
of PLD represent {\em implication}.
|
||||||
|
\\
|
||||||
|
\tiny
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
{\em $c$ } & {\em $a$ } & {\em $R1$ } \\ \hline
|
||||||
|
F & F & T \\ \hline
|
||||||
|
F & T & T \\ \hline
|
||||||
|
T & F & F \\ \hline
|
||||||
|
T & T & T \\ \hline \hline
|
||||||
|
\end{tabular}
|
||||||
|
\vspace{0.3cm}
|
||||||
|
\normalsize
|
||||||
|
|
||||||
|
$$ R1 = c \implies a $$
|
||||||
|
$$ R2 = a $$
|
||||||
|
$$ R3 = d $$
|
||||||
|
|
||||||
|
|
||||||
|
\paragraph{How this would be interpreted in failure analysis}
|
||||||
|
In failure analysis, $R2$ is the symptom of either failure~mode $A$ or $C$
|
||||||
|
occurring. $R1$ is the symptom of $B$ or $A \wedge C$ occurring.
|
||||||
|
Note that although R2 is a symptom of the sub-system, on its own
|
||||||
|
it will not lead to a dangerous failure~mode of the subsystem.
|
||||||
|
|
||||||
|
|
||||||
|
% \subsection { Representing Logical Negation }
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{ldor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{ldneg.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.60]{ldneg.eps}
|
||||||
|
% \caption{Logical Negation}
|
||||||
|
% \label{fig:ld_neg}
|
||||||
|
% \end{figure} % OR
|
||||||
|
%
|
||||||
|
% Diagram \ref{fig:ld_neg} represents the logical equation $$ P = a \wedge b \wedge \neg c $$.
|
||||||
|
%
|
||||||
|
% \paragraph{How this would be interpreted in failure analysis}
|
||||||
|
% In failure analysis this test case represents the scenario where failure modes $a$ and $b$
|
||||||
|
% are active but $c$ is not.
|
||||||
|
%
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical XOR example }
|
||||||
|
%
|
||||||
|
% An exclusive or condition is represented by diagram \ref{fig:ld_xor}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% firstly looking at the test case points
|
||||||
|
% $$ P = (\neg a \wedge b) $$
|
||||||
|
% $$ Q = (\neg b \wedge a) $$
|
||||||
|
%
|
||||||
|
% now joining them with the disjuctive line
|
||||||
|
% $$ R = P \vee Q $$
|
||||||
|
%
|
||||||
|
% Giving R as a Boolean equation
|
||||||
|
% $$ R = (\neg a \wedge b) \vee (\neg b \wedge a) $$
|
||||||
|
% or taking the symbol $\oplus$ to mean exclusive-or
|
||||||
|
% $$R = a \oplus b $$
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% % \begin{figure}[h] %% SOMETHING IS WRONG says latex. very helpful tell me what it fucking is then
|
||||||
|
% % \centering
|
||||||
|
% % \caption{Example `XOR' Diagram}
|
||||||
|
% % \includegraphics[scale=0.80]{ldxor.eps}
|
||||||
|
% % \label{fig:ld_xor}
|
||||||
|
% % \end{figure} % XOR
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% % bb= llx lly urx ury;
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 800pt 800pt]{ldxor.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
%
|
||||||
|
% %\includegraphics[scale=0.4]{ldxor.eps}
|
||||||
|
% \caption{Logical XOR}
|
||||||
|
% \label{fig:ld_xor}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Logical IMPLICATION example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% An implication $a \rightarrow b$ is represented by diagram \ref{fig:ld_imp}.
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% Looking at the conjuctive environment of the test cases
|
||||||
|
% $$P = (\neg a)$$
|
||||||
|
% $$Q = (b)$$
|
||||||
|
% From the joining `disjunctive' line R in the diagram.
|
||||||
|
% $$R = P \vee Q$$
|
||||||
|
% Leading to
|
||||||
|
% $$R = (\neg a) \vee (b)$$
|
||||||
|
% which is the standard logic equation for implication.
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0 0 450 404]{ldimp.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldimp.eps}
|
||||||
|
% \caption{Logical Implication}
|
||||||
|
% \label{fig:ld_imp}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% \tiny
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \begin{tabular}{||c|c|c|c||} \hline \hline
|
||||||
|
%
|
||||||
|
% {\em $a$ } & {\em $b$ } & {implication \em $(\neg a) \vee (b) $ } \\ \hline
|
||||||
|
% F & F & T \\ \hline
|
||||||
|
% F & T & T \\ \hline
|
||||||
|
% T & F & F \\ \hline
|
||||||
|
% T & T & T \\ \hline \hline
|
||||||
|
% \end{tabular}
|
||||||
|
% %\vspace{0.3cm}
|
||||||
|
% \normalsize
|
||||||
|
%
|
||||||
|
% \clearpage
|
||||||
|
% \subsection { Diagram representing several Logic Equations Example }
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% bb=0 0 450 404
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% \begin{figure}[h+]
|
||||||
|
% %\centering
|
||||||
|
% %\input{millivolt_sensor.tex}
|
||||||
|
% \begin{center}
|
||||||
|
% \includegraphics[width=200pt,bb=0pt 0pt 600pt 600pt]{ldmeq.eps}
|
||||||
|
% % resistor_pld.eps: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=0 0 450 404
|
||||||
|
% \end{center}
|
||||||
|
% %\includegraphics[scale=0.4]{ldmeq.eps}
|
||||||
|
% \caption{Several Logical Expressions}
|
||||||
|
% \label{fig:ld_meq}
|
||||||
|
% \end{figure}
|
||||||
|
%
|
||||||
|
% %The effect of using explicit negation, means that a test case being outside a given contour does not imply negation, it implies a `don't care'
|
||||||
|
% %condition.
|
||||||
|
%
|
||||||
|
% Three simple equations are represented in the diagram \ref{fig:ld_dc}.
|
||||||
|
%
|
||||||
|
% %The Set of contours $\mho$ represent the `don't care' conditions.
|
||||||
|
%
|
||||||
|
% The Equations represented are as follows.
|
||||||
|
%
|
||||||
|
% %$$ Q = a \; | \; \mho\{b,c\} $$
|
||||||
|
%
|
||||||
|
% %$$ P = b \wedge c \; | \; \mho\{a\} $$
|
||||||
|
%
|
||||||
|
% $$ Q = a $$
|
||||||
|
% $$ P = b \wedge c $$
|
||||||
|
% $$ R = b \vee c $$
|
||||||
|
%
|
||||||
|
% % XXXXXX gives annoying impossible to understand syntax messages
|
||||||
|
% %\small
|
||||||
|
% %\bibliography{vmgbibliography,mybib}
|
||||||
|
% %\bibliography{vmgbibliography}
|
||||||
|
% %\normalsize
|
||||||
|
%
|
||||||
|
\section{Intended use in FMMD}
|
||||||
|
|
||||||
|
The intention for these diagrams is that they are used to collect
|
||||||
|
component faults and combinations thereof, into faults that,
|
||||||
|
at the module level have the same symptoms.
|
||||||
|
|
||||||
|
\subsection{Example Sub-system}
|
||||||
|
|
||||||
|
For instance were a `power supply' being analysed there could be several
|
||||||
|
individual component faults or combinations that lead to
|
||||||
|
a situation where there is no power. This can be described as a state
|
||||||
|
of the powersupply being modeelled as NO\_POWER.
|
||||||
|
These can all be collected by DISJUCNTION, i.e. that this this or this
|
||||||
|
fault occuring will cause the NO\_POWER fault. Visually this disjuction is
|
||||||
|
indicated by the joining lines.
|
||||||
|
As far as the user of the `power supply' is concerned, the power supply has failed
|
||||||
|
with the failure mode $NO\_POWER$.
|
||||||
|
The `power supply' module, after this process will have a defined set of
|
||||||
|
fault modes and may be considered as a component at a higher
|
||||||
|
level of abstraction. This module can then be combined
|
||||||
|
with others at the same abstraction level.
|
||||||
|
Note that because this is a fault collection process
|
||||||
|
the number of component faults for a module
|
||||||
|
must be less than or equal to the sum of the number of component faults.
|
||||||
|
|
||||||
|
%Typeset in \ \ {\huge \LaTeX} \ \ on \ \ \today
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
CVS Revision Identity $Id: logic_diagram.tex,v 1.16 2010/01/01 14:09:02 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
Compiled last \today
|
||||||
|
%\end{document}
|
||||||
|
|
||||||
|
%\theend
|
||||||
|
|
||||||
|
|
||||||
|
|
35
logic_diagram/paper.aux
Normal file
35
logic_diagram/paper.aux
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
\relax
|
||||||
|
\citation{FMEA}
|
||||||
|
\citation{takeup}
|
||||||
|
\citation{FMEA}
|
||||||
|
\citation{SIL}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {2}Formal Description of PLD}{2}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Concrete PLD Definition}{2}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2} PLD Definition}{2}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Semantics of PLD}{3}}
|
||||||
|
\newlabel{FMGderivation}{{9}{3}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {3}Example Diagrams}{4}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}How to read a PLD diagram}{4}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2} Logical AND example }{4}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Logical AND}}{4}}
|
||||||
|
\newlabel{fig:ld_and}{{1}{4}}
|
||||||
|
\@writefile{toc}{\contentsline {paragraph}{How this would be interpreted in failure analysis}{4}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3} Logical OR example }{5}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Logical OR}}{5}}
|
||||||
|
\newlabel{fig:ld_or}{{2}{5}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.4}Labels and useage}{6}}
|
||||||
|
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Several Logical Expressions with unamed test cases}}{6}}
|
||||||
|
\newlabel{fig:ld_meq2}{{3}{6}}
|
||||||
|
\@writefile{toc}{\contentsline {paragraph}{How this would be interpreted in failure analysis}{6}}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.5} Repeated Contour example }{7}}
|
||||||
|
\newlabel{fig:repeated}{{3.5}{7}}
|
||||||
|
\@writefile{toc}{\contentsline {paragraph}{How this would be interpreted in failure analysis}{7}}
|
||||||
|
\citation{wdycwopt}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {3.6} Inhibit Failure }{8}}
|
||||||
|
\newlabel{fig:inhibit}{{3.6}{8}}
|
||||||
|
\@writefile{toc}{\contentsline {paragraph}{How this would be interpreted in failure analysis}{8}}
|
||||||
|
\@writefile{toc}{\contentsline {section}{\numberline {4}Intended use in FMMD}{8}}
|
||||||
|
\bibstyle{plain}
|
||||||
|
\bibdata{vmgbibliography,mybib}
|
||||||
|
\@writefile{toc}{\contentsline {subsection}{\numberline {4.1}Example Sub-system}{9}}
|
BIN
logic_diagram/paper.dvi
Normal file
BIN
logic_diagram/paper.dvi
Normal file
Binary file not shown.
468
logic_diagram/paper.log
Normal file
468
logic_diagram/paper.log
Normal file
@ -0,0 +1,468 @@
|
|||||||
|
This is pdfTeXk, Version 3.141592-1.40.3 (Web2C 7.5.6) (format=latex 2009.7.3) 6 JAN 2010 13:31
|
||||||
|
entering extended mode
|
||||||
|
%&-line parsing enabled.
|
||||||
|
**paper.tex
|
||||||
|
(./paper.tex
|
||||||
|
LaTeX2e <2005/12/01>
|
||||||
|
Babel <v3.8h> and hyphenation patterns for english, usenglishmax, dumylang, noh
|
||||||
|
yphenation, ukrainian, russian, bulgarian, loaded.
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/base/article.cls
|
||||||
|
Document Class: article 2005/09/16 v1.4f Standard LaTeX document class
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/base/size10.clo
|
||||||
|
File: size10.clo 2005/09/16 v1.4f Standard LaTeX file (size option)
|
||||||
|
)
|
||||||
|
\c@part=\count79
|
||||||
|
\c@section=\count80
|
||||||
|
\c@subsection=\count81
|
||||||
|
\c@subsubsection=\count82
|
||||||
|
\c@paragraph=\count83
|
||||||
|
\c@subparagraph=\count84
|
||||||
|
\c@figure=\count85
|
||||||
|
\c@table=\count86
|
||||||
|
\abovecaptionskip=\skip41
|
||||||
|
\belowcaptionskip=\skip42
|
||||||
|
\bibindent=\dimen102
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/graphics/graphicx.sty
|
||||||
|
Package: graphicx 1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/graphics/keyval.sty
|
||||||
|
Package: keyval 1999/03/16 v1.13 key=value parser (DPC)
|
||||||
|
\KV@toks@=\toks14
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/graphics/graphics.sty
|
||||||
|
Package: graphics 2006/02/20 v1.0o Standard LaTeX Graphics (DPC,SPQR)
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/graphics/trig.sty
|
||||||
|
Package: trig 1999/03/16 v1.09 sin cos tan (DPC)
|
||||||
|
)
|
||||||
|
(/etc/texmf/tex/latex/config/graphics.cfg
|
||||||
|
File: graphics.cfg 2007/01/18 v1.5 graphics configuration of teTeX/TeXLive
|
||||||
|
)
|
||||||
|
Package graphics Info: Driver file: dvips.def on input line 90.
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/graphics/dvips.def
|
||||||
|
File: dvips.def 1999/02/16 v3.0i Driver-dependant file (DPC,SPQR)
|
||||||
|
))
|
||||||
|
\Gin@req@height=\dimen103
|
||||||
|
\Gin@req@width=\dimen104
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/fancyhdr/fancyhdr.sty
|
||||||
|
\fancy@headwidth=\skip43
|
||||||
|
\f@ncyO@elh=\skip44
|
||||||
|
\f@ncyO@erh=\skip45
|
||||||
|
\f@ncyO@olh=\skip46
|
||||||
|
\f@ncyO@orh=\skip47
|
||||||
|
\f@ncyO@elf=\skip48
|
||||||
|
\f@ncyO@erf=\skip49
|
||||||
|
\f@ncyO@olf=\skip50
|
||||||
|
\f@ncyO@orf=\skip51
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/frontendlayer/tikz.sty
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/basiclayer/pgf.sty
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/utilities/pgfrcs.sty
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/utilities/pgfutil-common.tex
|
||||||
|
\pgfutil@everybye=\toks15
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/utilities/pgfutil-latex.def)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/utilities/pgfrcs.code.tex
|
||||||
|
Package: pgfrcs 2008/02/20 v2.00 (rcs-revision 1.21)
|
||||||
|
))
|
||||||
|
Package: pgf 2008/01/15 v2.00 (rcs-revision 1.12)
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/basiclayer/pgfcore.sty
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/systemlayer/pgfsys.sty
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys.code.tex
|
||||||
|
Package: pgfsys 2008/02/07 v2.00 (rcs-revision 1.31)
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/utilities/pgfkeys.code.tex
|
||||||
|
\pgfkeys@pathtoks=\toks16
|
||||||
|
\pgfkeys@temptoks=\toks17
|
||||||
|
)
|
||||||
|
\pgf@x=\dimen105
|
||||||
|
\pgf@y=\dimen106
|
||||||
|
\pgf@xa=\dimen107
|
||||||
|
\pgf@ya=\dimen108
|
||||||
|
\pgf@xb=\dimen109
|
||||||
|
\pgf@yb=\dimen110
|
||||||
|
\pgf@xc=\dimen111
|
||||||
|
\pgf@yc=\dimen112
|
||||||
|
\c@pgf@counta=\count87
|
||||||
|
\c@pgf@countb=\count88
|
||||||
|
\c@pgf@countc=\count89
|
||||||
|
\c@pgf@countd=\count90
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgf.cfg
|
||||||
|
File: pgf.cfg 2008/01/13 (rcs-revision 1.6)
|
||||||
|
)
|
||||||
|
Package pgfsys Info: Driver file for pgf: pgfsys-dvips.def on input line 885.
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys-dvips.def
|
||||||
|
File: pgfsys-dvips.def 2007/12/12 (rcs-revision 1.19)
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsys-common-postscript.def
|
||||||
|
File: pgfsys-common-postscript.def 2008/02/07 (rcs-revision 1.18)
|
||||||
|
\pgf@objectcount=\count91
|
||||||
|
)))
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex
|
||||||
|
File: pgfsyssoftpath.code.tex 2008/01/23 (rcs-revision 1.6)
|
||||||
|
\pgfsyssoftpath@smallbuffer@items=\count92
|
||||||
|
\pgfsyssoftpath@bigbuffer@items=\count93
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex
|
||||||
|
File: pgfsysprotocol.code.tex 2006/10/16 (rcs-revision 1.4)
|
||||||
|
))
|
||||||
|
(/usr/share/texmf/tex/latex/xcolor/xcolor.sty
|
||||||
|
Package: xcolor 2007/01/21 v2.11 LaTeX color extensions (UK)
|
||||||
|
|
||||||
|
(/etc/texmf/tex/latex/config/color.cfg
|
||||||
|
File: color.cfg 2007/01/18 v1.5 color configuration of teTeX/TeXLive
|
||||||
|
)
|
||||||
|
Package xcolor Info: Driver file: dvips.def on input line 225.
|
||||||
|
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1337.
|
||||||
|
Package xcolor Info: Model `RGB' extended on input line 1353.
|
||||||
|
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1355.
|
||||||
|
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1356.
|
||||||
|
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1357.
|
||||||
|
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1358.
|
||||||
|
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1359.
|
||||||
|
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1360.
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcore.code.tex
|
||||||
|
Package: pgfcore 2008/01/15 v2.00 (rcs-revision 1.6)
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmath.code.tex
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathcalc.code.tex
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathutil.code.tex
|
||||||
|
\pgfmath@box=\box26
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathparser.code.tex
|
||||||
|
\pgfmath@stack=\toks18
|
||||||
|
\c@pgfmath@parsecounta=\count94
|
||||||
|
\c@pgfmath@parsecountb=\count95
|
||||||
|
\c@pgfmath@parsecountc=\count96
|
||||||
|
\pgfmath@parsex=\dimen113
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathoperations.code.tex
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathtrig.code.tex)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathrnd.code.tex))
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/math/pgfmathbase.code.tex)))
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex
|
||||||
|
File: pgfcorepoints.code.tex 2008/02/03 (rcs-revision 1.13)
|
||||||
|
\pgf@picminx=\dimen114
|
||||||
|
\pgf@picmaxx=\dimen115
|
||||||
|
\pgf@picminy=\dimen116
|
||||||
|
\pgf@picmaxy=\dimen117
|
||||||
|
\pgf@pathminx=\dimen118
|
||||||
|
\pgf@pathmaxx=\dimen119
|
||||||
|
\pgf@pathminy=\dimen120
|
||||||
|
\pgf@pathmaxy=\dimen121
|
||||||
|
\pgf@xx=\dimen122
|
||||||
|
\pgf@xy=\dimen123
|
||||||
|
\pgf@yx=\dimen124
|
||||||
|
\pgf@yy=\dimen125
|
||||||
|
\pgf@zx=\dimen126
|
||||||
|
\pgf@zy=\dimen127
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex
|
||||||
|
File: pgfcorepathconstruct.code.tex 2008/02/13 (rcs-revision 1.14)
|
||||||
|
\pgf@path@lastx=\dimen128
|
||||||
|
\pgf@path@lasty=\dimen129
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex
|
||||||
|
File: pgfcorepathusage.code.tex 2008/01/23 (rcs-revision 1.11)
|
||||||
|
\pgf@shorten@end@additional=\dimen130
|
||||||
|
\pgf@shorten@start@additional=\dimen131
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex
|
||||||
|
File: pgfcorescopes.code.tex 2008/01/15 (rcs-revision 1.26)
|
||||||
|
\pgfpic=\box27
|
||||||
|
\pgf@hbox=\box28
|
||||||
|
\pgf@layerbox@main=\box29
|
||||||
|
\pgf@picture@serial@count=\count97
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex
|
||||||
|
File: pgfcoregraphicstate.code.tex 2007/12/12 (rcs-revision 1.8)
|
||||||
|
\pgflinewidth=\dimen132
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex
|
||||||
|
File: pgfcoretransformations.code.tex 2008/02/04 (rcs-revision 1.10)
|
||||||
|
\pgf@pt@x=\dimen133
|
||||||
|
\pgf@pt@y=\dimen134
|
||||||
|
\pgf@pt@temp=\dimen135
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
|
||||||
|
File: pgfcorequick.code.tex 2006/10/11 (rcs-revision 1.2)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex
|
||||||
|
File: pgfcoreobjects.code.tex 2006/10/11 (rcs-revision 1.2)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex
|
||||||
|
File: pgfcorepathprocessing.code.tex 2008/01/23 (rcs-revision 1.7)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex
|
||||||
|
File: pgfcorearrows.code.tex 2007/06/07 (rcs-revision 1.8)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
|
||||||
|
File: pgfcoreshade.code.tex 2007/12/10 (rcs-revision 1.9)
|
||||||
|
\pgf@max=\dimen136
|
||||||
|
\pgf@sys@shading@range@num=\count98
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
|
||||||
|
File: pgfcoreimage.code.tex 2008/01/15 (rcs-revision 1.1)
|
||||||
|
\pgfexternal@startupbox=\box30
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex
|
||||||
|
File: pgfcorelayers.code.tex 2008/01/15 (rcs-revision 1.1)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex
|
||||||
|
File: pgfcoretransparency.code.tex 2008/01/17 (rcs-revision 1.2)
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex
|
||||||
|
File: pgfcorepatterns.code.tex 2008/01/15 (rcs-revision 1.1)
|
||||||
|
)))
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
|
||||||
|
File: pgfmoduleshapes.code.tex 2008/02/13 (rcs-revision 1.4)
|
||||||
|
\pgfnodeparttextbox=\box31
|
||||||
|
\toks@savedmacro=\toks19
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/modules/pgfmoduleplot.code.tex
|
||||||
|
File: pgfmoduleplot.code.tex 2008/01/15 (rcs-revision 1.1)
|
||||||
|
\pgf@plotwrite=\write3
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty
|
||||||
|
Package: pgfcomp-version-0-65 2007/07/03 v2.00 (rcs-revision 1.7)
|
||||||
|
\pgf@nodesepstart=\dimen137
|
||||||
|
\pgf@nodesepend=\dimen138
|
||||||
|
)
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty
|
||||||
|
Package: pgfcomp-version-1-18 2007/07/23 v2.00 (rcs-revision 1.1)
|
||||||
|
))
|
||||||
|
(/usr/share/texmf/tex/latex/pgf/utilities/pgffor.sty
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/utilities/pgffor.code.tex
|
||||||
|
Package: pgffor 2007/11/07 v2.00 (rcs-revision 1.8)
|
||||||
|
\pgffor@iter=\dimen139
|
||||||
|
\pgffor@skip=\dimen140
|
||||||
|
))
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
|
||||||
|
Package: tikz 2008/02/13 v2.00 (rcs-revision 1.27)
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex
|
||||||
|
File: pgflibraryplothandlers.code.tex 2007/03/09 v2.00 (rcs-revision 1.9)
|
||||||
|
\pgf@plot@mark@count=\count99
|
||||||
|
\pgfplotmarksize=\dimen141
|
||||||
|
)
|
||||||
|
\tikz@lastx=\dimen142
|
||||||
|
\tikz@lasty=\dimen143
|
||||||
|
\tikz@lastxsaved=\dimen144
|
||||||
|
\tikz@lastysaved=\dimen145
|
||||||
|
\tikzleveldistance=\dimen146
|
||||||
|
\tikzsiblingdistance=\dimen147
|
||||||
|
\tikz@figbox=\box32
|
||||||
|
\tikz@tempbox=\box33
|
||||||
|
\tikztreelevel=\count100
|
||||||
|
\tikznumberofchildren=\count101
|
||||||
|
\tikznumberofcurrentchild=\count102
|
||||||
|
\tikz@fig@count=\count103
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/modules/pgfmodulematrix.code.tex
|
||||||
|
File: pgfmodulematrix.code.tex 2008/01/15 (rcs-revision 1.1)
|
||||||
|
\pgfmatrixcurrentrow=\count104
|
||||||
|
\pgfmatrixcurrentcolumn=\count105
|
||||||
|
\pgf@matrix@numberofcolumns=\count106
|
||||||
|
)
|
||||||
|
\tikz@expandcount=\count107
|
||||||
|
|
||||||
|
(/usr/share/texmf/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopat
|
||||||
|
hs.code.tex
|
||||||
|
File: tikzlibrarytopaths.code.tex 2008/01/09 v2.00 (rcs-revision 1.1)
|
||||||
|
))) (/usr/share/texmf-texlive/tex/latex/amsfonts/amsfonts.sty
|
||||||
|
Package: amsfonts 2001/10/25 v2.2f
|
||||||
|
\@emptytoks=\toks20
|
||||||
|
\symAMSa=\mathgroup4
|
||||||
|
\symAMSb=\mathgroup5
|
||||||
|
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
|
||||||
|
(Font) U/euf/m/n --> U/euf/b/n on input line 132.
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsmath/amsmath.sty
|
||||||
|
Package: amsmath 2000/07/18 v2.13 AMS math features
|
||||||
|
\@mathmargin=\skip52
|
||||||
|
|
||||||
|
For additional information on amsmath, use the `?' option.
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsmath/amstext.sty
|
||||||
|
Package: amstext 2000/06/29 v2.01
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsmath/amsgen.sty
|
||||||
|
File: amsgen.sty 1999/11/30 v2.0
|
||||||
|
\@emptytoks=\toks21
|
||||||
|
\ex@=\dimen148
|
||||||
|
))
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsmath/amsbsy.sty
|
||||||
|
Package: amsbsy 1999/11/29 v1.2d
|
||||||
|
\pmbraise@=\dimen149
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsmath/amsopn.sty
|
||||||
|
Package: amsopn 1999/12/14 v2.01 operator names
|
||||||
|
)
|
||||||
|
\inf@bad=\count108
|
||||||
|
LaTeX Info: Redefining \frac on input line 211.
|
||||||
|
\uproot@=\count109
|
||||||
|
\leftroot@=\count110
|
||||||
|
LaTeX Info: Redefining \overline on input line 307.
|
||||||
|
\classnum@=\count111
|
||||||
|
\DOTSCASE@=\count112
|
||||||
|
LaTeX Info: Redefining \ldots on input line 379.
|
||||||
|
LaTeX Info: Redefining \dots on input line 382.
|
||||||
|
LaTeX Info: Redefining \cdots on input line 467.
|
||||||
|
\Mathstrutbox@=\box34
|
||||||
|
\strutbox@=\box35
|
||||||
|
\big@size=\dimen150
|
||||||
|
LaTeX Font Info: Redeclaring font encoding OML on input line 567.
|
||||||
|
LaTeX Font Info: Redeclaring font encoding OMS on input line 568.
|
||||||
|
\macc@depth=\count113
|
||||||
|
\c@MaxMatrixCols=\count114
|
||||||
|
\dotsspace@=\muskip10
|
||||||
|
\c@parentequation=\count115
|
||||||
|
\dspbrk@lvl=\count116
|
||||||
|
\tag@help=\toks22
|
||||||
|
\row@=\count117
|
||||||
|
\column@=\count118
|
||||||
|
\maxfields@=\count119
|
||||||
|
\andhelp@=\toks23
|
||||||
|
\eqnshift@=\dimen151
|
||||||
|
\alignsep@=\dimen152
|
||||||
|
\tagshift@=\dimen153
|
||||||
|
\tagwidth@=\dimen154
|
||||||
|
\totwidth@=\dimen155
|
||||||
|
\lineht@=\dimen156
|
||||||
|
\@envbody=\toks24
|
||||||
|
\multlinegap=\skip53
|
||||||
|
\multlinetaggap=\skip54
|
||||||
|
\mathdisplay@stack=\toks25
|
||||||
|
LaTeX Info: Redefining \[ on input line 2666.
|
||||||
|
LaTeX Info: Redefining \] on input line 2667.
|
||||||
|
)
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amscls/amsthm.sty
|
||||||
|
Package: amsthm 2004/08/06 v2.20
|
||||||
|
\thm@style=\toks26
|
||||||
|
\thm@bodyfont=\toks27
|
||||||
|
\thm@headfont=\toks28
|
||||||
|
\thm@notefont=\toks29
|
||||||
|
\thm@headpunct=\toks30
|
||||||
|
\thm@preskip=\skip55
|
||||||
|
\thm@postskip=\skip56
|
||||||
|
\thm@headsep=\skip57
|
||||||
|
\dth@everypar=\toks31
|
||||||
|
) (./style.tex
|
||||||
|
LaTeX Font Info: Redeclaring symbol font `AMSb' on input line 34.
|
||||||
|
LaTeX Font Info: Overwriting symbol font `AMSb' in version `normal'
|
||||||
|
(Font) U/msb/m/n --> U/msb/m/n on input line 34.
|
||||||
|
LaTeX Font Info: Overwriting symbol font `AMSb' in version `bold'
|
||||||
|
(Font) U/msb/m/n --> U/msb/m/n on input line 34.
|
||||||
|
\c@examplec=\count120
|
||||||
|
\c@definitionc=\count121
|
||||||
|
\c@summaryc=\count122
|
||||||
|
\c@example=\count123
|
||||||
|
\c@definition=\count124
|
||||||
|
)
|
||||||
|
(./paper.aux)
|
||||||
|
\openout1 = `paper.aux'.
|
||||||
|
|
||||||
|
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 11.
|
||||||
|
LaTeX Font Info: ... okay on input line 11.
|
||||||
|
LaTeX Font Info: Try loading font information for U+msa on input line 20.
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsfonts/umsa.fd
|
||||||
|
File: umsa.fd 2002/01/19 v2.2g AMS font definitions
|
||||||
|
)
|
||||||
|
LaTeX Font Info: Try loading font information for U+msb on input line 20.
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/amsfonts/umsb.fd
|
||||||
|
File: umsb.fd 2002/01/19 v2.2g AMS font definitions
|
||||||
|
)
|
||||||
|
(./logic_diagram_paper.tex
|
||||||
|
|
||||||
|
LaTeX Warning: Citation `FMEA' on page 1 undefined on input line 20.
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Citation `takeup' on page 1 undefined on input line 22.
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Citation `FMEA' on page 1 undefined on input line 45.
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Citation `SIL' on page 1 undefined on input line 45.
|
||||||
|
|
||||||
|
[1
|
||||||
|
|
||||||
|
] [2]
|
||||||
|
LaTeX Font Info: Try loading font information for OMS+cmr on input line 279.
|
||||||
|
|
||||||
|
(/usr/share/texmf-texlive/tex/latex/base/omscmr.fd
|
||||||
|
File: omscmr.fd 1999/05/25 v2.5h Standard LaTeX font definitions
|
||||||
|
)
|
||||||
|
LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10> not available
|
||||||
|
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 279.
|
||||||
|
[3]
|
||||||
|
File: ldand.eps Graphic file (type eps)
|
||||||
|
<ldand.eps>
|
||||||
|
[4]
|
||||||
|
File: ldor.eps Graphic file (type eps)
|
||||||
|
<ldor.eps> [5
|
||||||
|
|
||||||
|
]
|
||||||
|
|
||||||
|
LaTeX Warning: Reference `fig:ld_meq' on page 6 undefined on input line 428.
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Reference `fig:ld_meq' on page 6 undefined on input line 433.
|
||||||
|
|
||||||
|
File: ldmeq2.eps Graphic file (type eps)
|
||||||
|
<ldmeq2.eps> [6
|
||||||
|
|
||||||
|
]
|
||||||
|
File: ./repeated.eps Graphic file (type eps)
|
||||||
|
<./repeated.eps>
|
||||||
|
Overfull \hbox (32.57841pt too wide) in paragraph at lines 472--475
|
||||||
|
[][]
|
||||||
|
[]
|
||||||
|
|
||||||
|
|
||||||
|
LaTeX Warning: Reference `fig:repeat' on page 7 undefined on input line 479.
|
||||||
|
|
||||||
|
[7
|
||||||
|
|
||||||
|
]
|
||||||
|
File: ./inhibit.eps Graphic file (type eps)
|
||||||
|
<./inhibit.eps>
|
||||||
|
|
||||||
|
LaTeX Warning: Citation `wdycwopt' on page 8 undefined on input line 525.
|
||||||
|
|
||||||
|
[8
|
||||||
|
|
||||||
|
])
|
||||||
|
No file paper.bbl.
|
||||||
|
[9] (./paper.aux)
|
||||||
|
|
||||||
|
LaTeX Warning: There were undefined references.
|
||||||
|
|
||||||
|
)
|
||||||
|
Here is how much of TeX's memory you used:
|
||||||
|
7859 strings out of 94835
|
||||||
|
133645 string characters out of 1179205
|
||||||
|
188286 words of memory out of 1500000
|
||||||
|
10865 multiletter control sequences out of 10000+50000
|
||||||
|
13335 words of font info for 51 fonts, out of 1200000 for 2000
|
||||||
|
212 hyphenation exceptions out of 8191
|
||||||
|
47i,11n,49p,372b,312s stack positions out of 5000i,500n,6000p,200000b,5000s
|
||||||
|
|
||||||
|
Output written on paper.dvi (9 pages, 28936 bytes).
|
BIN
logic_diagram/paper.pdf
Normal file
BIN
logic_diagram/paper.pdf
Normal file
Binary file not shown.
30
logic_diagram/paper.tex
Normal file
30
logic_diagram/paper.tex
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
|
||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{amsfonts,amsmath,amsthm}
|
||||||
|
\input{style}
|
||||||
|
|
||||||
|
%\newtheorem{definition}{Definition:}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
|
||||||
|
\outerhead{{\small\bf Propositional Logic Diagram}}
|
||||||
|
\innerfoot{{\small\bf R.P. Clark } }
|
||||||
|
% numbers at outer edges
|
||||||
|
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||||
|
\author{R.P.Clark}
|
||||||
|
\title{Propositional Logic Diagrams}
|
||||||
|
\maketitle
|
||||||
|
\input{logic_diagram_paper}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\bibliography{vmgbibliography,mybib}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
$Id: paper.tex,v 1.4 2009/11/28 20:05:52 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\end{document}
|
28
logic_diagram/paper.tex~
Normal file
28
logic_diagram/paper.tex~
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
|
||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
\usepackage{graphicx}
|
||||||
|
\usepackage{fancyhdr}
|
||||||
|
\usepackage{tikz}
|
||||||
|
\usepackage{amsfonts,amsmath}
|
||||||
|
\input{../style}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
\pagestyle{fancy}
|
||||||
|
|
||||||
|
\outerhead{{\small\bf Propositional Logic Diagram}}
|
||||||
|
\innerfoot{{\small\bf R.P. Clark } }
|
||||||
|
% numbers at outer edges
|
||||||
|
\pagenumbering{arabic} % Arabic page numbers hereafter
|
||||||
|
\author{R.P.Clark}
|
||||||
|
\title{Propositional Logic Diagrams}
|
||||||
|
\maketitle
|
||||||
|
\input{logic_diagram_paper}
|
||||||
|
|
||||||
|
\bibliographystyle{plain}
|
||||||
|
\bibliography{vmgbibliography,mybib}
|
||||||
|
|
||||||
|
\begin{verbatim}
|
||||||
|
$Id: paper.tex,v 1.3 2008/11/07 19:54:52 robin Exp $
|
||||||
|
\end{verbatim}
|
||||||
|
|
||||||
|
\end{document}
|
179
logic_diagram/repeated.eps
Normal file
179
logic_diagram/repeated.eps
Normal file
@ -0,0 +1,179 @@
|
|||||||
|
%!PS-Adobe-2.0 EPSF-2.0
|
||||||
|
%%Title: repeated.fig
|
||||||
|
%%Creator: fig2dev Version 3.2 Patchlevel 5
|
||||||
|
%%CreationDate: Fri Jan 1 14:20:31 2010
|
||||||
|
%%For: robin@NovaProspect (Robin,,,)
|
||||||
|
%%BoundingBox: 0 0 486 206
|
||||||
|
%Magnification: 1.0000
|
||||||
|
%%EndComments
|
||||||
|
%%BeginProlog
|
||||||
|
/$F2psDict 200 dict def
|
||||||
|
$F2psDict begin
|
||||||
|
$F2psDict /mtrx matrix put
|
||||||
|
/col-1 {0 setgray} bind def
|
||||||
|
/col0 {0.000 0.000 0.000 srgb} bind def
|
||||||
|
/col1 {0.000 0.000 1.000 srgb} bind def
|
||||||
|
/col2 {0.000 1.000 0.000 srgb} bind def
|
||||||
|
/col3 {0.000 1.000 1.000 srgb} bind def
|
||||||
|
/col4 {1.000 0.000 0.000 srgb} bind def
|
||||||
|
/col5 {1.000 0.000 1.000 srgb} bind def
|
||||||
|
/col6 {1.000 1.000 0.000 srgb} bind def
|
||||||
|
/col7 {1.000 1.000 1.000 srgb} bind def
|
||||||
|
/col8 {0.000 0.000 0.560 srgb} bind def
|
||||||
|
/col9 {0.000 0.000 0.690 srgb} bind def
|
||||||
|
/col10 {0.000 0.000 0.820 srgb} bind def
|
||||||
|
/col11 {0.530 0.810 1.000 srgb} bind def
|
||||||
|
/col12 {0.000 0.560 0.000 srgb} bind def
|
||||||
|
/col13 {0.000 0.690 0.000 srgb} bind def
|
||||||
|
/col14 {0.000 0.820 0.000 srgb} bind def
|
||||||
|
/col15 {0.000 0.560 0.560 srgb} bind def
|
||||||
|
/col16 {0.000 0.690 0.690 srgb} bind def
|
||||||
|
/col17 {0.000 0.820 0.820 srgb} bind def
|
||||||
|
/col18 {0.560 0.000 0.000 srgb} bind def
|
||||||
|
/col19 {0.690 0.000 0.000 srgb} bind def
|
||||||
|
/col20 {0.820 0.000 0.000 srgb} bind def
|
||||||
|
/col21 {0.560 0.000 0.560 srgb} bind def
|
||||||
|
/col22 {0.690 0.000 0.690 srgb} bind def
|
||||||
|
/col23 {0.820 0.000 0.820 srgb} bind def
|
||||||
|
/col24 {0.500 0.190 0.000 srgb} bind def
|
||||||
|
/col25 {0.630 0.250 0.000 srgb} bind def
|
||||||
|
/col26 {0.750 0.380 0.000 srgb} bind def
|
||||||
|
/col27 {1.000 0.500 0.500 srgb} bind def
|
||||||
|
/col28 {1.000 0.630 0.630 srgb} bind def
|
||||||
|
/col29 {1.000 0.750 0.750 srgb} bind def
|
||||||
|
/col30 {1.000 0.880 0.880 srgb} bind def
|
||||||
|
/col31 {1.000 0.840 0.000 srgb} bind def
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
/cp {closepath} bind def
|
||||||
|
/ef {eofill} bind def
|
||||||
|
/gr {grestore} bind def
|
||||||
|
/gs {gsave} bind def
|
||||||
|
/sa {save} bind def
|
||||||
|
/rs {restore} bind def
|
||||||
|
/l {lineto} bind def
|
||||||
|
/m {moveto} bind def
|
||||||
|
/rm {rmoveto} bind def
|
||||||
|
/n {newpath} bind def
|
||||||
|
/s {stroke} bind def
|
||||||
|
/sh {show} bind def
|
||||||
|
/slc {setlinecap} bind def
|
||||||
|
/slj {setlinejoin} bind def
|
||||||
|
/slw {setlinewidth} bind def
|
||||||
|
/srgb {setrgbcolor} bind def
|
||||||
|
/rot {rotate} bind def
|
||||||
|
/sc {scale} bind def
|
||||||
|
/sd {setdash} bind def
|
||||||
|
/ff {findfont} bind def
|
||||||
|
/sf {setfont} bind def
|
||||||
|
/scf {scalefont} bind def
|
||||||
|
/sw {stringwidth} bind def
|
||||||
|
/tr {translate} bind def
|
||||||
|
/tnt {dup dup currentrgbcolor
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add
|
||||||
|
4 -2 roll dup 1 exch sub 3 -1 roll mul add srgb}
|
||||||
|
bind def
|
||||||
|
/shd {dup dup currentrgbcolor 4 -2 roll mul 4 -2 roll mul
|
||||||
|
4 -2 roll mul srgb} bind def
|
||||||
|
/DrawEllipse {
|
||||||
|
/endangle exch def
|
||||||
|
/startangle exch def
|
||||||
|
/yrad exch def
|
||||||
|
/xrad exch def
|
||||||
|
/y exch def
|
||||||
|
/x exch def
|
||||||
|
/savematrix mtrx currentmatrix def
|
||||||
|
x y tr xrad yrad sc 0 0 1 startangle endangle arc
|
||||||
|
closepath
|
||||||
|
savematrix setmatrix
|
||||||
|
} def
|
||||||
|
|
||||||
|
/$F2psBegin {$F2psDict begin /$F2psEnteredState save def} def
|
||||||
|
/$F2psEnd {$F2psEnteredState restore end} def
|
||||||
|
|
||||||
|
/pageheader {
|
||||||
|
save
|
||||||
|
newpath 0 206 moveto 0 0 lineto 486 0 lineto 486 206 lineto closepath clip newpath
|
||||||
|
-60.5 247.5 translate
|
||||||
|
1 -1 scale
|
||||||
|
$F2psBegin
|
||||||
|
10 setmiterlimit
|
||||||
|
0 slj 0 slc
|
||||||
|
0.06299 0.06299 sc
|
||||||
|
} bind def
|
||||||
|
/pagefooter {
|
||||||
|
$F2psEnd
|
||||||
|
restore
|
||||||
|
} bind def
|
||||||
|
%%EndProlog
|
||||||
|
pageheader
|
||||||
|
%
|
||||||
|
% Fig objects follow
|
||||||
|
%
|
||||||
|
%
|
||||||
|
% here starts figure with depth 50
|
||||||
|
% Arc
|
||||||
|
7.500 slw
|
||||||
|
0 slc
|
||||||
|
n 5173.5 2296.8 1623.9 175.2957 3.1128 arcn
|
||||||
|
gs col0 s gr
|
||||||
|
|
||||||
|
% Arc
|
||||||
|
n 6772.5 3082.5 1464.1 -136.2454 -43.7546 arc
|
||||||
|
gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 1980 2205 1011 1011 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 3150 2205 1028 1028 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 6255 2070 1070 1070 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
% Ellipse
|
||||||
|
n 7515 2115 1138 1138 0 360 DrawEllipse gs col0 s gr
|
||||||
|
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2430 2520 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
6795 2340 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
7785 2340 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5670 2340 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
3510 2385 m
|
||||||
|
gs 1 -1 sc (*) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
1620 1035 m
|
||||||
|
gs 1 -1 sc (A) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2970 945 m
|
||||||
|
gs 1 -1 sc (B) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5985 810 m
|
||||||
|
gs 1 -1 sc (A) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
7515 810 m
|
||||||
|
gs 1 -1 sc (C) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
4770 3690 m
|
||||||
|
gs 1 -1 sc (R1) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
5985 1800 m
|
||||||
|
gs 1 -1 sc (R2) col0 sh gr
|
||||||
|
/Times-Roman ff 190.50 scf sf
|
||||||
|
2340 2160 m
|
||||||
|
gs 1 -1 sc (R3) col0 sh gr
|
||||||
|
% here ends figure;
|
||||||
|
pagefooter
|
||||||
|
showpage
|
||||||
|
%%Trailer
|
||||||
|
%EOF
|
27
logic_diagram/repeated.fig
Normal file
27
logic_diagram/repeated.fig
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#FIG 3.2 Produced by xfig version 3.2.5
|
||||||
|
Landscape
|
||||||
|
Center
|
||||||
|
Metric
|
||||||
|
A4
|
||||||
|
100.00
|
||||||
|
Single
|
||||||
|
-2
|
||||||
|
1200 2
|
||||||
|
5 1 0 1 0 7 50 -1 -1 0.000 0 1 0 0 5173.463 2296.817 3555 2430 5310 3915 6795 2385
|
||||||
|
5 1 0 1 0 7 50 -1 -1 0.000 0 0 0 0 6772.500 3082.500 5715 2070 6840 1620 7830 2070
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 1980 2205 1011 1011 1980 2205 2835 2745
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 3150 2205 1028 1028 3150 2205 4095 2610
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 6255 2070 1070 1070 6255 2070 7245 2475
|
||||||
|
1 3 0 1 0 7 50 -1 -1 0.000 1 0.0000 7515 2115 1138 1138 7515 2115 8595 2475
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 2430 2520 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 6795 2340 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 7785 2340 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 5670 2340 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 75 105 3510 2385 *\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 1620 1035 A\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 2970 945 B\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 5985 810 A\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 135 7515 810 C\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 4770 3690 R1\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 5985 1800 R2\001
|
||||||
|
4 0 0 50 -1 0 12 0.0000 4 135 240 2340 2160 R3\001
|
BIN
logic_diagram/repeated.jpg
Normal file
BIN
logic_diagram/repeated.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 KiB |
137
logic_diagram/style.tex
Normal file
137
logic_diagram/style.tex
Normal file
@ -0,0 +1,137 @@
|
|||||||
|
%
|
||||||
|
%============= Definition of {asyoulikeit} page style ======================*
|
||||||
|
%
|
||||||
|
% Jonathan Burch This is the terse form - expanded, formatted,
|
||||||
|
% 20-Jan-1989 commented version in TEX$LATEX:ASYOULIKEIT.FULL
|
||||||
|
%
|
||||||
|
\catcode`\@=11\def\ps@asyoulikeit{\def\@oddhead{\hbox{}\lp@innerhead
|
||||||
|
\lp@headfill\lp@middlehead\lp@headfill\lp@outerhead}\def\@evenhead
|
||||||
|
{\hbox{}\lp@outerhead\lp@headfill\lp@middlehead\lp@headfill\lp@innerhead}
|
||||||
|
\def\@oddfoot{\hbox{}\lp@innerfoot\lp@footfill\lp@middlefoot\lp@footfill
|
||||||
|
\lp@outerfoot}\def\@evenfoot{\hbox{}\lp@outerfoot\lp@footfill\lp@middlefoot
|
||||||
|
\lp@footfill\lp@innerfoot}\def\sectionmark##1{}\def\subsectionmark##1{}}
|
||||||
|
\def\lp@innerhead{}\def\lp@middlehead{}\def\lp@outerhead{}\def\lp@innerfoot{}
|
||||||
|
\def\lp@middlefoot{ {\thepage} }\def\lp@outerfoot{}\def\lp@headfill{\hfil}
|
||||||
|
\def\lp@footfill{\hfil}\newcommand{\lp@linefill}{\leaders\hrule height 0.55ex
|
||||||
|
depth -0.5ex\hfill}\newcommand{\innerhead}[1]{\def\lp@innerhead{#1}}
|
||||||
|
\newcommand{\middlehead}[1]{\def\lp@middlehead{#1}}\newcommand{\outerhead}[1]
|
||||||
|
{\def\lp@outerhead{#1}}\newcommand{\innerfoot}[1]{\def\lp@innerfoot{#1}}
|
||||||
|
\newcommand{\middlefoot}[1]{\def\lp@middlefoot{#1}}\newcommand{\outerfoot}[1]
|
||||||
|
{\def\lp@outerfoot{#1}}\newcommand{\lineheadfill}{\def\lp@headfill
|
||||||
|
{\lp@linefill}}\newcommand{\linefootfill}{\def\lp@footfill{\lp@linefill}}
|
||||||
|
\newcommand{\blankheadfill}{\def\lp@headfill{\hfill}}\newcommand
|
||||||
|
{\blankfootfill}{\def\lp@footfill{\hfill}}\newcommand{\documentnumber}[1]
|
||||||
|
{\def\lp@docno{#1}\outerhead{\lp@docno}}\def\lp@docno{}\def\@maketitlet
|
||||||
|
{\newpage\null\vskip -14ex\hbox{}\hfill\lp@docno\vskip 13ex\begin{center}
|
||||||
|
{\LARGE\@title\par}\vskip 1.5em{\large\lineskip .5em\begin{tabular}[t]{c}
|
||||||
|
\@author\end{tabular}\par}\vskip 1em{\large\@date}\end{center}\par\vskip 3em}
|
||||||
|
\def\abstract{\if@twocolumn\section*{Abstract}\else\small\begin{center}
|
||||||
|
{\bf Abstract\vspace{-.5em}\vspace{0pt}}\end{center}\quotation\fi}\def
|
||||||
|
\endabstract{\if@twocolumn\else\endquotation\fi}\ps@asyoulikeit\catcode`\@=12
|
||||||
|
%
|
||||||
|
%=========== End of {asyoulikeit} page style definition ====================*
|
||||||
|
|
||||||
|
\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}
|
||||||
|
\DeclareMathSymbol{\N}{\mathbin}{AMSb}{"4E}
|
||||||
|
\DeclareMathSymbol{\Z}{\mathbin}{AMSb}{"5A}
|
||||||
|
\DeclareMathSymbol{\R}{\mathbin}{AMSb}{"52}
|
||||||
|
\DeclareMathSymbol{\Q}{\mathbin}{AMSb}{"51}
|
||||||
|
\DeclareMathSymbol{\I}{\mathbin}{AMSb}{"49}
|
||||||
|
\DeclareMathSymbol{\C}{\mathbin}{AMSb}{"43}
|
||||||
|
|
||||||
|
|
||||||
|
% Page layout definitions to suit A4 paper
|
||||||
|
\setcounter{secnumdepth}{3} \setcounter{tocdepth}{4}
|
||||||
|
\setlength{\topmargin}{0mm}
|
||||||
|
\setlength{\textwidth}{160mm} \setlength{\textheight}{220mm}
|
||||||
|
\setlength{\oddsidemargin}{0mm} \setlength{\evensidemargin}{0mm}
|
||||||
|
%
|
||||||
|
% Local definitions
|
||||||
|
% -----------------
|
||||||
|
\newcommand{\eg}{{\it e.g.}}
|
||||||
|
\newcommand{\etc}{{\it etc.}}
|
||||||
|
\newcommand{\ie}{{\it i.e.}}
|
||||||
|
\newcommand{\qv}{{\it q.v.}}
|
||||||
|
\newcommand{\viz}{{\it viz.}}
|
||||||
|
\newcommand{\degs}[1]{$#1^\circ$} % Degrees symbol
|
||||||
|
\newcommand{\mins}[1]{$#1^{\scriptsize\prime}$} % Minutes symbol
|
||||||
|
\newcommand{\secs}[1]{$#1^{\scriptsize\prime\prime}$} % Seconds symbol
|
||||||
|
\newcommand{\key}[1]{\fbox{\sc#1}} % Box for keys
|
||||||
|
\newcommand{\?}{\_\hspace{0.115em}} % Proper spacing for
|
||||||
|
% underscore
|
||||||
|
%----- Display example text (#1) in typewriter font
|
||||||
|
|
||||||
|
%\newcommand{\example}[1]{\\ \smallskip\hspace{1in}{\tt #1}\hfil\\
|
||||||
|
% \smallskip\noindent}
|
||||||
|
%
|
||||||
|
%----- Enclose text (#2) in ruled box of given thickness (#1)
|
||||||
|
|
||||||
|
\def\boxit#1#2{\vbox{\hrule height #1pt\hbox{\vrule width #1pt\hskip 5pt
|
||||||
|
\vbox{\vskip 5pt #2 \vskip 5pt}\hskip 5pt
|
||||||
|
\vrule width #1pt}\hrule height #1pt}}
|
||||||
|
|
||||||
|
%----- Display boxed warning text (#1)
|
||||||
|
|
||||||
|
\def\warning#1{\bigskip
|
||||||
|
\setbox1=\vbox{\tolerance=5000\parfillskip=0pt
|
||||||
|
\hsize=3in\noindent#1}
|
||||||
|
\centerline{\boxit{1.0}{\box1}}
|
||||||
|
\bigskip}
|
||||||
|
|
||||||
|
%----- Definitions to aid display of help text
|
||||||
|
% (modelled on \item and \itemitem)
|
||||||
|
|
||||||
|
\def\helpindent#1{\setbox2=\hbox to\parindent{{\it #1}\hfil}
|
||||||
|
\indent\llap{\box2}\ignorespaces}
|
||||||
|
\def\helpitem{\parindent=70pt\par\hang\helpindent}
|
||||||
|
\def\helpitemitem{\parindent=70pt\par\indent \parindent=80pt
|
||||||
|
\hangindent2\parindent \helpindent}
|
||||||
|
|
||||||
|
%----- Tables and footnotes to tables
|
||||||
|
%
|
||||||
|
\newcommand{\spacerA}{\rule{0mm}{4mm}}
|
||||||
|
\newcommand{\spacerB}{\rule[-2mm]{0mm}{5mm}}
|
||||||
|
\footnotesep=5mm
|
||||||
|
\renewcommand{\footnoterule}{{\small Notes:}}
|
||||||
|
|
||||||
|
%% Robin 01AUG2008
|
||||||
|
%%
|
||||||
|
|
||||||
|
\newcounter{examplec}
|
||||||
|
\newcounter{definitionc}
|
||||||
|
\newcounter{summaryc}
|
||||||
|
|
||||||
|
%\@addtoreset{examplec}{chapter}\renewcommand\theexamplec{\thechapter.arabic{examplec}}
|
||||||
|
%\@addtoreset{definitionc}{chapter}
|
||||||
|
%\@addtoreset{summaryc}{chapter}
|
||||||
|
|
||||||
|
%\renewcommand\examplec{\arabic{examplec}}
|
||||||
|
|
||||||
|
%\newenvironment{example}
|
||||||
|
%{
|
||||||
|
% \stepcounter{examplec} \vspace{10pt} \normalfont\bfseries Example:\normalfont\[{\arabic{chapter}.\arabic{examplec}}\]
|
||||||
|
% \normalfont \begin{quote}}{\end{quote}\par}
|
||||||
|
%\newenvironment{definition}
|
||||||
|
%\newenvironment{example}
|
||||||
|
%{
|
||||||
|
% \stepcounter{examplec} \vspace{10pt} \normalfont\bfseries Example:\normalfont\[{\arabic{chapter}.\arabic{examplec}}\]
|
||||||
|
% \normalfont \begin{quote}}{\end{quote}\par}
|
||||||
|
\usepackage{amsthm}
|
||||||
|
|
||||||
|
\newtheorem{example}{Example:}
|
||||||
|
\newtheorem{definition}{Definition:}
|
||||||
|
\newtheorem*{summary}{Summary:}
|
||||||
|
|
||||||
|
%\newenvironment{example}
|
||||||
|
%{ \stepcounter{examplec} \vspace{10pt} \normalfont\bfseries Example:(\arabic{chapter}.\arabic{examplec})
|
||||||
|
% \normalfont \begin{quote}}{\end{quote}\par}
|
||||||
|
|
||||||
|
%
|
||||||
|
%\newenvironment{definition}
|
||||||
|
%{ \stepcounter{definitionc} \vspace{10pt} \normalfont\bfseries Definition:(\arabic{chapter}.\arabic{definitionc})
|
||||||
|
% \normalfont \begin{quote}}{\end{quote}\par}
|
||||||
|
%
|
||||||
|
%\newenvironment{summary}
|
||||||
|
%{ \vspace{10pt} \normalfont\bfseries Summary:
|
||||||
|
% \normalfont \begin{quote}}{\end{quote}\par}
|
||||||
|
%
|
Loading…
Reference in New Issue
Block a user