FMECA added
This commit is contained in:
parent
19beb73380
commit
53db734172
@ -864,7 +864,7 @@ to expand: Cuts sets and minimal cut sets. show example of detection of mimimal
|
|||||||
|
|
||||||
|
|
||||||
\clearpage
|
\clearpage
|
||||||
\section{Assisting FMEA reports from the DAG}
|
\section{Extracting/Assisting in FMEA reports from the DAG}
|
||||||
|
|
||||||
A design FMEA, or potential failure mode and effects analysis
|
A design FMEA, or potential failure mode and effects analysis
|
||||||
will typically require the designer to look at the possible effects
|
will typically require the designer to look at the possible effects
|
||||||
@ -908,10 +908,16 @@ reasoning process behind it, which leads to the symptom.
|
|||||||
We have from the DAG model, a direct path from each component failure
|
We have from the DAG model, a direct path from each component failure
|
||||||
mode to top-level symptoms. This allows us to partially fill in
|
mode to top-level symptoms. This allows us to partially fill in
|
||||||
the FMEA report. The detectability and severity of the symptom
|
the FMEA report. The detectability and severity of the symptom
|
||||||
are subjective. Given component failure rates, the probability
|
are subjective.
|
||||||
|
The $det$ value could influenced by factors such as features only used by a small percentage
|
||||||
|
of users of a product. In this case the detcability of the problem would be smaller
|
||||||
|
as many users would not activate/use the feature~\cite{bfmea}.
|
||||||
|
%strange is'nt it.
|
||||||
|
Given component failure rates, the probability
|
||||||
of the the potential cause occurring can be calculated, given suitable
|
of the the potential cause occurring can be calculated, given suitable
|
||||||
component failure mode statistical references (e.g. FMD-91~\cite{fmd91} and MIL1991~\cite{mil1991}).
|
component failure mode statistical references (e.g. FMD-91~\cite{fmd91} and MIL1991~\cite{mil1991}).
|
||||||
|
As these can be determined, they are represented by $Stat()$ in the table~\ref{ampfmea}.
|
||||||
|
|
||||||
\begin{table}[ht]
|
\begin{table}[ht]
|
||||||
\caption{Non Inverting Amplifier: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{Non Inverting Amplifier: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
@ -920,15 +926,15 @@ component failure mode statistical references (e.g. FMD-91~\cite{fmd91} and MIL1
|
|||||||
\textbf{Item} & \textbf{Potential Failure} & \textbf{ Sev } & \textbf{Potential} & \textbf{prob} & \textbf{det} & \textbf{RPN} \\
|
\textbf{Item} & \textbf{Potential Failure} & \textbf{ Sev } & \textbf{Potential} & \textbf{prob} & \textbf{det} & \textbf{RPN} \\
|
||||||
\textbf{Function} & \textbf{mode} & \textbf{ /cost }& \textbf{Cause} & \textbf{/occ } & \textbf{} & \\\hline
|
\textbf{Function} & \textbf{mode} & \textbf{ /cost }& \textbf{Cause} & \textbf{/occ } & \textbf{} & \\\hline
|
||||||
\hline
|
\hline
|
||||||
Non Inverting & $AMP_{high}$ & & $R1_{short} $ & & & \\
|
Non Inverting & $AMP_{high}$ & & $R1_{short} $ & $Stat(R1_{short}) $ & & \\
|
||||||
Amplifier & $AMP_{low}$ & & $R1_{open} $ & & & \\
|
Amplifier & $AMP_{low}$ & & $R1_{open} $ & $Stat(R1_{open}) $ & & \\
|
||||||
Circuit & $AMP_{low}$ & & $R2_{short} $ & & & \\
|
Circuit & $AMP_{low}$ & & $R2_{short} $ & $Stat(R2_{short}) $ & & \\
|
||||||
& $AMP_{high}$ & & $R2_{open}$ & & & \\
|
& $AMP_{high}$ & & $R2_{open}$ & $Stat(R2_{open})$ & & \\
|
||||||
|
|
||||||
& $AMP_{lowpass}$ & & $OPAMP_{lowslew}$ & & & \\
|
& $AMP_{lowpass}$ & & $OPAMP_{lowslew}$ & $Stat(OPAMP_{lowslew})$ & & \\
|
||||||
& $AMP_{low}$ & & $OPAMP_{latchdown}$ & & & \\
|
& $AMP_{low}$ & & $OPAMP_{latchdown}$ & $Stat(OPAMP_{latchdown})$ & & \\
|
||||||
& $AMP_{high}$ & & $OPAMP_{latchup}$ & & & \\
|
& $AMP_{high}$ & & $OPAMP_{latchup}$ & $Stat(OPAMP_{latchup})$ & & \\
|
||||||
& $AMP_{low}$ & & $OPAMP_{noop} $ & & & \\
|
& $AMP_{low}$ & & $OPAMP_{noop} $ & $Stat(OPAMP_{noop}) $ & & \\
|
||||||
|
|
||||||
|
|
||||||
\hline
|
\hline
|
||||||
@ -949,11 +955,61 @@ to expand: Each FMEA looses the reasoning in the FMMD Hierarchy/DAG for linking
|
|||||||
the symptoms to the potential causes.
|
the symptoms to the potential causes.
|
||||||
FMEA can miss symptoms especially where a component failure mode may cause more than one top-level symptom.
|
FMEA can miss symptoms especially where a component failure mode may cause more than one top-level symptom.
|
||||||
|
|
||||||
|
\section{Extracting/Assisting in FMECA from the DAG}
|
||||||
|
|
||||||
Work out the alpha and beta values !!!
|
FMECA is a refinement of FMEA and introduces two statistical variables, $\alpha$ and $\beta$.
|
||||||
|
The $\alpha$ value is the probability of
|
||||||
|
of a particular component failure
|
||||||
|
mode occuring.We can trace the DAG from a system level error/top level event, and assign
|
||||||
|
$\alpha$ values according to published statistics~\cite{fmd91}~\cite{mil1992}.
|
||||||
|
As for the FMEA example we can denote this using a $Stat()$ function.
|
||||||
|
|
||||||
|
The $\beta$ value is the probability that the component failure mode will
|
||||||
|
cause a given system level error.
|
||||||
|
This may be determined hueistically or by field data.
|
||||||
|
|
||||||
|
A factor of FMECA is criticallity. Each top level event/failure
|
||||||
|
is assigned a criticallity value. This defines how seriously the problem is
|
||||||
|
pervcieved. This must be determined by the safety engineers responsible for the equipment and
|
||||||
|
its environment.
|
||||||
|
|
||||||
|
|
||||||
|
\begin{table}[ht]
|
||||||
|
\caption{Non Inverting Amplifier: Failure Mode Effects Critcallity Analysis: Single Faults} % title of Table
|
||||||
|
\centering % used for centering table
|
||||||
|
\begin{tabular}{||l|c|l|c|c|c|c||}
|
||||||
|
\hline \hline
|
||||||
|
\textbf{Item} & \textbf{Potential Failure} & \textbf{Potential} & \textbf{$\alpha$} & \textbf{$\beta$} & \textbf{severity} & \textbf{$C_r$} \\
|
||||||
|
\textbf{Function} & \textbf{mode} & \textbf{Cause} & \textbf{} & \textbf{} & \textbf{rating} & \\\hline
|
||||||
|
\hline
|
||||||
|
Non Inverting & $AMP_{high}$ & $R1_{short} $ & $Stat(R1_{short}) $ & & & \\
|
||||||
|
Amplifier & $AMP_{low}$ & $R1_{open} $ & $Stat(R1_{open}) $ & & & \\
|
||||||
|
Circuit & $AMP_{low}$ & $R2_{short} $ & $Stat(R2_{short}) $ & & & \\
|
||||||
|
& $AMP_{high}$ & $R2_{open}$ & $Stat(R2_{open})$ & & & \\
|
||||||
|
|
||||||
|
& $AMP_{lowpass}$ & $OPAMP_{lowslew}$ & $Stat(OPAMP_{lowslew})$ & & & \\
|
||||||
|
& $AMP_{low}$ & $OPAMP_{latchdown}$ & $Stat(OPAMP_{latchdown})$ & & & \\
|
||||||
|
& $AMP_{high}$ & $OPAMP_{latchup}$ & $Stat(OPAMP_{latchup})$ & & & \\
|
||||||
|
& $AMP_{low}$ & $OPAMP_{noop} $ & $Stat(OPAMP_{noop}) $ & & & \\
|
||||||
|
|
||||||
|
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\label{ampfmeca}
|
||||||
|
\end{table}
|
||||||
|
%As the $\alpha$ modes are probabilities, the sum of all $\alpha$ modes for a component must equal one.
|
||||||
|
|
||||||
|
% Work out the alpha and beta values !!! well alpha is possible, beta and criticallity are not
|
||||||
|
|
||||||
\section{Extracting FMEDA from the DAG}
|
\section{Extracting FMEDA from the DAG}
|
||||||
|
|
||||||
|
safe failure fractions
|
||||||
|
hmmmm
|
||||||
|
SD SU DD DU
|
||||||
|
|
||||||
|
|
||||||
\section{Conclusion}
|
\section{Conclusion}
|
||||||
|
|
||||||
We now have a derived component that represents the failure modes of a non-inverting
|
We now have a derived component that represents the failure modes of a non-inverting
|
||||||
|
Loading…
Reference in New Issue
Block a user