non inv op amp now has conditional compilation for dag or pld
This commit is contained in:
parent
169761ae0f
commit
51d46d452c
@ -1,4 +1,5 @@
|
|||||||
\def\layersep{2.5cm}
|
|
||||||
|
|
||||||
|
|
||||||
\ifthenelse {\boolean{paper}}
|
\ifthenelse {\boolean{paper}}
|
||||||
{
|
{
|
||||||
@ -62,6 +63,7 @@ amplifier determined.
|
|||||||
|
|
||||||
A standard non inverting op amp (from ``The Art of Electronics'' ~\cite{aoe}[pp.234]) is shown in figure \ref{fig:noninvamp}.
|
A standard non inverting op amp (from ``The Art of Electronics'' ~\cite{aoe}[pp.234]) is shown in figure \ref{fig:noninvamp}.
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninv.png}
|
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninv.png}
|
||||||
@ -77,6 +79,9 @@ They operate as a potential divider and program the minus input on the op-amp
|
|||||||
to balance them against the positive input, giving the voltage gain ($G_v$)
|
to balance them against the positive input, giving the voltage gain ($G_v$)
|
||||||
defined by $ G_v = 1 + \frac{R2}{R1} $ at the output.
|
defined by $ G_v = 1 + \frac{R2}{R1} $ at the output.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
A functional group, is an ideally small in number collection of components,
|
A functional group, is an ideally small in number collection of components,
|
||||||
that interact to provide
|
that interact to provide
|
||||||
a function or task within a system.
|
a function or task within a system.
|
||||||
@ -84,16 +89,42 @@ As the resistors work to provide a specific function, that of a potential divide
|
|||||||
we can treat them as a functional group. This functional group has two members, $R1$ and $R2$.
|
we can treat them as a functional group. This functional group has two members, $R1$ and $R2$.
|
||||||
Using the EN298 specification for resistor failure ~\cite{en298}[App.A]
|
Using the EN298 specification for resistor failure ~\cite{en298}[App.A]
|
||||||
we can assign failure modes of $OPEN$ and $SHORT$ to the resistors.
|
we can assign failure modes of $OPEN$ and $SHORT$ to the resistors.
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
We can now represent a resistor in terms of its failure modes as a directed acyclic graph (DAG)
|
||||||
|
(see figure \ref{fig:rdag}).
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
\node[component] (R) at (0,-3) {$R$};
|
||||||
|
\node[failure] (RSHORT) at (\layersep,-2) {$R_{SHORT}$};
|
||||||
|
\node[failure] (ROPEN) at (\layersep,-4) {$R_{OPEN}$};
|
||||||
|
\path (R) edge (RSHORT);
|
||||||
|
\path (R) edge (ROPEN);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{DAG representing a reistor and its failure modes}
|
||||||
|
\label{fig:rdag}
|
||||||
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
Thus $R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes $\{R2\_OPEN, R2\_SHORT\}$.
|
Thus $R1$ has failure modes $\{R1\_OPEN, R1\_SHORT\}$ and $R2$ has failure modes $\{R2\_OPEN, R2\_SHORT\}$.
|
||||||
|
|
||||||
\clearpage
|
|
||||||
|
%\clearpage
|
||||||
\section{Failure Mode Analysis of the Potential Divider}
|
\section{Failure Mode Analysis of the Potential Divider}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
Modelling this as a functional group, we can draw a simple closed curve
|
Modelling this as a functional group, we can draw a simple closed curve
|
||||||
to represent each failure mode, taken from the components R1 and R2,
|
to represent each failure mode, taken from the components R1 and R2,
|
||||||
in the potential divider, shown in figure \ref{fig:fg1}.
|
in the potential divider, shown in figure \ref{fig:fg1}.
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h]
|
\begin{figure}[h]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1.png}
|
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1.png}
|
||||||
@ -101,12 +132,68 @@ in the potential divider, shown in figure \ref{fig:fg1}.
|
|||||||
\caption{potential divider `functional group' failure modes}
|
\caption{potential divider `functional group' failure modes}
|
||||||
\label{fig:fg1}
|
\label{fig:fg1}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
Modelling this as a functional group, we can draw this as a directed graph
|
||||||
|
failure modes, taken from the components R1 and R2,
|
||||||
|
in the potential divider, shown in figure \ref{fig:fg1dag}.
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (R1) at (0,-4) {$R_1$};
|
||||||
|
\node[component] (R2) at (0,-6) {$R_2$};
|
||||||
|
|
||||||
|
\node[failure] (R1SHORT) at (\layersep,-2) {$R1_{SHORT}$};
|
||||||
|
\node[failure] (R1OPEN) at (\layersep,-4) {$R1_{OPEN}$};
|
||||||
|
|
||||||
|
\node[failure] (R2SHORT) at (\layersep,-6) {$R2_{SHORT}$};
|
||||||
|
\node[failure] (R2OPEN) at (\layersep,-8) {$R2_{OPEN}$};
|
||||||
|
|
||||||
|
\path (R1) edge (R1SHORT);
|
||||||
|
\path (R1) edge (R1OPEN);
|
||||||
|
|
||||||
|
\path (R2) edge (R2SHORT);
|
||||||
|
\path (R2) edge (R2OPEN);
|
||||||
|
|
||||||
|
% Potential divider failure modes
|
||||||
|
%
|
||||||
|
%\node[symptom] (PDHIGH) at (\layersep*2,-4) {$PD_{HIGH}$};
|
||||||
|
%\node[symptom] (PDLOW) at (\layersep*2,-6) {$PD_{LOW}$};
|
||||||
|
|
||||||
|
%\path (R1OPEN) edge (PDHIGH);
|
||||||
|
%\path (R2SHORT) edge (PDHIGH);
|
||||||
|
|
||||||
|
%\path (R2OPEN) edge (PDLOW);
|
||||||
|
%\path (R1SHORT) edge (PDLOW);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\caption{DAG representing the functional group `Potential Divider'}
|
||||||
|
\label{fig:fg1dag}
|
||||||
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
We can now look at each of these base component failure modes,
|
We can now look at each of these base component failure modes,
|
||||||
and determine how they will affect the operation of the potential divider.
|
and determine how they will affect the operation of the potential divider.
|
||||||
%Each failure mode scenario we look at will be given a test case number,
|
%Each failure mode scenario we look at will be given a test case number,
|
||||||
%which is represented on the diagram, with an asterisk marking
|
%which is represented on the diagram, with an asterisk marking
|
||||||
%which failure modes is modelling (see figure \ref{fig:fg1a}).
|
%which failure modes is modelling (see figure \ref{fig:fg1a}).
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
Each labelled asterisk in the diagram represents a failure mode scenario.
|
Each labelled asterisk in the diagram represents a failure mode scenario.
|
||||||
The failure mode scenarios are given test case numbers, and an example to clarify this follows
|
The failure mode scenarios are given test case numbers, and an example to clarify this follows
|
||||||
in table~\ref{pdfmea}.
|
in table~\ref{pdfmea}.
|
||||||
@ -118,8 +205,76 @@ in table~\ref{pdfmea}.
|
|||||||
\caption{potential divider with test cases}
|
\caption{potential divider with test cases}
|
||||||
\label{fig:fg1a}
|
\label{fig:fg1a}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
For this example we can look at single failure modes only.
|
||||||
|
For each failure mode in our {\fg} `potential~divider'
|
||||||
|
we can assign a test case number (see table \ref{pdfmea}).
|
||||||
|
Each test case is analysed to determine the `symptom'
|
||||||
|
on the potential dividers' operation. For instance
|
||||||
|
were the resistor $R_1$ to go open, the circuit would not be grounded and the
|
||||||
|
voltage output from it would be the +ve supply rail.
|
||||||
|
This would mean the symptom of the failed potential divider, would be that it
|
||||||
|
gives an output high voltage reading. We can now consider the {\fg}
|
||||||
|
as a component in its own right, and its symptoms as its failure modes.
|
||||||
|
|
||||||
|
From table \ref{pdfmea} we can see that resistor
|
||||||
|
failures modes lead to common symptoms.
|
||||||
|
By drawing connecting lines in the graph
|
||||||
|
we can represent them.
|
||||||
|
The {\fg} can now be considered a derived component.
|
||||||
|
This is represented in the DAG in figure \ref{fig:fg1adag}.
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (R1) at (0,-4) {$R_1$};
|
||||||
|
\node[component] (R2) at (0,-6) {$R_2$};
|
||||||
|
|
||||||
|
\node[failure] (R1SHORT) at (\layersep,-2) {$R1_{SHORT}$};
|
||||||
|
\node[failure] (R1OPEN) at (\layersep,-4) {$R1_{OPEN}$};
|
||||||
|
|
||||||
|
\node[failure] (R2SHORT) at (\layersep,-6) {$R2_{SHORT}$};
|
||||||
|
\node[failure] (R2OPEN) at (\layersep,-8) {$R2_{OPEN}$};
|
||||||
|
|
||||||
|
\path (R1) edge (R1SHORT);
|
||||||
|
\path (R1) edge (R1OPEN);
|
||||||
|
|
||||||
|
\path (R2) edge (R2SHORT);
|
||||||
|
\path (R2) edge (R2OPEN);
|
||||||
|
|
||||||
|
% Potential divider failure modes
|
||||||
|
%
|
||||||
|
\node[symptom] (PDHIGH) at (\layersep*2,-4) {$PD_{HIGH}$};
|
||||||
|
\node[symptom] (PDLOW) at (\layersep*2,-6) {$PD_{LOW}$};
|
||||||
|
|
||||||
|
\path (R1OPEN) edge (PDHIGH);
|
||||||
|
\path (R2SHORT) edge (PDHIGH);
|
||||||
|
|
||||||
|
\path (R2OPEN) edge (PDLOW);
|
||||||
|
\path (R1SHORT) edge (PDLOW);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
|
||||||
|
\caption{Failure symptoms of the `Potential Divider'}
|
||||||
|
\label{fig:fg1adag}
|
||||||
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
\begin{table}[ht]
|
\begin{table}[ht]
|
||||||
\caption{Potential Divider: Failure Mode Effects Analysis: Single Faults} % title of Table
|
\caption{Potential Divider: Failure Mode Effects Analysis: Single Faults} % title of Table
|
||||||
\centering % used for centering table
|
\centering % used for centering table
|
||||||
@ -139,15 +294,13 @@ in table~\ref{pdfmea}.
|
|||||||
\label{pdfmea}
|
\label{pdfmea}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
We can now collect the symptoms of failure. From the four base component failure modes, we now
|
We can now collect the symptoms of failure. From the four base component failure modes, we now
|
||||||
have two symptoms, where the potential divider will give an incorrect low voltage (which we can term $LowPD$)
|
have two symptoms, where the potential divider will give an incorrect low voltage (which we can term $LowPD$)
|
||||||
or an incorrect high voltage (which we can term $HighPD$).
|
or an incorrect high voltage (which we can term $HighPD$).
|
||||||
|
|
||||||
We can represent the collection of these symptoms by drawing connecting lines between
|
We can represent the collection of these symptoms by drawing connecting lines between
|
||||||
the test cases and naming them (see figure \ref{fig:fg1b}).
|
the test cases and naming them (see figure \ref{fig:fg1b}).
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1b.png}
|
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/fg1b.png}
|
||||||
@ -155,10 +308,10 @@ the test cases and naming them (see figure \ref{fig:fg1b}).
|
|||||||
\caption{Collection of potential divider failure mode symptoms}
|
\caption{Collection of potential divider failure mode symptoms}
|
||||||
\label{fig:fg1b}
|
\label{fig:fg1b}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
|
||||||
%\clearpage
|
%\clearpage
|
||||||
|
|
||||||
We can now make a `derived component' to represent this potential divider.
|
We can now make a `derived component' to represent this potential divider.
|
||||||
|
This can be named \textbf{PD}.
|
||||||
This {\dc} will have two failure modes.
|
This {\dc} will have two failure modes.
|
||||||
We can use the symbol $\bowtie$ to represent taking the analysed
|
We can use the symbol $\bowtie$ to represent taking the analysed
|
||||||
{\fg} and creating from it, a {\dc}.
|
{\fg} and creating from it, a {\dc}.
|
||||||
@ -171,6 +324,40 @@ We can use the symbol $\bowtie$ to represent taking the analysed
|
|||||||
\caption{From functional group to derived component}
|
\caption{From functional group to derived component}
|
||||||
\label{fig:dc1}
|
\label{fig:dc1}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
We can now represent the potential divider as a {\dc}.
|
||||||
|
Because have its symptoms or failure mode behaviour,
|
||||||
|
we can treat these as the failure modes of a a new {\dc}.
|
||||||
|
We can represent it now as a DAG (see \ref{fig:dc1dag}).
|
||||||
|
|
||||||
|
\begin{figure}[h+]
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
\node[component] (PD) at (0,-3) {$PD$};
|
||||||
|
\node[symptom] (PDHIGH) at (\layersep,-2) {$PD_{HIGH}$};
|
||||||
|
\node[symptom] (PDLOW) at (\layersep,-4) {$PD_{LOW}$};
|
||||||
|
\path (PD) edge (PDHIGH);
|
||||||
|
\path (PD) edge (PDLOW);
|
||||||
|
\end{tikzpicture}
|
||||||
|
\caption{DAG representing a Potential Divider (PD) its failure symptoms}
|
||||||
|
\label{fig:dc1dag}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
Because the derived component is defined by its failure modes and
|
Because the derived component is defined by its failure modes and
|
||||||
the functional group used to derive it, we can use it
|
the functional group used to derive it, we can use it
|
||||||
@ -184,11 +371,11 @@ Let use now consider the op-amp. According to
|
|||||||
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
FMD-91~\cite{fmd91}[3-116] an op amp may have the following failure modes:
|
||||||
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
latchup(12.5\%), latchdown(6\%), nooperation(31.3\%), lowslewrate(50\%).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
We can represent these failure modes on a diagram (see figure~\ref{fig:op1}).
|
We can represent these failure modes on a diagram (see figure~\ref{fig:op1}).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/op1.png}
|
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/op1.png}
|
||||||
@ -196,22 +383,59 @@ We can represent these failure modes on a diagram (see figure~\ref{fig:op1}).
|
|||||||
\caption{Op Amp failure modes}
|
\caption{Op Amp failure modes}
|
||||||
\label{fig:op1}
|
\label{fig:op1}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
We can represent these failure modes on a DAG (see figure~\ref{fig:op1dag}).
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (OPAMP) at (0,-4) {$OPAMP$};
|
||||||
|
|
||||||
|
\node[failure] (OPAMPLU) at (\layersep,-0) {latchup};
|
||||||
|
\node[failure] (OPAMPLD) at (\layersep,-2) {latchdown};
|
||||||
|
\node[failure] (OPAMPNP) at (\layersep,-4) {noop};
|
||||||
|
\node[failure] (OPAMPLS) at (\layersep,-6) {lowslew};
|
||||||
|
|
||||||
|
\path (OPAMP) edge (OPAMPLU);
|
||||||
|
\path (OPAMP) edge (OPAMPLD);
|
||||||
|
\path (OPAMP) edge (OPAMPNP);
|
||||||
|
\path (OPAMP) edge (OPAMPLS);
|
||||||
|
|
||||||
|
\end{tikzpicture}
|
||||||
|
% End of code
|
||||||
|
\caption{DAG representing failure modes of an Op-amp}
|
||||||
|
\label{fig:op1dag}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
%\clearpage
|
%\clearpage
|
||||||
|
|
||||||
\section{Bringing the OP amp and the potential divider together}
|
\section{Bringing the OP amp and the potential divider together}
|
||||||
|
|
||||||
We can now consider bringing the OP amp and the potential divider together to
|
We can now consider bringing the OP amp and the potential divider together to
|
||||||
for an amplifier. We have the failure modes of the functional group for the potential divider,
|
model the non inverting amplifier. We have the failure modes of the functional group for the potential divider,
|
||||||
so we do not need to consider the individual resistor failure modes that define its behaviour.
|
so we do not need to consider the individual resistor failure modes that define its behaviour.
|
||||||
We can make a new functional group to represent the amplifier, by bringing the component \textbf{opamp}
|
We can make a new functional group to represent the amplifier, by bringing the component \textbf{opamp}
|
||||||
and the component potential divider into a new functional group.
|
and the component potential divider \textbf{PD} into a new functional group.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
This functional group has the failure modes from the op-amp component, and the failure modes
|
This functional group has the failure modes from the op-amp component, and the failure modes
|
||||||
from the potential divider {\dc} to analyse represented by figure~\ref{fig:fgamp}.
|
from the potential divider {\dc}, represented by figure~\ref{fig:fgamp}.
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
@ -232,6 +456,20 @@ regions) see figure~\ref{fig:fgampa}.
|
|||||||
\caption{Amplifier Functional Group with Test Cases}
|
\caption{Amplifier Functional Group with Test Cases}
|
||||||
\label{fig:fgampa}
|
\label{fig:fgampa}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
We can now represent the {\fg} for the non-inverting amplifier
|
||||||
|
by bringing together the failure modes from \textbf{opamp} and \textbf{PD}.
|
||||||
|
Each of these failure modes will be given a test case for analysis,
|
||||||
|
and this is represented in table \ref{ampfmea}.
|
||||||
|
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
\clearpage
|
\clearpage
|
||||||
|
|
||||||
@ -264,11 +502,9 @@ TC2 and TC6 can be considered as low output from the OPAMP for the application
|
|||||||
in hand (say milli-volt signal amplification).
|
in hand (say milli-volt signal amplification).
|
||||||
|
|
||||||
For this amplifier configuration we have three failure modes, $AMPHigh, AMPLow, LowPass$.%see figure~\ref{fig:fgampb}.
|
For this amplifier configuration we have three failure modes, $AMPHigh, AMPLow, LowPass$.%see figure~\ref{fig:fgampb}.
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
We can now derive a `component' to represent this amplifier configuration (see figure ~\ref{fig:noninvampa}).
|
We can now derive a `component' to represent this amplifier configuration (see figure ~\ref{fig:noninvampa}).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\begin{figure}[h+]
|
\begin{figure}[h+]
|
||||||
\centering
|
\centering
|
||||||
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninvampa.png}
|
\includegraphics[width=200pt,keepaspectratio=true]{./noninvopamp/noninvampa.png}
|
||||||
@ -276,16 +512,85 @@ We can now derive a `component' to represent this amplifier configuration (see f
|
|||||||
\caption{Non Inverting Amplifier Derived Component}
|
\caption{Non Inverting Amplifier Derived Component}
|
||||||
\label{fig:noninvampa}
|
\label{fig:noninvampa}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||||
|
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||||
|
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||||
|
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||||
|
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||||
|
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||||
|
\tikzstyle{annot} = [text width=4em, text centered]
|
||||||
|
|
||||||
|
\node[component] (OPAMP) at (0,-4) {$OPAMP$};
|
||||||
|
\node[failure] (OPAMPLU) at (\layersep,-0) {latchup};
|
||||||
|
\node[failure] (OPAMPLD) at (\layersep,-2) {latchdown};
|
||||||
|
\node[failure] (OPAMPNP) at (\layersep,-4) {noop};
|
||||||
|
\node[failure] (OPAMPLS) at (\layersep,-6) {lowslew};
|
||||||
|
\path (OPAMP) edge (OPAMPLU);
|
||||||
|
\path (OPAMP) edge (OPAMPLD);
|
||||||
|
\path (OPAMP) edge (OPAMPNP);
|
||||||
|
\path (OPAMP) edge (OPAMPLS);
|
||||||
|
|
||||||
|
|
||||||
|
\node[component] (PD) at (0,-9) {$PD$};
|
||||||
|
\node[symptom] (PDHIGH) at (\layersep,-8) {$PD_{HIGH}$};
|
||||||
|
\node[symptom] (PDLOW) at (\layersep,-10) {$PD_{LOW}$};
|
||||||
|
\path (PD) edge (PDHIGH);
|
||||||
|
\path (PD) edge (PDLOW);
|
||||||
|
|
||||||
|
\node[symptom] (AMPHIGH) at (\layersep*4,-3) {$AMP_{HIGH}$};
|
||||||
|
\node[symptom] (AMPLOW) at (\layersep*4,-5) {$AMP_{LOW}$};
|
||||||
|
\node[symptom] (AMPLP) at (\layersep*4,-7) {$LOWPASS$};
|
||||||
|
|
||||||
|
\path (PDLOW) edge (AMPHIGH);
|
||||||
|
\path (OPAMPLU) edge (AMPHIGH);
|
||||||
|
|
||||||
|
\path (PDHIGH) edge (AMPLOW);
|
||||||
|
\path (OPAMPNP) edge (AMPLOW);
|
||||||
|
\path (OPAMPLD) edge (AMPLOW);
|
||||||
|
\path (OPAMPLS) edge (AMPLP);
|
||||||
|
\end{tikzpicture}
|
||||||
|
% End of code
|
||||||
|
\caption{DAG representing failure modes and symptoms of the Non Inverting Op-amp Circuit}
|
||||||
|
\label{fig:noninvdag0}
|
||||||
|
\end{figure}
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
%failure mode contours).
|
%failure mode contours).
|
||||||
%\clearpage
|
%\clearpage
|
||||||
\clearpage
|
\clearpage
|
||||||
\section{Failure Modes from non inverting amplifier as a Directed Acyclic Graph (DAG)}
|
\section{Failure Modes from non inverting amplifier as a Directed Acyclic Graph (DAG)}
|
||||||
|
\ifthenelse {\boolean{pld}}
|
||||||
|
{
|
||||||
We can now represent the FMMD analysis as a directed graph, see figure \ref{fig:noninvdag0}.
|
We can now represent the FMMD analysis as a directed graph, see figure \ref{fig:noninvdag0}.
|
||||||
With the information structured in this way, we can trace the high level failure mode symptoms
|
With the information structured in this way, we can trace the high level failure mode symptoms
|
||||||
back to their potential causes.
|
back to their potential causes.
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
|
\ifthenelse {\boolean{dag}}
|
||||||
|
{
|
||||||
|
We can now expand the $PD$ {\dc} and now have a full FMMD failure mode model
|
||||||
|
drawn as a DAG, which we can use to traverse to determine the possible causes to
|
||||||
|
the three high level symptoms, or failure~modes of the non-inverting amplifier.
|
||||||
|
Figure \ref{fig:noninvdag0} shows a fully expanded DAG, from which we can derive information
|
||||||
|
to assist in building models for FTA, FMEA, FMECA and FMEDA failure mode analysis methodologies.
|
||||||
|
}
|
||||||
|
{
|
||||||
|
}
|
||||||
|
|
||||||
\begin{figure}
|
\begin{figure}
|
||||||
\centering
|
\centering
|
||||||
@ -421,7 +726,10 @@ in the FTA diagram. Tracing back from the top level event $AMP Low$ we are lead
|
|||||||
the $OPAMP latch down$ and $OP amp Noop$. These two events can cause the symptom $AMP Low$.
|
the $OPAMP latch down$ and $OP amp Noop$. These two events can cause the symptom $AMP Low$.
|
||||||
We can also trace back down to the symptom $PD High$. Thus we have three
|
We can also trace back down to the symptom $PD High$. Thus we have three
|
||||||
possible cause for $AMP LOW$, and so we can draw a three input
|
possible cause for $AMP LOW$, and so we can draw a three input
|
||||||
`or' gate below $AMP Low$, to which $OPAMP latch down$, $OP amp Noop$ and $PD High$ connect to from below.
|
`xor' gate below $AMP Low$, to which $OPAMP latch down$, $OP amp Noop$ and $PD High$
|
||||||
|
connect to from below\footnote{XOR is used here, because we are considering single failures only.
|
||||||
|
This is a weakness in FTA diagrams, as it is clumsy to represent
|
||||||
|
conjunction and dis-junction sourced from the same failure modes}.
|
||||||
$OPAMP latch down$ and $OP amp Noop$ are base level or component events, and so we cannot
|
$OPAMP latch down$ and $OP amp Noop$ are base level or component events, and so we cannot
|
||||||
trace them down any further.
|
trace them down any further.
|
||||||
$PD High$ is a symptom, and can be traced further.
|
$PD High$ is a symptom, and can be traced further.
|
||||||
@ -435,7 +743,7 @@ The FTA diagram directly derived from the FMMD DAG is shown in figure \ref{fig:n
|
|||||||
% Gates and symbols style
|
% Gates and symbols style
|
||||||
and/.style={and gate US,thick,draw,fill=blue!40,rotate=90,
|
and/.style={and gate US,thick,draw,fill=blue!40,rotate=90,
|
||||||
anchor=east,xshift=-1mm},
|
anchor=east,xshift=-1mm},
|
||||||
or/.style={or gate US,thick,draw,fill=blue!40,rotate=90,
|
or/.style={xor gate US,thick,draw,fill=blue!40,rotate=90,
|
||||||
anchor=east,xshift=-1mm},
|
anchor=east,xshift=-1mm},
|
||||||
be/.style={circle,thick,draw,fill=white!60,anchor=north,
|
be/.style={circle,thick,draw,fill=white!60,anchor=north,
|
||||||
minimum width=0.7cm},
|
minimum width=0.7cm},
|
||||||
@ -517,16 +825,10 @@ The FTA diagram directly derived from the FMMD DAG is shown in figure \ref{fig:n
|
|||||||
\label{fig:noninvfta}
|
\label{fig:noninvfta}
|
||||||
\caption{Example FTA Derived from the DAG for symptom `Amp Low'}
|
\caption{Example FTA Derived from the DAG for symptom `Amp Low'}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
%\clearpage
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
%\clearpage
|
|
||||||
|
|
||||||
%show an example fault tree, showing the causes and logical (only OR's here)
|
|
||||||
|
|
||||||
\subsection{Information missing in FTA}
|
\subsection{Information missing in FTA}
|
||||||
|
|
||||||
to expand: Each FTA deals only with one symptom.
|
to expand: Each FTA deals only with one symptom.
|
||||||
|
@ -14,6 +14,13 @@
|
|||||||
\newboolean{paper}
|
\newboolean{paper}
|
||||||
\setboolean{paper}{true} % boolvar=true or false
|
\setboolean{paper}{true} % boolvar=true or false
|
||||||
|
|
||||||
|
\newboolean{pld}
|
||||||
|
\setboolean{pld}{false} % boolvar=true or false : draw analysis using propositional logic diagrams
|
||||||
|
|
||||||
|
\newboolean{dag}
|
||||||
|
\setboolean{dag}{true} % boolvar=true or false : draw analysis using directed acylic graphs
|
||||||
|
\def\layersep{2.5cm}
|
||||||
|
|
||||||
|
|
||||||
%\newtheorem{definition}{Definition:}
|
%\newtheorem{definition}{Definition:}
|
||||||
|
|
||||||
|
@ -100,17 +100,27 @@ notation using logic symbols, that guides the analysis.
|
|||||||
This methodology was designed for
|
This methodology was designed for
|
||||||
experienced engineers sitting around a large diagram and discussing the safety aspects.
|
experienced engineers sitting around a large diagram and discussing the safety aspects.
|
||||||
Also the nature of a large rocket with red wire, and remote detonation
|
Also the nature of a large rocket with red wire, and remote detonation
|
||||||
failsafes meant that the objective was to iron out common failures
|
fail-safes meant that the objective was to iron out common failures
|
||||||
not to rigorously detect all possible failures.
|
not to rigorously detect all possible failures.
|
||||||
Consequently it was not designed to guarantee to covering all component failure modes,
|
Consequently it was not designed to guarantee to covering all component failure modes,
|
||||||
and has no rigorous in-built safeguards to ensure coverage of all possible
|
and has no rigorous in-built safeguards to ensure coverage of all possible
|
||||||
system level outcomes~\cite{nasafta}[Section 1.2].
|
system level outcomes~\cite{nasafta}[Section 1.2].
|
||||||
|
|
||||||
|
\paragraph{FTA: Potential to miss a large proportion of base compoenet failure modes}
|
||||||
FTA, like all top~down methodologies introduces the very serious problem
|
FTA, like all top~down methodologies introduces the very serious problem
|
||||||
of missing component failure modes~\cite{faa}[Ch.9].
|
of potentially missing base component failure modes~\cite{faa}[Ch.9].
|
||||||
|
\paragraph{FTA: difficulty in modelling multiple/simultaneous failure modes}
|
||||||
|
FTA does not lend its self to modelling multiple failure modes.
|
||||||
|
Or conditions are often used where the cases for combinations
|
||||||
|
of the or'd failure modes occurring simultaneously are not defined.
|
||||||
|
It would be more correct, but less intuitive to use XOR gates instead.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
NEED to FORMALISE EACH OF THESE TECHNIQUES AND SHOW THE WEAKNESSES AT EACH STAGE.
|
||||||
|
|
||||||
\paragraph{Outline of FTA Methodology}
|
\paragraph{Outline of FTA Methodology}
|
||||||
FTA works by taking an undesireable event
|
FTA works by taking an undesirable event
|
||||||
(or SYSTEM level failure mode or TOP level failure)
|
(or SYSTEM level failure mode or TOP level failure)
|
||||||
and deciding top-down, what sub-systems it depends upon, and which
|
and deciding top-down, what sub-systems it depends upon, and which
|
||||||
failure events of those sub-systems could cause the top level failure.
|
failure events of those sub-systems could cause the top level failure.
|
||||||
|
Loading…
Reference in New Issue
Block a user