doh, edited the_paper version.... luckily goit it all back...

This commit is contained in:
Robin Clark 2011-05-09 07:37:32 +01:00
parent d65f37377f
commit 4f1433d437

View File

@ -1,3 +1,4 @@
\def\layersep{2.5cm}
\ifthenelse {\boolean{paper}}
{
@ -256,6 +257,12 @@ regions) see figure~\ref{fig:fgampa}.
\label{ampfmea}
\end{table}
Let us consider, for the sake of example, that the voltage follower (very low gain of 1.0)
amplification chracteristics from
TC1 and TC6 can be considered as low output from the OPAMP for the application
in hand (say milli-volt signal amplification).
For this amplifier configuration we have three failure modes, $AMPHigh, AMPLow, LowPass$.%see figure~\ref{fig:fgampb}.
We can now derive a `component' to represent this amplifier configuration (see figure ~\ref{fig:noninvampa}).
@ -276,12 +283,15 @@ We can now derive a `component' to represent this amplifier configuration (see f
\section{Directed Acyclic Failure Mode Graph}
We can now represent the FMMD analysis as a directed graph, see figure \ref{fig:noninvdag0}.
With the information structured in this way, we can trace the high level failure mode symptoms
back to their potential causes.
\begin{figure}
\centering
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
\tikzstyle{component}=[fmmde, fill=green!50];
\tikzstyle{failure}=[fmmde, fill=red!50];
\tikzstyle{symptom}=[fmmde, fill=blue!50];
@ -292,8 +302,10 @@ We can now derive a `component' to represent this amplifier configuration (see f
% This is the same as writing \foreach \name / \y in {1/1,2/2,3/3,4/4}
% \node[component, pin=left:Input \#\y] (I-\name) at (0,-\y) {};
\node[component] (C-1) at (0,-1) {$C^0_1$};
\node[component] (C-2) at (0,-3) {$C^0_2$};
\node[component] (OPAMP) at (0,-6) {$OPAMP$};
\node[component] (R1) at (0,-11) {$R_1$};
\node[component] (R2) at (0,-15) {$R_2$};
%\node[component] (C-3) at (0,-5) {$C^0_3$};
%\node[component] (K-4) at (0,-8) {$K^0_4$};
%\node[component] (C-5) at (0,-10) {$C^0_5$};
@ -304,56 +316,100 @@ We can now derive a `component' to represent this amplifier configuration (see f
%\foreach \name / \y in {1,...,5}
% \path[yshift=0.5cm]
\node[failure] (C-1a) at (\layersep,-1) {a};
\node[failure] (C-1b) at (\layersep,-2) {b};
\node[failure] (C-2a) at (\layersep,-3) {a};
\node[failure] (C-2b) at (\layersep,-4) {b};
\node[failure] (OPAMPLU) at (\layersep,-2) {latchup};
\node[failure] (OPAMPLD) at (\layersep,-4) {latchdown};
\node[failure] (OPAMPNP) at (\layersep,-6) {noop};
\node[failure] (OPAMPLS) at (\layersep,-8) {lowslew};
\node[failure] (R1SHORT) at (\layersep,-11) {$R1_{SHORT}$};
\node[failure] (R1OPEN) at (\layersep,-13) {$R1_{OPEN}$};
\node[failure] (R2SHORT) at (\layersep,-15) {$R2_{SHORT}$};
\node[failure] (R2OPEN) at (\layersep,-17) {$R2_{OPEN}$};
% Draw the output layer node
% Connect every node in the input layer with every node in the
% hidden layer.
%\foreach \source in {1,...,4}
% \foreach \dest in {1,...,5}
\path (C-1) edge (C-1a);
\path (C-1) edge (C-1b);
\path (C-2) edge (C-2a);
\path (C-2) edge (C-2b);
%\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
\node[symptom, right of=C-1a] (s1) {s1};
\node[symptom, right of=C-2a] (s2) {s2};
\path (C-2b) edge (s1);
\path (C-1a) edge (s1);
\path (C-2a) edge (s2);
\path (C-1b) edge (s2);
%\node[component, right of=s1] (DC) {$C^1_1$};
%\path (s1) edge (DC);
%\path (s2) edge (DC);
% Connect every node in the hidden layer with the output layer
%\foreach \source in {1,...,5}
% \path (H-\source) edge (O);
% Annotate the layers
\node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
\node[annot,left of=hl] {Base Components};
\node[annot,right of=hl](s) {Symptoms};
% % Connect every node in the input layer with every node in the
% % hidden layer.
% %\foreach \source in {1,...,4}
% % \foreach \dest in {1,...,5}
\path (OPAMP) edge (OPAMPLU);
\path (OPAMP) edge (OPAMPLD);
\path (OPAMP) edge (OPAMPNP);
\path (OPAMP) edge (OPAMPLS);
\path (R1) edge (R1SHORT);
\path (R1) edge (R1OPEN);
\path (R2) edge (R2SHORT);
\path (R2) edge (R2OPEN);
% Potential divider failure modes
%
\node[symptom] (PDHIGH) at (\layersep*2,-13) {$PD_{HIGH}$};
\node[symptom] (PDLOW) at (\layersep*2,-15) {$PD_{LOW}$};
\path (R1OPEN) edge (PDHIGH);
\path (R2SHORT) edge (PDHIGH);
\path (R2OPEN) edge (PDLOW);
\path (R1SHORT) edge (PDLOW);
\node[symptom] (AMPHIGH) at (\layersep*3,-9) {$AMP_{HIGH}$};
\node[symptom] (AMPLOW) at (\layersep*3,-11) {$AMP_{LOW}$};
\node[symptom] (AMPLP) at (\layersep*3,-13) {$LOWPASS$};
\path (PDLOW) edge (AMPHIGH);
\path (OPAMPLU) edge (AMPHIGH);
\path (PDHIGH) edge (AMPLOW);
\path (OPAMPNP) edge (AMPLOW);
\path (OPAMPLD) edge (AMPLOW);
\path (OPAMPLS) edge (AMPLP);
% %\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
% \node[symptom, right of=C-1a] (s1) {s1};
% \node[symptom, right of=C-2a] (s2) {s2};
%
%
%
% \path (C-2b) edge (s1);
% \path (C-1a) edge (s1);
%
% \path (C-2a) edge (s2);
% \path (C-1b) edge (s2);
%
% %\node[component, right of=s1] (DC) {$C^1_1$};
%
% %\path (s1) edge (DC);
% %\path (s2) edge (DC);
%
%
%
% % Connect every node in the hidden layer with the output layer
% %\foreach \source in {1,...,5}
% % \path (H-\source) edge (O);
%
% % Annotate the layers
% \node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
% \node[annot,left of=hl] {Base Components};
% \node[annot,right of=hl](s) {Symptoms};
%\node[annot,right of=s](dcl) {Derived Component};
\end{tikzpicture}
% End of code
\caption{DAG representing failure modes and symptoms of $FG^0_1$}
\label{fig:dag0}
\caption{DAG representing failure modes and symptoms of the Non Inverting Op-amp Circuit}
\label{fig:noninvdag0}
\end{figure}
\clearpage
\section{Conclusion}
We now have a derived component that represents the failure modes of a non-inverting
@ -366,12 +422,3 @@ statistical literature is available ~\cite{mil1991}~\cite{fmd91}.
Software used to edit these diagrams, keeps the model in a directed acyclic graph data structure
for this purpose.
%\clearpage % refs etc come next
%\vspace{60pt}
%$$ \int_{0\-}^{\infty} f(t).e^{-s.t}.dt \; | \; s \in \mathcal{C}$$
%\today
% $$\frac{-b\pm\sqrt{ {b^2-4ac}}}{2a}$$
%\today