doh, edited the_paper version.... luckily goit it all back...
This commit is contained in:
parent
d65f37377f
commit
4f1433d437
@ -1,3 +1,4 @@
|
||||
\def\layersep{2.5cm}
|
||||
|
||||
\ifthenelse {\boolean{paper}}
|
||||
{
|
||||
@ -256,6 +257,12 @@ regions) see figure~\ref{fig:fgampa}.
|
||||
\label{ampfmea}
|
||||
\end{table}
|
||||
|
||||
|
||||
Let us consider, for the sake of example, that the voltage follower (very low gain of 1.0)
|
||||
amplification chracteristics from
|
||||
TC1 and TC6 can be considered as low output from the OPAMP for the application
|
||||
in hand (say milli-volt signal amplification).
|
||||
|
||||
For this amplifier configuration we have three failure modes, $AMPHigh, AMPLow, LowPass$.%see figure~\ref{fig:fgampb}.
|
||||
|
||||
We can now derive a `component' to represent this amplifier configuration (see figure ~\ref{fig:noninvampa}).
|
||||
@ -276,12 +283,15 @@ We can now derive a `component' to represent this amplifier configuration (see f
|
||||
|
||||
\section{Directed Acyclic Failure Mode Graph}
|
||||
|
||||
We can now represent the FMMD analysis as a directed graph, see figure \ref{fig:noninvdag0}.
|
||||
With the information structured in this way, we can trace the high level failure mode symptoms
|
||||
back to their potential causes.
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\begin{tikzpicture}[shorten >=1pt,->,draw=black!50, node distance=\layersep]
|
||||
\tikzstyle{every pin edge}=[<-,shorten <=1pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=17pt,inner sep=0pt]
|
||||
\tikzstyle{fmmde}=[circle,fill=black!25,minimum size=30pt,inner sep=0pt]
|
||||
\tikzstyle{component}=[fmmde, fill=green!50];
|
||||
\tikzstyle{failure}=[fmmde, fill=red!50];
|
||||
\tikzstyle{symptom}=[fmmde, fill=blue!50];
|
||||
@ -292,8 +302,10 @@ We can now derive a `component' to represent this amplifier configuration (see f
|
||||
% This is the same as writing \foreach \name / \y in {1/1,2/2,3/3,4/4}
|
||||
% \node[component, pin=left:Input \#\y] (I-\name) at (0,-\y) {};
|
||||
|
||||
\node[component] (C-1) at (0,-1) {$C^0_1$};
|
||||
\node[component] (C-2) at (0,-3) {$C^0_2$};
|
||||
\node[component] (OPAMP) at (0,-6) {$OPAMP$};
|
||||
\node[component] (R1) at (0,-11) {$R_1$};
|
||||
\node[component] (R2) at (0,-15) {$R_2$};
|
||||
|
||||
%\node[component] (C-3) at (0,-5) {$C^0_3$};
|
||||
%\node[component] (K-4) at (0,-8) {$K^0_4$};
|
||||
%\node[component] (C-5) at (0,-10) {$C^0_5$};
|
||||
@ -304,56 +316,100 @@ We can now derive a `component' to represent this amplifier configuration (see f
|
||||
%\foreach \name / \y in {1,...,5}
|
||||
% \path[yshift=0.5cm]
|
||||
|
||||
\node[failure] (C-1a) at (\layersep,-1) {a};
|
||||
\node[failure] (C-1b) at (\layersep,-2) {b};
|
||||
\node[failure] (C-2a) at (\layersep,-3) {a};
|
||||
\node[failure] (C-2b) at (\layersep,-4) {b};
|
||||
|
||||
\node[failure] (OPAMPLU) at (\layersep,-2) {latchup};
|
||||
\node[failure] (OPAMPLD) at (\layersep,-4) {latchdown};
|
||||
\node[failure] (OPAMPNP) at (\layersep,-6) {noop};
|
||||
\node[failure] (OPAMPLS) at (\layersep,-8) {lowslew};
|
||||
|
||||
\node[failure] (R1SHORT) at (\layersep,-11) {$R1_{SHORT}$};
|
||||
\node[failure] (R1OPEN) at (\layersep,-13) {$R1_{OPEN}$};
|
||||
|
||||
\node[failure] (R2SHORT) at (\layersep,-15) {$R2_{SHORT}$};
|
||||
\node[failure] (R2OPEN) at (\layersep,-17) {$R2_{OPEN}$};
|
||||
|
||||
|
||||
|
||||
% Draw the output layer node
|
||||
|
||||
% Connect every node in the input layer with every node in the
|
||||
% hidden layer.
|
||||
%\foreach \source in {1,...,4}
|
||||
% \foreach \dest in {1,...,5}
|
||||
\path (C-1) edge (C-1a);
|
||||
\path (C-1) edge (C-1b);
|
||||
\path (C-2) edge (C-2a);
|
||||
\path (C-2) edge (C-2b);
|
||||
|
||||
%\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
|
||||
\node[symptom, right of=C-1a] (s1) {s1};
|
||||
\node[symptom, right of=C-2a] (s2) {s2};
|
||||
|
||||
|
||||
|
||||
\path (C-2b) edge (s1);
|
||||
\path (C-1a) edge (s1);
|
||||
|
||||
\path (C-2a) edge (s2);
|
||||
\path (C-1b) edge (s2);
|
||||
|
||||
%\node[component, right of=s1] (DC) {$C^1_1$};
|
||||
|
||||
%\path (s1) edge (DC);
|
||||
%\path (s2) edge (DC);
|
||||
|
||||
|
||||
|
||||
% Connect every node in the hidden layer with the output layer
|
||||
%\foreach \source in {1,...,5}
|
||||
% \path (H-\source) edge (O);
|
||||
|
||||
% Annotate the layers
|
||||
\node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
|
||||
\node[annot,left of=hl] {Base Components};
|
||||
\node[annot,right of=hl](s) {Symptoms};
|
||||
% % Connect every node in the input layer with every node in the
|
||||
% % hidden layer.
|
||||
% %\foreach \source in {1,...,4}
|
||||
% % \foreach \dest in {1,...,5}
|
||||
\path (OPAMP) edge (OPAMPLU);
|
||||
\path (OPAMP) edge (OPAMPLD);
|
||||
\path (OPAMP) edge (OPAMPNP);
|
||||
\path (OPAMP) edge (OPAMPLS);
|
||||
|
||||
\path (R1) edge (R1SHORT);
|
||||
\path (R1) edge (R1OPEN);
|
||||
|
||||
\path (R2) edge (R2SHORT);
|
||||
\path (R2) edge (R2OPEN);
|
||||
|
||||
|
||||
% Potential divider failure modes
|
||||
%
|
||||
\node[symptom] (PDHIGH) at (\layersep*2,-13) {$PD_{HIGH}$};
|
||||
\node[symptom] (PDLOW) at (\layersep*2,-15) {$PD_{LOW}$};
|
||||
|
||||
|
||||
|
||||
\path (R1OPEN) edge (PDHIGH);
|
||||
\path (R2SHORT) edge (PDHIGH);
|
||||
|
||||
|
||||
\path (R2OPEN) edge (PDLOW);
|
||||
\path (R1SHORT) edge (PDLOW);
|
||||
|
||||
|
||||
|
||||
\node[symptom] (AMPHIGH) at (\layersep*3,-9) {$AMP_{HIGH}$};
|
||||
\node[symptom] (AMPLOW) at (\layersep*3,-11) {$AMP_{LOW}$};
|
||||
\node[symptom] (AMPLP) at (\layersep*3,-13) {$LOWPASS$};
|
||||
|
||||
\path (PDLOW) edge (AMPHIGH);
|
||||
\path (OPAMPLU) edge (AMPHIGH);
|
||||
|
||||
\path (PDHIGH) edge (AMPLOW);
|
||||
\path (OPAMPNP) edge (AMPLOW);
|
||||
\path (OPAMPLD) edge (AMPLOW);
|
||||
|
||||
\path (OPAMPLS) edge (AMPLP);
|
||||
% %\node[symptom,pin={[pin edge={->}]right:Output}, right of=C-1a] (O) {};
|
||||
% \node[symptom, right of=C-1a] (s1) {s1};
|
||||
% \node[symptom, right of=C-2a] (s2) {s2};
|
||||
%
|
||||
%
|
||||
%
|
||||
% \path (C-2b) edge (s1);
|
||||
% \path (C-1a) edge (s1);
|
||||
%
|
||||
% \path (C-2a) edge (s2);
|
||||
% \path (C-1b) edge (s2);
|
||||
%
|
||||
% %\node[component, right of=s1] (DC) {$C^1_1$};
|
||||
%
|
||||
% %\path (s1) edge (DC);
|
||||
% %\path (s2) edge (DC);
|
||||
%
|
||||
%
|
||||
%
|
||||
% % Connect every node in the hidden layer with the output layer
|
||||
% %\foreach \source in {1,...,5}
|
||||
% % \path (H-\source) edge (O);
|
||||
%
|
||||
% % Annotate the layers
|
||||
% \node[annot,above of=C-1a, node distance=1cm] (hl) {Failure modes};
|
||||
% \node[annot,left of=hl] {Base Components};
|
||||
% \node[annot,right of=hl](s) {Symptoms};
|
||||
%\node[annot,right of=s](dcl) {Derived Component};
|
||||
\end{tikzpicture}
|
||||
% End of code
|
||||
\caption{DAG representing failure modes and symptoms of $FG^0_1$}
|
||||
\label{fig:dag0}
|
||||
\caption{DAG representing failure modes and symptoms of the Non Inverting Op-amp Circuit}
|
||||
\label{fig:noninvdag0}
|
||||
\end{figure}
|
||||
|
||||
\clearpage
|
||||
\section{Conclusion}
|
||||
|
||||
We now have a derived component that represents the failure modes of a non-inverting
|
||||
@ -366,12 +422,3 @@ statistical literature is available ~\cite{mil1991}~\cite{fmd91}.
|
||||
Software used to edit these diagrams, keeps the model in a directed acyclic graph data structure
|
||||
for this purpose.
|
||||
|
||||
%\clearpage % refs etc come next
|
||||
|
||||
|
||||
%\vspace{60pt}
|
||||
%$$ \int_{0\-}^{\infty} f(t).e^{-s.t}.dt \; | \; s \in \mathcal{C}$$
|
||||
%\today
|
||||
|
||||
% $$\frac{-b\pm\sqrt{ {b^2-4ac}}}{2a}$$
|
||||
%\today
|
||||
|
Loading…
Reference in New Issue
Block a user