completed analysis of BUBBA from bth perspectives.

Needs tidying up (somewhat).
This commit is contained in:
Robin Clark 2012-01-21 14:07:54 +00:00
parent 11cdb4f50d
commit 488d4082ec

View File

@ -843,8 +843,8 @@ We could at this point bring all the {\dcs} together into one large functional
group (see figure~\ref{fig:poss1finalbubba}) group (see figure~\ref{fig:poss1finalbubba})
or we could try to merge smaller stages. or we could try to merge smaller stages.
The capactior and 180 degree inverting amplifier, form a {\fg} A PHS45 {\dc} and an inverting amplifier (which always gives $180^{\circ}$ phase shift), form a {\fg}
providing an amplified 225 degree phase shift, which we can call $PHS225AMP$. providing an amplified $225^{\circ}$ phase shift, which we can call $PHS225AMP$.
% %
We could also merge the $NIBUFF$ and $PHS45$ We could also merge the $NIBUFF$ and $PHS45$
{\dcs} into a {\fg} and the resultant derived component from this we could call a $BUFF45$, {\dcs} into a {\fg} and the resultant derived component from this we could call a $BUFF45$,
@ -855,6 +855,15 @@ and then merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see figure~\r
\subsection{FMMD Analysis using one large functional group} \subsection{FMMD Analysis using one large functional group}
\begin{figure}[h+]
\centering
\includegraphics[width=300pt,keepaspectratio=true]{./poss1finalbubba.png}
% largeosc.png: 916x390 pixel, 72dpi, 32.31x13.76 cm, bb=0 0 916 390
\caption{Bubba Oscillator: One final large functional group.}
\label{fig:poss1finalbubba}
\end{figure}
\begin{table}[h+] \begin{table}[h+]
\caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table \caption{Bubba Oscillator: Failure Mode Effects Analysis: One Large Functional Group} % title of Table
\label{tbl:bubbalargefg} \label{tbl:bubbalargefg}
@ -865,42 +874,42 @@ and then merge $PHS135BUFFERED$ and $PHS225AMP$ in a final stage (see figure~\r
\hline \hline
FS1: $PHS45_1$ $90\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\ FS1: $PHS45_1$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
FS1: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
FS1: $PHS45_1$ $0\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline FS3: $PHS45_1$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
FS1: $NIBUFF_1$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\ FS4: $NIBUFF_1$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_1$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS5: $NIBUFF_1$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_1$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS6: $NIBUFF_1$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline FS7: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
FS1: $PHS45_2$ $90\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\ FS8: $PHS45_2$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
FS1: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ FS9: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
FS1: $PHS45_2$ $0\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline FS10: $PHS45_2$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
FS1: $NIBUFF_2$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\ FS11: $NIBUFF_2$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_2$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS12: $NIBUFF_2$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_2$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS13: $NIBUFF_2$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_2$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline FS14: $NIBUFF_2$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
FS1: $PHS45_3$ $90\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\ FS15: $PHS45_3$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
FS1: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ FS16: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
FS1: $PHS45_3$ $0\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline FS17: $PHS45_3$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
FS1: $NIBUFF_3$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\ FS18: $NIBUFF_3$ $L_{up}$ & & output high No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_3$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS19: $NIBUFF_3$ $L_{dn}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_3$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\ FS20: $NIBUFF_3$ $N_{oop}$ & & output low No Oscillation & & $NO_{osc}$ \\
FS1: $NIBUFF_3$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline FS21: $NIBUFF_3$ $L_{slew}$ & & signal lost & & $NO_{osc}$ \\ \hline
FS1: $PHS45_4$ $90\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\ FS22: $PHS45_4$ $0\_phaseshift$ & & osc frequency high & & $HI_{fosc}$ \\
FS1: $PHS45_4$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\ FS23: $PHS45_4$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
FS1: $PHS45_4$ $0\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline FS24: $PHS45_4$ $90\_phaseshift$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
FS1: $INVAMP$ $OUTOFRANGE$ & & signal lost & & $NO_{osc}$ \\ FS25: $INVAMP$ $OUTOFRANGE$ & & signal lost & & $NO_{osc}$ \\
FS1: $INVAMP$ $ZEROOUTPUT$ & & signal lost & & $NO_{osc}$ \\ FS26: $INVAMP$ $ZEROOUTPUT$ & & signal lost & & $NO_{osc}$ \\
FS1: $INVAMP$ $NOGAIN$ & & signal lost & & $NO_{osc}$ \\ FS27: $INVAMP$ $NOGAIN$ & & signal lost & & $NO_{osc}$ \\
FS1: $INVAMP$ $LOWPASS$ & & signal lost & & $NO_{osc}$ \\ \hline FS28: $INVAMP$ $LOWPASS$ & & signal lost & & $NO_{osc}$ \\ \hline
% FS1: $CAP_{10nF}$ $OPEN$ & & osc frequency low & & $LO_{fosc}$ \\ \hline % FS1: $CAP_{10nF}$ $OPEN$ & & osc frequency low & & $LO_{fosc}$ \\ \hline
@ -917,39 +926,167 @@ returns three failure modes,
$$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}, LO_{fosc} \} . $$ $$ fm(BubbaOscillator) = \{ NO_{osc}, HI_{fosc}, LO_{fosc} \} . $$
\begin{figure}[h]
\centering
\includegraphics[width=300pt,keepaspectratio=true]{./poss1finalbubba.png}
% largeosc.png: 916x390 pixel, 72dpi, 32.31x13.76 cm, bb=0 0 916 390
\caption{Bubba Oscillator: One final large functional group.}
\label{fig:poss1finalbubba}
\end{figure}
\subsection{FMMD Analysis using smaller functional groups} \subsection{FMMD Analysis using smaller functional groups}
\begin{table}[h+] \begin{figure}[h+]
\caption{Bubba Oscillator: Failure Mode Effects Analysis: Smaller Functional Groups, one more stage of hierarchy} % title of Table
\label{tbl:bubbalargefg}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{Bubba} & & \textbf{Symptom} \\
& & \textbf{Oscillator} & & \\
\hline
\hline
\end{tabular}
\end{table}
\begin{figure}[h]
\centering \centering
\includegraphics[width=300pt,keepaspectratio=true]{./poss2finalbubba.png} \includegraphics[width=300pt,keepaspectratio=true]{./poss2finalbubba.png}
% largeosc.png: 916x390 pixel, 72dpi, 32.31x13.76 cm, bb=0 0 916 390 % largeosc.png: 916x390 pixel, 72dpi, 32.31x13.76 cm, bb=0 0 916 390
\caption{Bubba Oscillator: Smaller Functional Groups, One more FMMD hierarchy stage.} \caption{Bubba Oscillator: Smaller Functional Groups, One more FMMD hierarchy stage.}
\label{fig:poss1finalbubba} \label{fig:poss2finalbubba}
\end{figure} \end{figure}
We can take a more modular approach by creating two intermediate functional groups, a buffered $45^{\circ}$ phase shifter (BUFF45)
we can combine three $BUFF45$'s to make
a $135^{\circ}$ buffer phase shifter (PHS135BUFFERED).
We can combine a $PHS45$ and a $NIBUFF$ to create
and an amplifying $225^{\circ}$ phase shifter (PHS225AMP).
By combining PHS225AMP and PHS135BUFFERED we can create a more modularised hierarchical
model of the bubba oscillator.
The proposed hierarchy is shown in figure~\ref{fig:poss2finalbubba}.
BUFF45 will comprise of a $PHS45$ {\dc} and a $NIBUFF$.
\begin{table}[h+]
\caption{BUFF45: Failure Mode Effects Analysis} % title of Table
\label{tbl:buff45}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{BUFF45} & & \textbf{Symptom} \\
& & & & \\
\hline
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $0\_phaseshift$ \\
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $90\_phaseshift$ \\ \hline
FS4: $NIBUFF_1$ $L_{up}$ & & output high & & $NO_{signal}$ \\
FS5: $NIBUFF_1$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
FS6: $NIBUFF_1$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
FS7: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
\hline
\end{tabular}
\end{table}
Collecting symptoms from table~\ref{tbl:buff45}, we can create a derived component $BUFF45$ which has the following failure modes:
$$
fm (BUFF45) = \{ 90\_phaseshift, 0\_phaseshift, NO\_signal .\}
$$
We can now combine three $BUFF45$ {\dcs} and create a $PHS135BUFFERED$ {\dc}.
\begin{table}[h+]
\caption{PHS135BUFFERED: Failure Mode Effects Analysis} % title of Table
\label{tbl:phs135buffered}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{PHS135 Buffered} & & \textbf{Symptom} \\
& & & & \\
\hline
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
FS4: $PHS45_2$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
FS5: $PHS45_2$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
FS6: $PHS45_2$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
FS7: $PHS45_3$ $0\_phaseshift$ & & phase shift low & & $90\_phaseshift$ \\
FS8: $PHS45_3$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
FS9: $PHS45_3$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
\hline
\end{tabular}
\end{table}
Collecting symptoms from table~\ref{tbl:phs135buffered}, we can create a derived component $PHS135BUFFERED$ which has the following failure modes:
$$
fm (PHS135BUFFERED) = \{ 90\_phaseshift, 180\_phaseshift, NO\_signal .\}
$$
The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\circ}$ of phase shift).
\begin{table}[h+]
\caption{PHS225AMP: Failure Mode Effects Analysis} % title of Table
\label{tbl:phs225amp}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{PHS225AMP} & & \textbf{Symptom} \\
& & \textbf{Oscillator} & & \\
\hline
FS1: $PHS45_1$ $0\_phaseshift$ & & phase shift low & & $270\_phaseshift$ \\
FS2: $PHS45_1$ $no\_signal$ & & signal lost & & $NO_{signal}$ \\
FS3: $PHS45_1$ $90\_phaseshift$ & & phase shift high & & $180\_phaseshift$ \\ \hline
FS4: $NIBUFF_1$ $L_{up}$ & & output high & & $NO_{signal}$ \\
FS5: $NIBUFF_1$ $L_{dn}$ & & output low & & $NO_{signal}$ \\
FS6: $NIBUFF_1$ $N_{oop}$ & & output low & & $NO_{signal}$ \\
FS7: $NIBUFF_1$ $L_{slew}$ & & signal lost & & $NO_{signal}$ \\ \hline
\hline
\end{tabular}
\end{table}
Collecting symptoms from table~\ref{tbl:phs225amp}, we can create a derived component $PHS225AMP$ which has the following failure modes:
$$
fm (PHS225AMP) = \{ 270\_phaseshift, 180\_phaseshift, NO\_signal .\}
$$
The $PHS225AMP$ consists of a $PHS45$ and an $INVAMP$ (which provides $180^{\circ}$ of phase shift).
To complete the analysis we now bring the derived components $PHS135BUFFERED$ and $PHS225AMP$ together
and perform FMEA with these.
\begin{table}[h+]
\caption{BUBBAOSC: Failure Mode Effects Analysis} % title of Table
\label{tbl:bubba2}
\begin{tabular}{|| l | l | c | c | l ||} \hline
\textbf{Failure Scenario} & & \textbf{BUBBAOSC} & & \textbf{Symptom} \\
& & & & \\
\hline
FS1: $PHS135BUFFERED$ $180\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
FS2: $PHS135BUFFERED$ $no\_signal$ & & signal lost & & $NO_{osc}$ \\
FS3: $PHS135BUFFERED$ $90\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\ \hline
FS4: $PHS225AMP$ $270\_phaseshift$ & & phase shift high & & $LO_{fosc}$ \\
FS5: $PHS225AMP$ $180\_phaseshift$ & & phase shift low & & $HI_{osc}$ \\
FS6: $PHS225AMP$ $NO\_signal$ & & lost signal & & $NO_{signal}$ \\ \hline
\hline
\end{tabular}
\end{table}
Collecting symptoms from table~\ref{tbl:bubba2}, we can create a derived component $BUBBAOSC$ which has the following failure modes:
$$
fm (BUBBAOSC) = \{ LO_{fosc}, HI_{osc}, NO\_signal .\}
$$
We could trace the DAGs here and ensure that both analysis strategies worked ok.....
\subsection{Comparing both approaches} \subsection{Comparing both approaches}