Working on presentation while ill (have not eaten for 54+ hours)
This commit is contained in:
parent
640f27125a
commit
4059c7f79c
@ -1,5 +1,5 @@
|
||||
|
||||
DIAPNG= component.png fmmd_env_op_uml.png fmmd_exm_h.png master_uml.png mvampcircuit.png mvamp.png n_inv_dc.png pd.png pd_euler2.png pd_euler.png
|
||||
DIAPNG= three_tree.png component.png fmmd_env_op_uml.png fmmd_exm_h.png master_uml.png mvampcircuit.png mvamp.png n_inv_dc.png pd.png pd_euler2.png pd_euler.png
|
||||
|
||||
%.png:%.dia
|
||||
dia -t png $<
|
||||
|
@ -22,7 +22,9 @@
|
||||
\frametitle{FMEA}
|
||||
%\tableofcontents[currentsection]
|
||||
\end{frame}
|
||||
|
||||
This talk introduces Failure Mode Effects Analysis, and the different ways it is applied.
|
||||
These techniques are discussed, and then
|
||||
a refinement is proposed, which is essentially a modularisation of the FMEA process.
|
||||
\begin{frame}
|
||||
\frametitle{FMEA}
|
||||
\begin{itemize}
|
||||
@ -129,13 +131,13 @@ We need to look at a large number of failure scenarios
|
||||
to do this completely (all failure modes against all components).
|
||||
This is represented in the equation below. %~\ref{eqn:fmea_state_exp},
|
||||
where $N$ is the total number of components in the system, and
|
||||
$cfm$ is the number of failure modes per component.
|
||||
$f$ is the number of failure modes per component.
|
||||
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single}
|
||||
N.(N-1).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
N.(N-1).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
@ -159,11 +161,14 @@ $N^3$.
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_double}
|
||||
N.(N-1).(N-2).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
N.(N-1).(N-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
|
||||
$100*99*98*3=2,910,600$.
|
||||
\pause
|
||||
|
||||
.\\
|
||||
|
||||
The European Gas burner standard (EN298:2003), demands the checking of
|
||||
double failure scenarios (for burner lock-out scenarios).
|
||||
@ -438,6 +443,7 @@ against all safe and dangerous failure probabilities.
|
||||
Again this is usually expressed as a percentage.
|
||||
|
||||
$$ SFF = \big( \Sigma\lambda_S + \Sigma\lambda_{DD} \big) / \big( \Sigma\lambda_S + \Sigma\lambda_D \big) $$
|
||||
\pause
|
||||
SFF determines how proportionately fail-safe a system is, not how reliable it is ! \pause
|
||||
Weakness in this philosophy; \pause adding extra safe failures (even unused ones) improves the SFF.
|
||||
|
||||
@ -577,12 +583,12 @@ judged to be in critical sections of the product.
|
||||
% to do this completely (all failure modes against all components).
|
||||
% This is represented in equation~\ref{eqn:fmea_state_exp},
|
||||
% where $N$ is the total number of components in the system, and
|
||||
% $cfm$ is the number of failure modes per component.
|
||||
% $f$ is the number of failure modes per component.
|
||||
%
|
||||
% \begin{equation}
|
||||
% \label{eqn:fmea_state_exp}
|
||||
% N.(N-1).cfm % \\
|
||||
% %(N^2 - N).cfm
|
||||
% N.(N-1).f % \\
|
||||
% %(N^2 - N).f
|
||||
% \end{equation}
|
||||
|
||||
|
||||
@ -606,6 +612,8 @@ This creates an analysis hierarchy.
|
||||
\pause \item Collect Symptoms.
|
||||
\pause \item Create a '{\dc}', where its failure modes are the symptoms of the {\fg} from which it was derived.
|
||||
\pause \item The {\dc} is now available to be used in higher level {\fgs}.
|
||||
\pause \item We can represent this process as a function which converts a {\fg} into a {\dc} and use the symbol $ \bowtie $ to represet it.
|
||||
\pause \item i.e. $ \bowtie ( FunctionalGroup ) \rightarrow {DerivedComponent} $
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
@ -623,7 +631,7 @@ This creates an analysis hierarchy.
|
||||
We can return to the milli-volt amplifier as an example to analyse.
|
||||
\pause
|
||||
We can begin by looking for functional groups.\pause
|
||||
The resistors would together to perform a fairly common function in electronics, that of the potential divider.
|
||||
The resistors perform a fairly common function in electronics, that of the potential divider.
|
||||
So our first functional group is $\{ R1, R2 \}$.\pause
|
||||
We can now take the failure modes for the resistors (OPEN and SHORT EN298) and see what effect each of these failures will have on the {\fg} (the potential divider).
|
||||
|
||||
@ -652,6 +660,7 @@ Resistor and its failure modes represented as a directed graph.
|
||||
\begin{table}
|
||||
\begin{tabular}{|| l | l | c | c | l ||} \hline
|
||||
\textbf{Failure Scenario} & & \textbf{Pot Div Effect} & & \textbf{Symptom} \\
|
||||
\textbf{ / test case } & & \textbf{ } & & \textbf{ } \\
|
||||
\hline
|
||||
FS1: R1 SHORT & & $LOW$ & & $PDLow$ \\ \hline
|
||||
FS2: R1 OPEN & & $HIGH$ & & $PDHigh$ \\ \hline
|
||||
@ -782,36 +791,50 @@ how the levels work and converge to a top or system level.
|
||||
\caption{Functional Group Tree example}
|
||||
\label{fig:three_tree}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
The fact FMMD analyses small groups of components at a time, and organises them
|
||||
into a hierarchy
|
||||
addresses the state explosion problem. \pause
|
||||
Where $O$ is order
|
||||
of complexity $O(N^2)$ in the equation below.
|
||||
|
||||
For FMEA where we check every component failure mode rigorously
|
||||
against all the other components (we could call this \textbf{RFMEA})
|
||||
Where $N$ is the number of components, we can determine the order
|
||||
of complexity $ O(N^2) $ thus.
|
||||
% %
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_single2}
|
||||
N.(N-1).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
N.(N-1).f
|
||||
\end{equation}
|
||||
%
|
||||
% %\end{frame}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - comparing number of checks RFMEA $\ldots$ FMMD}
|
||||
%\end{frame}
|
||||
If we consider $c$ to be the number of components in a {\fg}, $f$ is the number of failure modes per component, and
|
||||
$L$ to be the number of levels in the hierarchy of FMMD analysis.
|
||||
|
||||
%\begin{frame}
|
||||
We can represent the number of failure scenarios to check in an FMMD hierarchy
|
||||
with equation~\ref{eqn:anscen}.
|
||||
|
||||
\pause
|
||||
\begin{equation}
|
||||
\label{eqn:anscen}
|
||||
\sum_{n=0}^{L} {fgn}^{n}.fgn.cfm.(fgn-1)
|
||||
\sum_{n=0}^{L} {c}^{n}.c.f.(c-1)
|
||||
\end{equation}
|
||||
Where $fgn$ is the number of components in each functional group,
|
||||
and $cfm$ is the number of failure modes per component
|
||||
and L is the number of levels, the number of
|
||||
analysis scenarios to consider.
|
||||
% Where $c$ is the number of components in each functional group,
|
||||
% and $f$ is the number of failure modes per component
|
||||
% and L is the number of levels, the number of
|
||||
% analysis scenarios to consider.
|
||||
|
||||
~\ref{eqn:fmea_state_exp}.
|
||||
%%~\ref{eqn:fmea_state_exp}.
|
||||
|
||||
\end{frame}
|
||||
|
||||
@ -833,18 +856,18 @@ analysis scenarios to consider.
|
||||
% In other words, we have three components in our functional group,
|
||||
% and nine failure modes to consider.
|
||||
% So taking each failure mode and looking at how that could affect the functional group,
|
||||
% we must compare each failure mode against the two other components (the `$fgn-1$' term).
|
||||
% we must compare each failure mode against the two other components (the `$c-1$' term).
|
||||
%
|
||||
% For the one `zero' level FMMD case we are doing the same thing as FMEA type analysis
|
||||
% (but on a very simple small sub-system).
|
||||
% We are looking at how each failure~mode can effect the system/top level.
|
||||
% We can use equation~\ref{eqn:fmea_state_exp44} to represent
|
||||
% the number of checks to rigorously perform FMEA, where $N$ is the total
|
||||
% number of components in the system, and $cfm$ is the number of failures per component.
|
||||
% number of components in the system, and $f$ is the number of failures per component.
|
||||
|
||||
|
||||
%
|
||||
% Where $N=3$ and $cfm=3$ we can see that the number of checks for this simple functional
|
||||
% Where $N=3$ and $f=3$ we can see that the number of checks for this simple functional
|
||||
% group is the same for equation~\ref{eqn:fmea_state_exp22}
|
||||
% and equation~\ref{eqn:anscen}.
|
||||
% \clearpage
|
||||
@ -855,7 +878,7 @@ analysis scenarios to consider.
|
||||
To see the effects of reducing `state~explosion' we can use an example.
|
||||
% with fixed numbers
|
||||
%for components in a functional group, and failure modes per component.
|
||||
Let us take a system with 4 levels (with a top/system 0 level),
|
||||
Let us take a system with 3 levels of FMMD analysis,
|
||||
with three components per functional group and three failure modes per component,
|
||||
and apply these formulae.
|
||||
Having 4 levels (in addition to the top zeroth level)
|
||||
@ -865,14 +888,14 @@ $$
|
||||
%\begin{equation}
|
||||
\label{eqn:fmea_state_exp22}
|
||||
81.(81-1).3 = 19440 % \\
|
||||
%(N^2 - N).cfm
|
||||
%(N^2 - N).f
|
||||
%\end{equation}
|
||||
$$
|
||||
|
||||
$$
|
||||
%\begin{equation}
|
||||
% \label{eqn:anscen}
|
||||
\sum_{n=0}^{4} {3}^{n}.3.3.(2) = 2178
|
||||
\sum_{n=0}^{3} {3}^{n}.3.3.(2) = 720
|
||||
%\end{equation}
|
||||
$$
|
||||
\end{frame}
|
||||
@ -884,10 +907,10 @@ $$
|
||||
|
||||
|
||||
\begin{itemize}
|
||||
\pause \item Thus for FMMD we needed to examine 2178 failure~modes against functionally adjacent components, and for traditional FMEA
|
||||
\pause \item Thus for FMMD we needed to examine 720 failure~modes against functionally adjacent components, and for traditional FMEA
|
||||
type analysis methods, the number rises to 19440.
|
||||
\pause \item 19440 `checks' is not practical
|
||||
\pause \item 2178 checks is alot, but...
|
||||
\pause \item 720 checks is quite alot, but...
|
||||
\pause \item Modules in FMMD can be re-used...
|
||||
\end{itemize}
|
||||
% In practical example followed through, no more than 9 components have ever been required for a functional
|
||||
@ -907,22 +930,31 @@ To determine all possible double simultaneous failures for rigorous FMEA
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_state_exp2}
|
||||
N.(N-1).(N-2).cfm % \\
|
||||
%(N^2 - N).cfm
|
||||
N.(N-1).(N-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
|
||||
Or express in terms of the level
|
||||
|
||||
\begin{equation}
|
||||
\label{eqn:fmea_state_exp2}
|
||||
c^{L+1}.(c^{L+1}-1).(c^{L+1}-2).f % \\
|
||||
%(N^2 - N).f
|
||||
\end{equation}
|
||||
|
||||
\pause
|
||||
The FMMD case (equation~\ref{eqn:anscen2}), is cubic within the functional groups only,
|
||||
not all the components in the system.
|
||||
\begin{equation}
|
||||
\label{eqn:anscen2}
|
||||
\sum_{n=0}^{L} {fgn}^{n}.fgn.cfm.(fgn-1).(fgn-2)
|
||||
\sum_{n=0}^{L} {c}^{n}.c.f.(c-1).(c-2)
|
||||
\end{equation}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}
|
||||
\frametitle{FMMD - Failure Mode Modular De-Composition}
|
||||
\textbf{Traceability}
|
||||
Because each reasoning stage contains associations ($FailureMode \mapsto Symptom$)
|
||||
Because each reasoning stage contains associations ($FailureMode \rightarrow Symptom$)
|
||||
we can trace the `reasoning' from base level component failure mode to top level/system
|
||||
failure, by traversing the tree/hierarchy. This is in effect providing a `framework' of the reasoning.
|
||||
|
||||
|
Binary file not shown.
BIN
presentations/fmea/three_tree.dia
Normal file
BIN
presentations/fmea/three_tree.dia
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 13 KiB |
Loading…
Reference in New Issue
Block a user