OK off the leash for Friday
This commit is contained in:
parent
2d9f7002e7
commit
3e59ead414
@ -813,7 +813,7 @@ This can be simplified if we can determine the total number of failure modes in
|
||||
equation~\ref{eqn:rd} becomes $$ RD(fg) = fT.(|fg|-1).$$
|
||||
|
||||
\pagebreak[4]
|
||||
\subsection{Reasoning Distance Examples}(c-1)
|
||||
\subsection{Reasoning Distance Examples}
|
||||
|
||||
The potential divider discussed in section~\ref{potdivfmmd} has a four failure modes and two components and therefore has an $RD$ of 4.
|
||||
$$RD(potdiv) = \sum_{n=1}^{2} |2|.(|1|) = 4 $$
|
||||
@ -910,6 +910,26 @@ We can now use equation~\ref{eqn:anscen} and \ref{eqn:fmea_state_exp22} to comp
|
||||
the two approaches, for the work required to perform rigorous checking.
|
||||
|
||||
|
||||
For instance, having four levels
|
||||
of FMMD analysis, with these fixed numbers,
|
||||
%(in addition to the top zeroth level)
|
||||
will require 81 base level components.
|
||||
|
||||
$$
|
||||
%\begin{equation}
|
||||
\label{eqn:fmea_state_exp22}
|
||||
3^4.(3^4-1).3 = 81.(81-1).3 = 19440 % \\
|
||||
%(N^2 - N).f
|
||||
%\end{equation}
|
||||
$$
|
||||
|
||||
$$
|
||||
%\begin{equation}
|
||||
% \label{eqn:anscen}
|
||||
\sum_{n=0}^{3} {3}^{n}.3.3.(2) = 720
|
||||
%\end{equation}
|
||||
$$
|
||||
|
||||
\subsection{Exponential squared to Exponential}
|
||||
|
||||
can I say that ?
|
||||
|
Loading…
Reference in New Issue
Block a user