added fzd

This commit is contained in:
Robin 2010-02-19 14:27:05 +00:00
parent 830c1e4593
commit 3defa835d1
17 changed files with 17620 additions and 1 deletions

91
fzd/abc1.eps Normal file
View File

@ -0,0 +1,91 @@
%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 375 377
%%Creator : Constraint Diagram editor V 0.025
%%Diagram ..
%%
%%-----------------------------------------------------
%% DrawableSet A
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
212 277 56 sub moveto
(A) show
216 277 144 sub newpath moveto
230 277 138 sub lineto
241 277 124 sub lineto
246 277 104 sub lineto
241 277 85 sub lineto
230 277 70 sub lineto
216 277 64 sub lineto
202 277 70 sub lineto
191 277 84 sub lineto
186 277 104 sub lineto
191 277 124 sub lineto
201 277 138 sub lineto
closepath
stroke
%%-----------------------------------------------------
%%-----------------------------------------------------
%% DrawableSet B
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
242 277 73 sub moveto
(B) show
245 277 161 sub newpath moveto
259 277 155 sub lineto
270 277 141 sub lineto
275 277 121 sub lineto
270 277 102 sub lineto
259 277 87 sub lineto
245 277 81 sub lineto
231 277 87 sub lineto
220 277 101 sub lineto
215 277 121 sub lineto
220 277 141 sub lineto
230 277 155 sub lineto
closepath
stroke
%%-----------------------------------------------------
%%-----------------------------------------------------
%% DrawableSet C
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
210 277 89 sub moveto
(C) show
214 277 177 sub newpath moveto
228 277 171 sub lineto
239 277 157 sub lineto
244 277 137 sub lineto
239 277 118 sub lineto
228 277 103 sub lineto
214 277 97 sub lineto
200 277 103 sub lineto
189 277 117 sub lineto
184 277 137 sub lineto
189 277 157 sub lineto
199 277 171 sub lineto
closepath
stroke
%%-----------------------------------------------------
%% End of Diagram ..
%%------------------------------------
showpage

91
fzd/abc2.eps Normal file
View File

@ -0,0 +1,91 @@
%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 390 371
%%Creator : Constraint Diagram editor V 0.025
%%Diagram ...
%%
%%-----------------------------------------------------
%% DrawableSet A
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
249 271 27 sub moveto
(A) show
253 271 115 sub newpath moveto
267 271 109 sub lineto
291 271 98 sub lineto
294 271 77 sub lineto
287 271 54 sub lineto
267 271 41 sub lineto
253 271 35 sub lineto
239 271 41 sub lineto
228 271 55 sub lineto
223 271 75 sub lineto
228 271 95 sub lineto
238 271 109 sub lineto
closepath
stroke
%%-----------------------------------------------------
%%-----------------------------------------------------
%% DrawableSet B
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
216 271 55 sub moveto
(B) show
219 271 143 sub newpath moveto
233 271 137 sub lineto
244 271 123 sub lineto
249 271 103 sub lineto
244 271 84 sub lineto
233 271 69 sub lineto
219 271 63 sub lineto
205 271 69 sub lineto
194 271 83 sub lineto
189 271 103 sub lineto
194 271 123 sub lineto
204 271 137 sub lineto
closepath
stroke
%%-----------------------------------------------------
%%-----------------------------------------------------
%% DrawableSet C
0 0 1 setrgbcolor
/Times-Roman findfont
15 scalefont
setfont
newpath
256 271 83 sub moveto
(C) show
260 271 171 sub newpath moveto
274 271 165 sub lineto
285 271 151 sub lineto
290 271 131 sub lineto
285 271 112 sub lineto
280 271 94 sub lineto
260 271 91 sub lineto
263 271 118 sub lineto
252 271 133 sub lineto
216 271 112 sub lineto
208 271 127 sub lineto
245 271 165 sub lineto
closepath
stroke
%%-----------------------------------------------------
%% End of Diagram ...
%%------------------------------------
showpage

1506
fzd/abcgraph.ps Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

880
fzd/fzd.tex Normal file
View File

@ -0,0 +1,880 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\documentclass[reviewversion,strict]{twocolconf}
%\conferencename{EULER2005}
% \begin{document}
% \papertitle { Fast Zone Discrimination \thanks{Version 1.0 2004JUL31
% {\tt twocolconf} class.}}
% {
% R P Clark\thanks{footnote}\\
% \em Written as a by product of constraint editor production \\
% \email{r.clark@energytechnologycontrol.com} \\
%\and
%Second author \\
%\em Affiliation \\
%\em Affiliation \\
%\email{x@any.tld}\\
%\and
%Third author \\
%\em Affiliation \\
%\em Affiliation \\
%\email{y@any.tld}\\
%}
%\headertitle{Enables an alternate running header, if applicable to current layout}
% \begin{abstract}
% This paper concentrates on an algorithmic method for determining the
% available zones in an Euler Diagram. It introduces the concepts of pure
% and enclosing relations between contours and chains of pure intersections.
% By representing
% spider/constraint diagrams as directed graphs, this then develops rules and
% a recursive strategy
% determining the available zones, and by deduction, eliminating examining contour combinations that
% will not contain available zones.
% \end{abstract}
\section{Introduction : Euler Diagram and Zones Available for use}
\subsection{Defining Available Zones}
An Euler diagram as opposed to a Venn diagram defines a universe of discourse.
In a Venn diagram all possible zones are visible and available
for placing of existential objects.% \cite{wiki}.
\par
An Euler diagram, by not having to make all possible zones available
restricts this and can place conjunctive constraints on the number combinations of
attributes that the diagram respesents.
\par
When performing logical reasoning on euler diagrams with added existential objects,
it is important to note which available zones do not have objects associated with them.
These represent cases where the user has left them undefined, or considers them to
be a general case. Either way they need to be flagged as an ommission error or
collected. In order to do this a method of finding all available zones in an euler diagram is necessary.
\par
For a zone to be available for use it must
\begin{itemize}
\item {Exist} meaning that the contours making up the zone must intersect.
\item {Not be Obscured} The intersection must not be covered by other zones.
\end{itemize}
\par
Thus for a diagram $ D $ consisting of a set of zones $ Z $ where the zones in the diagram
$ Z_{n} $
are defined as a sets of intersection contours $ A_{n} $, and exclusion sets
$ B_{n} $.
\subsubsection{Testing for Obscuration}
Obscuration is tested for by being able to subtract one shape from another
with a resultant shape only containg the remainder of the subtraction.
This is as defined in the Java Area classes \cite{javaarea} .
A zone obscured by other contours is one that forms the area of intersection
of the set $ A_{n} $ and then having all the areas from set $ B_{n} $ subtracted from it
no surface area left.
Firstly let us define the meaning of availability in concrete area terms.
In figure \ref{fig:ex1}, there is an Euler diagram with the following zones available.
\par
\vspace{0.3cm}
\begin{tabular}{||l|l|c|c||} \hline \hline
{\em Included set $A_{n}$ } & {\em Excluded $set B_{n}$ } & & {\em Available} \\ \hline
\{ \} & \{ D C B A \} & 1 & Y \\ \hline
\{ A \} & \{ D C B \} & 2 & Y \\ \hline
\{ B \} & \{ D C A \} & 3 & Y \\ \hline
\{ B A\} & \{ D C \} & 4 & Y \\ \hline
\{ C \} & \{ D B A \} & 5 & N \\ \hline
\{ C A \} & \{ D B \} & 6 & N \\ \hline
\{ C B \} & \{ D A \} & 7 & N \\ \hline
\{ C B A \} & \{ D \} & 8 & N \\ \hline
\{ D \} & \{ C B A \} & 9 & Y \\ \hline
\{ D A \} & \{ C B \} & 10 & N \\ \hline
\{ D B \} & \{ C A \} & 11 & Y \\ \hline
\{ D B A\} & \{ C \} & 12 & N \\ \hline
\{ D C \} & \{ B A \} & 13 & Y \\ \hline
\{ D C A \} & \{ B \} & 14 & N \\ \hline
\{ D C B \} & \{ A \} & 15 & Y \\ \hline
\{ D C B A \} & \{ \} & 16 & N \\ \hline
\hline
\end{tabular}
\vspace{0.3cm}
Note $B \cap C$ and $ C $ are not available in this diagram because it is impossible to place objects on them.
Objects could be placed on $ B \cap C \cap D $ and $ B \cap D $ however.
\begin{figure}
\vskip 4.2cm
\special{psfile=fzd/exampleareasubtraction1.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
Simple Euler Diagram
\label{fig:ex1}}
\end{figure}
Examining the intersection $ A \cap B $ the corresponding Area is shown in red
in figure \ref{fig:ex2}.
\begin{figure}
\vskip 4.2cm
\special{psfile=fzd/exampleareasubtraction2.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
Area representation of intersection between set A and B
\label{fig:ex2}}
\end{figure}
The area to be subtracted is shown in blue in figure \ref{fig:ex3}.
Note that here the intersection exists
and is not obscured by the areas made up from the other contours.
It is therefore available.
It can be seen that the zone $ B \cap C $ is not available in the
diagram because it is obscured by the
areas comprised of the other contours $ C \cup D $
(in fact in this diagram only $ D $ is required to prove obscuration
because $ C \subset D $ ).
\begin{figure}
\vskip 4cm
\special{psfile=fzd/exampleareasubtraction3.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
Area representation of exclusion Zone to be subtracted
\label{fig:ex3}}
\end{figure}
%\begin{picture}(200,200)(10,10)
%\put(20,0){\circle{20}}
%\end{picture}
%\clearpage
\subsubsection{Formal expression of Area Operations}
This section deals with operations on the concrete diagrams using Areas.
An intersection for instance therefore represents an intersection of the Areas
denoted by the contours.
\equation
\label{available5}
{AreaIntersection}_{n} = \; \stackrel{\bigcap a }{a \in A_{n} \wedge a \not\in B_{n}}
\endequation
Note this implies contours in $B_{n}$ could intersect with the zone formed by $A_{n}$, but where all
contours in $B_{n}$ represent those excluded from the zone under scrutinty.
\par
The $AreaIntersection_{n}$ may form a zonal region,% \cite{cried},
but for the purposes of this investigation,
may be interpreted as a boolean variable.
There is either surface area or not. The zone exists or does not.
\equation
\label{available6}
{AreaExclusion}_{n} = \; \stackrel{\bigcup b }{b \not\in A_{n} \wedge b \in B_{n} }
\endequation
%\begin{eqnarray}
\equation
\label{available7}
\begin{array}[t]{c}
{RemainingIntersection}_{n} = \\
{AreaIntersection}_{n} - {AreaExclusion}_{n}
\end{array}
\endequation
%\end{eqnarray}
Note the subtraction here is again, an Area operation.
The remaining intersection could be one or more visible zones on the diagram,
but as long as there is some surface area
left, then the zone has not been obscured.
It can thus be used as a boolean variable. If $surface\_area > 0 $ exists in the ${RemainingIntersection}_{n}$ then
the expression is true.
%\clearpage
\subsubsection{Testing for zone Availability}
Firstly that the intersection exists in the concrete diagram.
\equation
\label{available1}
%Z_{n} = (A_{n},B_{n}) \Rightarrow \forall \; A_{n} \; \mid \; a \cap A_{n}
Z_{n} = (A_{n},B_{n}) \; \Rightarrow \; AreaIntersection_{n}
\endequation
If the above implication is true we can go on to test for obscuration.
.
\equation
\label{available2}
Z_{n} = (A_{n},B_{n}) \Rightarrow \; RemainingIntersection_{n}
\endequation
And finally the sets A and B added together must be equal to the set of all countours in
diagram D, i.e. all contours must be represented in $A_{n}$ and $B_{n}$.
\equation
\label{available3}
B_{n} \cup A_{n} = D
\endequation
A zone is thus considered {\em available} if the above criteria (i.e. equations \ref{available1},\ref{available2},\ref{available3} ) are true.
\subsection {Algorthms for finding Available Zones}
One could take all possible combinations of contours and check each case.
For all combinations of contours, examine to find out if the intersection exists, and then if it does, examine all
the excluded contours and ensure that they do not obscure the intersection. If both conditions are trus the zone is 'available'.
\par
Checking all possible combinations is henceforth referred to as the 'Brute force method'.
\par
The brute force method is simple, and
would be practical for small numbers of contours. However as constraint/spider
diagrams become used in practise larger numbers of contours and very large diagrams will become common.
\par
For instance were a diagram to contain 32 contours, to brute forcecheck for the existance of all contours would take
all possible combinations of 32 objects. This corresponds to a binary count and thus $ 2^{32} $ possible zones to check for.
\par
A diagram with 32 contours would contain a potential of over 4 billion zones.
\par
Multiply that by the on average 16 operations ( area intersection compares ) that must be carried
out for each zone, added to an average of 16 obscuration comparisons,
and an astronomical number of area comparisons would be required ($ 32.2^{32} $).
%A similar problem existed with computational frequency analysis
%in the mid 1960's where the algorithmically more efficient FFT \cite{fft} became the industry standard
%as opposed to the DFT.
\par
In general then the brute force zone search, with obscuration testing, takes
\equation
2^{N}.2.\frac{N}{2}
\endequation
or
\equation
\label{bruteforce}
N.2^{N}
\endequation
\par
This author therefore sees an efficient algorithm for determining available zones as a necessity
for a practical euler/spider diagram analyser.
\par
The algorithm described in this paper works on the principle of examining the
contours for two types of relationships.
This information is then used to create directed graphs, which are then traversed. From the spanning trees,
most of the non available zones are eliminated early on. For zones which may be available, two tests are required.
The first that they actually exist in the concrete diagram, and secondly that they are not obscured by
combinations of other contours.
The initial searches form two cross products of the contours (see \ref{detpe} )
performing $2.N^2$ area operations.
After these initial area operations subsets of the contours can be defined (pure intersection chains)
by traversing the pure intersection relationships. The pure intersection chains
are subsets of the contours in the diagram.
These subsets of the contours are denoted as the set $G$.
In searching for the availability of zones, area operations only need be applied
within each set $G$.
By only having to search within subsets of the contours effeciency of the algorithm is improved.
For the brute force algorithm, $ G \equiv N $.
For each potential zone identified, it must be checked against $G\#$ other contours
where $ G \subseteq N$
for proof of concrete existence and
for obscuration. The set $ G $ is divided into two, those included in the prospective zone $I$
and those outside and
used to check for obscuration $ O $ . Note $ O + I \leq N $ because $ G \subseteq N $.
Thus for this algorithm, where $ Z\# $ is the number of potential zones as identified by tree spanning
\equation
\label{seteq}
2.N^{2} + Z\#.G
\endequation
\equation
\label{incobs}
2.N^{2} + Z\#.(O + I)
\endequation
Thus for a $ Venn N $ diagram this algorithm is less efficient by $ 2.N^{2} $
i.e. for a Venn N diagram $Z\# = N^{2}$
\equation
%\label{fzditer1}
2.N^{2} + 2^{N}.2.\frac{N}{2}
\endequation
\equation
%\label{fzditer1}
2.N^{2} + 2^{N+1}
\endequation
But for any diagram less
complicated than Venn N, where $ Z\# $
is small in comparison with $2^{N}$ the algorithm becomes far more efficient.
Examples of complexity savings are shown in section \ref{complexity}.
\begin{figure}
\vskip 6cm
\special{psfile=fzd/piee.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
A Pure Intersection and an Enclosure
\label{fig:piee}}
\end{figure}
\subsection { Relationships between Contours }
The algorithm for fast finding of available zones depends upon defining three new relationships between contours.
\begin{itemize}
\item {Pure Intersection}
\item {Enclosure}
\item {Belonging to a Pure Intersection Chain}
\end{itemize}
\subsubsection { Pure Intersection }
A pair of contours are said to have 'pure intersection' if the contours overlap.
\subsubsection{Enclosure}
A countour is said to be enclosed if it fits completely within another contour.
\subsubsection { Pure Intersection Chains }
\begin{figure}
\vskip 6cm
\special{psfile=fzd/pic.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
Pure Intersection Zone Chain
\label{fig:pic}}
\end{figure}
Pairs of contours may belong to the same pure intersection chain.
Pure Intersection chains are a chain of contours that can all
be linked together by pure intersection relationships ( see figure \ref{fig:pic} ).
Contours in the pure intersection chain may enclose other members
in the same chain, but not the contour that they are purely intersected with (see figure \ref{fig:picwaie}).
\par
Pure intersections relationships for the diagram in figure \ref{fig:pic} are :-
$$
\begin{array}{lcl}
A & \stackrel{pi}\longrightarrow & B \\
B & \stackrel{pi}\longrightarrow & A \\
B & \stackrel{pi}\longrightarrow & C \\
C & \stackrel{pi}\longrightarrow & B \\
D & \stackrel{pi}\longrightarrow & C \\
C & \stackrel{pi}\longrightarrow & D \\
\end{array}
$$
\par
Relationships for the diagram in figure \ref{fig:picwaie} include one enclosure.
$$
\begin{array}{lcl}
A & \stackrel{pi}\longrightarrow & B \\
B & \stackrel{pi}\longrightarrow & A \\
B & \stackrel{pi}\longrightarrow & C \\
C & \stackrel{pi}\longrightarrow & B \\
D & \stackrel{pi}\longrightarrow & C \\
C & \stackrel{pi}\longrightarrow & D \\
E & \stackrel{pi}\longrightarrow & C \\
C & \stackrel{pi}\longrightarrow & E \\
\\
E & \stackrel{enc}\longrightarrow & D \\
\end{array}
$$
Because {\em A,B,C,D} all share pure intersection connections they all belong to the same pure intersection chain.
NB: Three or more linked pure intersections contitute a 'pure intersection chain'.
\subsubsection { Determining the Pure Intersection and Enclosure Relationships }
\label{detpe}
By applying java Area searches for enclosure and intersection on each
contour against all others a collection of pure intersection relationships
and enclosure relationships can be determined.
This forms a list of relationship pairs from the cross product of all the contours.
\equation
%\label{crossprodsingle}
\begin{array}{l}
pi(a,b) \; \Rightarrow
%\stackrel{\Delta}{=}
\; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\
\; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
\end{array}
\endequation
\begin{figure}
\vskip 6cm
\special{psfile=fzd/pice.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
Pure Intersection Chain with an implicit Enclosure
\label{fig:picwaie}}
\end{figure}
\subsubsection {Determining Enclosure }
When a contour completely encloses another contour, it has an enclosing relationship.
See figure \ref{fig:piee}
To determine the enclosure relationships for the diagram,
all contours are checked for enclosure relationships with each other.
This again, forms a list of relationship pairs from cross product of all the contours.
\equation
%\label{crossprodsingle}
\begin{array}{l}
enc(a,b) \;
%\stackrel{\Delta}{=}
\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\
\; \bullet (a \supset b) \\
\end{array}
\endequation
\subsection { Rules that can be derived from the three relationships }
\subsubsection { Rule 1: Simple Zone Creation }
Any contour not belonging to a pure intersection chain, will create a zone containing itself, and any enclosing contours.
\subsubsection { Rule 2: All Pure Intersection chains and enclosures can be represented on a directed graph }
By displaying pure intersection relations and enclosure relations in different colours
both can be represented on the same coloured directed graph (CDG). I have chosen blue for pure
intersections and red for enclosures for the examples that follow.
Figure \ref{fig:pig1} Shows a CDG for the diagram in figure \ref{fig:pic}. Note that traversing through this graph reveals all the intersections, and that there are no loops in the traversal, meaning that no multiple intersections exist.
\begin{figure}
\vskip 6cm
\special{psfile=fzd/pig1.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
Coloured Directed Graph of Pure Intersection Chain
\label{fig:pig1}}
\end{figure}
\begin{figure}
\vskip 6cm
\special{psfile=fzd/pig2.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
Coloured Directed Graph of Pure Intersection Chain with an implicit Enclosure
\label{fig:pig2}}
\end{figure}
\subsubsection { Graph Traversal }
By traversing the graphs and applying tests for implicit enclosure within a pure intersection chain
from each contour belonging to it, and applying any enclosure relations all possible
zone combinations are revealed.
A path may not loop, i.e. it cannot branch to a contour all ready examined in the path.
\subsubsection{ Rule 3: Traversal Reduction : Avoiding Repeated Area checking }
As each potential zone is discovered and checked it is temporarily stored,
and if re-discovered on a new path, is not subjected to Area testing.
\subsubsection { Rule 4: Pure Intersection Pair Zone Creation }
If any pure intersection exists, a potential zone exists. This zone
will intersect with any contour which has an enclosure relationship with
any of the pair in the pure intersection.
It may also be enclosed by a member of the pure intersection chain it belongs to.
Thus where a pair intersection exists, checking for its existence is unnecessary,
but checking for obscuration is.
\par
Note by only searching within the pure intersection chain, unnecessary obscuration tests are avoided
and this refines the obscuration test in equation \ref{available7}.
\par
If a zone does not belong to a pure intersection chain, no obscuration testing is necessary.
\par
Note : In figure \ref{fig:picwaie} note that contours \em{D} and \em{E} are in
the same pure intersection chain, but that
\em{E} also encloses \em{D}.
\subsubsection { Rule 5: Multiple Zone Creation }
A circular reference (often described as a circuit \cite{gtl} \cite{alggraph}) containing more than one pair of pure intersections
indicates the possibility
of a multiple intersection of the contours in the path. The converse is true.
Should there be no circular path, there can be
multiple intersection along this path.
\par
This is best shown as an example, see figures \ref{fig:abc1}, \ref{fig:abc2} and \ref{fig:abc3}.
Consider the three contours A, B and C.
These belong to the same pure intersection chain,
and the graph has a circular reference. However one contains a an $ A \cap B \cap C $
zone and the other does not.
\par
Multiple intersections due to enclosure are discovered by traversing the
enclosure relations.
\par
\label{fzd}
\begin{figure}
\vskip 6cm
\special{psfile=fzd/abc1.eps hoffset=0 voffset=0 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
Circular reference with multiple zone
\label{fig:abc1}}
\end{figure}
\label{fzd}
\begin{figure}
\vskip 6cm
\special{psfile=fzd/abc2.eps hoffset=0 voffset=-20 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
Circular reference without multiple zone
\label{fig:abc2}}
\end{figure}
\label{fzd}
\begin{figure}
\vskip 6cm
\special{psfile=fzd/abcgraph.ps hoffset=0 voffset=-10 hscale=30 vscale=30}\caption[Pure Intersection Zone Capture Method]{
Pure Intersection Zone and Enclosure
\label{fig:abcgraph}}
\end{figure}
In order to examine multiple intersections, the spanning tree from the contour under inspection must be
recursively iterated (only within the pure intersection chain it belongs to i.e. within the subset $G$).
Should a path arrive back at its start vertex, a circular reference has been found
and there is the possibility of a multiple intersection zone, see figure \ref{fig:abcgraph}.
\par
Note that the contour maps for {A,B,C} in figure \ref{fig:abc1} and \ref{fig:abc2}
are identical. The actual presence of the multiple intersection zone existing in the concrete diagram, must be tested for
using area comparisions.
The test must use coordinates from the concrete diagram to perform an Area comparison.
\par
However, by only searching for them when a circular path is found, unnecessary searches are not undertaken.
This is the principal strength of this algorithm.
This will eliminate most non visible zones from requiring area searches.
\subsection{Zone Obscuration Test}
A zone enclosed by a member of its pure intersection, or enclosed completely will
be correctly cwdiscovered by the recursive and iterative process. However, it is possible that two or
more contours may combine to obscure a contour. This must be tested for, by
taking the area intersection of all contours comprising the potential zone,
and then subtracting all other areas. If any area remains, the zone is unobscured.
\par
Note that the obscuration test only need be applied within the pure intersection chain.
This is because a contour can only have a pure intersection chain or enclosure relationship with any other contour.
If the contour is enclosed it simply adds to the 'included ' contours.
Now only one (or more members in combination) of the same pure intersection chain can obscure a zone within it.
This reduces the number of obscuration tests to perform.
\par
If a zone is discovered and is not obscured, it is deemed a visible zone see equations \ref{available1},\ref{available2},\ref{available3},\ref{available4}.
\section{ Graph Traversal and Algorithm Development }
Using the rules from the previous section and some dry runs of the
procedure an efficient recursive algorithm has been developed.
Essentially, a spanning tree is created originating from each contour
in the diagram, using the pure intersection relationships.
\subsection { Traversal of a Simple Pure Intersection Chain }
Starting with the pure intersection chain in figure \ref{fig:pic}, with the contour A.
Note that create zone -or- CZ means that the potential zone, with intersecting elements
is checked for enclosure by all contours in the diagram with an enclosing relationship, and then
specifically created as an Area\cite{javaarea}, and this Area object is checked for
existence and for obscuration. NP means a repeated path, where zones rediscovered will not be
re-investigated as area objects.
\par
Iteration 1. Contour A
$$
\begin{array}{lclcl}
A & & & CZ & A \\
A & \stackrel{pi}\longrightarrow & B & CZ & A \cap B \\
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C\\
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D \\
\end{array}
$$
Note the individual case of A is considered, and then on through the chain of pure intersections.
Contour A is now marked as processed.
Next contour B is processed.
\par
Iteration 2. Contour B
$$
\begin{array}{lclcl}
B & & & CZ & B\\
B & \stackrel{pi}\longrightarrow & A & NP \\
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \\
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D\\
\end{array}
$$
Iteration 3. Contour C
$$
\begin{array}{lclcl}
C & & & CZ & C\\
C & \stackrel{pi}\longrightarrow & B & NP & \\
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D \\
\end{array}
$$
Iteration 4. Contour D
$$
\begin{array}{lclcl}
D & & & CZ & D \\
D & \stackrel{pi}\longrightarrow & C & NP \\
\end{array}
$$
Using these iterations we have found all seven zones and only rediscovered
three during the iterations.
Only simple area searches were used to build the relation tables,
also for a brute for concrete area compare method,
we would have had to examine $ 2^{N} $ or 16 searches with an average of 4 compares (64 operations).
\subsection { Traversal of a Pure Intersection Chain with Implicit Enclosure }
The iteration for the diagram in figure \ref{fig:picwaie} is very similar to that
above, but the zones $ D \cup E \cup C $ would be created because of checking for enclosure within
a pure intersection chain, and $ C \cup E $ following the pure intersection path
$ C \; \stackrel{pi}\longrightarrow \; D $ and the standalone zone $ E $.
\subsection { Traversal of a Pure Intersection Chain with Circular Reference }
Here we encounter the possibility of a multiple intersection zone. The {\em CZ} action
must find the intersection, and then check that it really exists using area compares.
The iteration chain then for Figure \ref{fig:abc1} or \ref{fig:abc2}.
\par
Iteration 1. Contour A
$$
\begin{array}{lclcl}
A & & & CZ & A \\
A & \stackrel{pi}\longrightarrow & B & CZ & A \cap B \\
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \\
C & \stackrel{pi}\longrightarrow & A & CZ & C \cap A \\
C & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \cap A \\
\end{array}
$$
Note the last iteration has discovered a circular path. The CZ action will now investigate the presence
of the $ B \cap C \cap A $ intersection and register it if it is in the concrete diagram.
Iteration 2. Contour B.
$$
\begin{array}{lclcl}
B & & & CZ & B \\
B & \stackrel{pi}\longrightarrow & A & NP & \\
B & \stackrel{pi}\longrightarrow & C & NP & \\
\end{array}
$$
Iteration 3. Contour C.
$$
\begin{array}{lclcl}
C & & & CZ & C \\
C & \stackrel{pi}\longrightarrow & A & NP & \\
C & \stackrel{pi}\longrightarrow & B & NP & \\
\end{array}
$$
So, using the unordered relationships, determined by individual area compares, we are able to determine the
7 visible zones by graph traversal, and one Area check (for $ A \cup B\cup C $).
\section{Algorithm Efficiency : Iteration Comparisons against Brute Force Method}
\label{complexity}
The examples show in diagram form here use 8 contours per diagram. Using the Brute force method these would require $N 2^{N}$ or
2048 area compares to determine all visible zones.
By duplicating the structures, iteration values can be calculated for 16 contour diagrams of the same visual complexity.
\subsection { Simple pairs of contours}
The simple diagram, shown in figure \ref{fig:simple}, consists of four
overlapping pairs of contours. To determine the
enclosure and pure intersection relations, two cross products of area
searches are required. Thus $2 \;N^{2} $, i.e. 128 searches.
\par
Zones derived from single or pair contours do not need to be checked for existence. The pure intersection
relation has already determined the pair zone exists and a single contour always creates a zone.
Checking is required for obscuration is not required because none of the contours belong to a pure intersection.
\par
The total number of area compares/operations is therefore $2.64 \equiv 128 $
\par
As a general case, for extrapolating larger diagrams of the same pattern
\equation
\label{gensp}
2.N^{2}
\endequation
\begin{figure}
\vskip 6cm
\special{psfile=fzd/simple.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Simple Pure Intersection Pairs]{
Simple Pure Intersection Pairs
\label{fig:simple}}
\end{figure}
\subsection {Two Venn 3 totally Enclosed Once : a more Complex Diagram}
The second diagram, see figure \ref{fig:tev3}, contains two Venn 3 configurations each enclosed by a contour.
Breaking this down, we have two single zones (i.e. G and H). These do not belong to a pure intersection chain and therefore require tests no for obscuration.
\par
Examining the two Venn3 structures, these require an existance check for the tripple intersection ( 3 area operations ). As the number of
contours to check for obscuration against it is 0, they do not obscuration testing.
\par
The 3 pairs require obscuration testing with the other countour. Thus 2 area operations to construct the shape of the zone,
and 1 area operation to test for obscuration, thus 3 per pair.
\par
The three single zones in the pure intersection require 1 area operation to construct the shape of the contour, and two to test for obscuration.
Thus 3 per pair.
This diagram therefore requires $128 + 2.(9 + 9) \equiv 146 $ area compares.
\equation
\label{genev3}
2.N^{2} + \frac{N}{4}.(18)
\endequation
\begin{figure}
\vskip 6cm
\special{psfile=fzd/tripples.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Two Enclosed Venn 3]{
Two Enclosed Ven 3
\label{fig:tev3}}
\end{figure}
\subsection {Extrapolating for N Contour Diagrams}
Duplicating the structures in the diagrams in figures \ref{fig:tev3} and \ref{fig:simple},
and using the general
case equations (\ref{genev3} and \ref{gensp}), a plot of area searches required
against diagram complexity
can be drawn. These graphs clearly shows that the fzd method efficiency increases with the
number of contours in a diagram.
\begin{figure}
\vskip 6cm
\special{psfile=fzd/perf1.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
Perfomance from 0 to 8 contours
\label{fig:perf1}}
\end{figure}
\begin{figure}
\vskip 6cm
\special{psfile=fzd/perf2.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
Performance from 8 to 64 contours
\label{fig:perf2}}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ALREADY DONE ! Obscuration is now only looked at within pure intersection chains.
% 05AUG2006
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection { A general Case and Algorithm efficiency plotted against number of Contours }
% \subsection {Further Optimisation}
% If sections of the diagram can be identified that do not interact (enclose or purely intersect with other parts)
% these can be analysed separately and reduce the $I$ and $O$ values. For instance in the Venn3 enclosed once,
% the tests for existence and obscuration, need only be applied within each of the two identical
% (in the abstract sense) separate structures. This would make the set G, discussed in equation \ref{seteq}
% half the size of the number of contours in the diagram. Work on identifying separate areas and the
% potential for nesting Euler diagrams is discussed in \cite{nied}.
% \equation
% \label{gopt}
% \begin{array}{l}
% G_{optimal} \; \stackrel{\Delta}{=} \; \forall \; C \; \bullet \; a \; X \; \forall \; C \; \bullet \; b \\
% \; \bullet (a \stackrel{pi}\longrightarrow b) \; \vee \; (a \stackrel{enc}\longrightarrow b) \; \vee \;
% (b \stackrel{enc}\longrightarrow a) \\
%:wq
%:wq \end{array}
% \endequation
% The optimal G sets are those within the diagram connected by any pure intersection or enclosure relationship.
% This is expressed formally in equation \ref{gopt}.
% \parsep=0pt
% \itemsep=0pt
% \parskip=3pt
%
% \small
% \begin{thebibliography}{119}
%
%
%
% \bibitem{javaapp1} Gosling et. all {\em The Java Application Programming Interface Vol I : Addisson Wesley : ISBN 0 201 63453 8 }
%
% \bibitem{javaapp2} Gosling et. all {\em The Java Application Programming Interface Vol II : Addisson Wesley : ISBN 0 201 63459 7 }
%
% \bibitem{fft} Robert D Stum, Donald E Kirk {\em Discrete Systems and Digital Signal Processing : Addison-Wesley : ISBN 0-201-09518-1 }
%
% \bibitem{sem} Jim Woodcock, Martin Loomes {\em Software Engineering Mathematics : Pitman : ISBN 0-273-02673-9 }
%
% \bibitem{alggraph} Alan Gibbons {\em Algorithmic Graph Theory : Cambridge University Press : ISBN 0-521-28881-9 }
%
%
% \bibitem{gtl} Cadwell {\em http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro}
%
% \bibitem{dmnt} R Garnier, J Taylor {\em Discrete Mathematics for New Technology : IoP : ISBN 0-7503-0135-X }
%
% \bibitem{dmfss} D C Ince {\em An Introduction to Discrete Mathematics, Formal System Specification and Z : Oxford : ISBN 0-19-853836-7 }
%
% \bibitem{wiki} R.P. Clark et. all {\em http://en.wikipedia.org/wiki/Euler\_diagram : Wikipedia Euler Diagram reference }
%
% \bibitem{nied} J.A. Flower, J Howse, J Taylor {\em Nesting in Euler Diagrams } http://www.cmis.brighton.ac.uk/Research/vmg/papers/GTVMT02.pdf
%
% \bibitem{cried} Howse J, Stapleton G, Flower J, Taylor J {\em Corresponding regions in Euler diagrams} http://www.cmis.brighton.ac.uk/Research/vmg/papers/D2K2HSFT.pdf
%
% \bibitem{geneuler} Jean Flower, John Howse {\em Generating Euler Diagrams :Proceedings of Diagrams 2002, Callaway Gardens, Georgia, April 2002, Springer Verlag } http://www.it.bton.ac.uk/research/vmg/VisualModellingGroup.html
%
% \bibitem{javaarea} Sun Micro Systems {\em http://java.sun.com/j2se/1.3/docs/api/java/awt/geom/Area.html }
%
% \end{thebibliography}
%
%\end{document}
%\theend

1643
fzd/perf1.ps Normal file

File diff suppressed because it is too large Load Diff

1700
fzd/perf2.ps Normal file

File diff suppressed because it is too large Load Diff

1520
fzd/pic.ps Normal file

File diff suppressed because it is too large Load Diff

1496
fzd/pice.ps Normal file

File diff suppressed because it is too large Load Diff

135
fzd/piee.ps Normal file
View File

@ -0,0 +1,135 @@
%!PS-Adobe-3.0
%%Creator: GIMP PostScript file plugin V 1.12 by Peter Kirchgessner
%%Title: /home/robin/proj/java/constraint_editor/exp42/docs/papers/fzd/piee.ps
%%CreationDate: Mon Apr 25 23:16:36 2005
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%Pages: 1
%%BoundingBox: 14 14 655 495
%%EndComments
%%BeginProlog
% Use own dictionary to avoid conflicts
10 dict begin
%%EndProlog
%%Page: 1 1
% Translate for offset
14.173228 14.173228 translate
% Translate to begin of first scanline
0.000000 480.000000 translate
640.000000 -480.000000 scale
% Image geometry
640 480 1
% Transformation matrix
[ 640 0 0 480 0 0 ]
currentfile /ASCII85Decode filter /RunLengthDecode filter
%%BeginData: 7887 ASCII Bytes
image
Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/
Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/
Z2_*/Z2_*/Z2_*/l2Lk`!!#7.s69Oc^]4?:c2[)/!<2os!.W;olMgkRr;Zg.cN!20"i(0=s*t3s
s6BUf!$D7@p]/V>li."`!<)ou!'eg0li."\#Q=Z'i#g;Fli."D+8u3?p]o.Fli."$J,TBJrWCLH
li-s8qu6Wsci<A3!WE2urrKobd/WJ4!W33"rrM%Bd/WJ4!Vdc6rrMm:d/WJ4!Ur>NrrN$.d/WJ4
!T8J)rrN*(d/WJ4!5SF1!!CUJm/I'<q>UH2d/WJ4!!i?"!8u6(mJd4d#PnB#i.'/SmJd4b&,H5+
n3>>#mJd4b+8Pp;pcm1+mJd4^5Pb<[r#a>dmJd4VJ,0*FrX[EVmJd1Ep\t3udJrV6!9!VO!!gpO
mJd1&p\t5GdJrV6!/(%G!5[(_mJd0Ap\t6PdJrV6!!i8u!8u9)mJd.sp\t6_dJrY7!WEW(rrMV=
df8b8!WF28rrMnEkPkPVmJlVS!W4&6rrMmZkl:V^!.XJ;mf*=c5PP0Yr'0HG!9!hV!!D]imf*=_
5PP0Yr#b5(!<2lr!'fuQmf*=_J+rsDrZCG*#4MTm#QOi0nGhqV!UtU5rrN*0lMh'=!.Y%K!!)Ng
mf*:Vp&>"&li.%c!"])/!r)a[nc/%W!9!PM!!hii!VcZmrrIW\nc/%W!9*VN!/Kn?!T44\rrMTk
nc/%W!9*VN!/Kn?!J!E4rrN*!nc/%W!5\@.!/'Y<!WE)qrrIX7o)J.X!5nL0!5n1'!VccnrrM$g
o)J.X!5nL0!5n1'!T4LbrrMlso)J.X!/'tE!5\%%!PgqrrrN*"o)J.X!/L7I!9*;E!!)fo!J#[k
s6fmeL\:ZIiU-XGrWDrq!T636s6fmeL\:ZIiU-XGr!3#s!Uq3&s6fme#PJ)si9gOFn/qH*!W32o
s6fme&,#r&nEp5Vi'7#:!WE2ms6fme&,#r&nEp5U_"Rd.Jb/p0rr<T&rrDQUrr@WDrrBk+s6fme
&,#r&nEp5U"8;`qi.(D!n,EFf&,#r'n:0p,!WE>trrMURo`+C[!WF26rrMnEn,EF`+85^8r"&H"
n,EFf+8,X7pj_c4!Ur>IrrN*(o`+C[!WF26rrMnEn,EFHJ+`gA"8)W^rrN*@p&>'fJ+*C;i:R$L
KCo34rrN*@p&>'fJ+*C;_=[a-_=[crrrN*@p&>'fJ+*C;KCo0Di:R'<rrN*@p&>'fJ+*C;#PA#s
n:1-2n,EFf+8,X7pj_f5!WEW%rrMmZp&FL\!WF26rrMnEnG`Oe+8#R6r#bV3n,EFf+8,X7pj_f5
!Vdc/rrN$.p&FO]!e:1kp&>'fJ+3I=pcnEN!WEW&s760mqu?^<+8,X7pj_f5!UtU1rr<;ss760i
_#=<6+8,X7pj_f5!9!GJ!/'tEoD\ggr;Zg>p&>'fJ+3I<iU[!K_tF'$rrqll!.Y%Sp&>'fJ+3I<
_=IU+_=dj"rrmoTs8V!Wp&>'fJ+3I<KC]$Bi:[-Brs/N'5QCc_!'g2W!Vh06rr@iFrrDQ]s7H<l
p]:Bo!r`01pAY0gJ+3I<#P.lqn:103o`"s]#QF`)rX]>.rrMnEnc&Xh&+]`$pcnKPo`"s-5Q:Za
rZ2+6rrMnEnc&Xh+7fF4r'0oTo`"mkrVm!!++Sk8rrMnEnc&Xf+7fF4r#bY4p&>'l"9&6%rZC&_
p\t9hJ+<O>r'0cP!WF27s7QBmp]pct"9'D3&,6))pj_i6!VenMrrN*0pAagc!Uq30rr`6Br!2ur
!Vh07rrMV=nc&RopAagc!T63@rr`62rWDop!UtU/rrDQXrr@iJs7QBl_#+-5&-%4TrrDQXrrD!H
rr@]Fs7QBlJc#HK&-'H>rrDQXrrD$IrrBt1s7QBl"8i*#&-(R;q#:?`nG`LInG`L+pAajd!W3K*
rrWf3p`K;2!:]LX!5n=+!9*YOpAY0g+8c'?#QO]4q#:?PnG`L+nG`LIpAajd!VenVrr\&VrX\f(
!9*GI!/'e@!9!SNpAY0_J,B6JL]@AZq#:?QnG`KDnG`LXpAajd!9!_R",HpVKD>HHiUHjI#Oq`o
n:134pAY-/qYpYMs8Tq1rrBn)rr<T!rrMnEp]'se!/(.J"2k0=i;!<P_sm[+&+KT"pj`&<pAY*t
qYp]9s8VS<q>UH4nc&Xh&+KT"pcnNQp\t9n#Q"H'_>jQ)5Pb<ZKCSsBrZCY0!W51Vs7cNorX\l*
"QBC\pcnTS!/L+E!WF21rrN$^p](!f!W4&9rrh<\s83u7rr@iErrN$^nG`Og+8>g0rrMmZqYp]V
s8W'/q>UF"nc&Xf5Oe[RrZCn7p\t9hJ,90FnG`Ff&,H5*&+TZ#r'0]N!WF28s7cNon:1<7"Rpp@
rs/E#!WEW"rrMmZq>UH`q>UKp&,6+urrD!Qrri+Hs8R`JrrN*@nc&XbJ,90HhuF;`rr<T(s7cNn
iVEKVpcnfY_tsB6r#bJ/!Vh0ArrE&t!;ZWp&,6+urrBn2rri6as8Tq3rrN$^nc&XbJ,B6GnGWCf
+8Z!;&,6+urr@]Irri6As8V$RrrMmZnc&UYqYp]6!"],8qYpPNp](!f!/(+I"TBMCs5<bR!Vh07
rrDQbrr`<Ds6p'crr@iKs7cNn#PnB'rX]&/n:1?8!UtU/rrDQcrs&B$s8W&uJ,B6GL\LiCrr<T)
rr`l4s7h*@rrDQXrrDQcrrMm"rr3#75PtH\L\LiDrrN*0q#:I%s8VjYqu6ZSnG`LIqu6]T+9)9@
n.5Er!5nR2q#:Bo+8Gj=L]@DP5PtH\iUHjIiVWWU^jl@`!W33"rrBt2s7lTpr#b_6"G?aSr#bh9
!5\1)!9*hT!.k(J!!E,u!5nR2q#:Bm5PY6]_>jQ7+8c'<KCJm@iVWWT"8r0!Jc#HI_tX3+rrMmZ
q#:KTs8W'/qu6X$nG`LIr;Qfs#Q4T%_#+-3_tX3+rrMnEq#:?Prr2s/qu6X$nG`LIr;Qfq+8l->
n:1B9!5nR2q#:BiJ,'$Hn:1K<&,cG.rX\Mu!5na7!VenWrrMmZr;QcUp]($g!UtU6rri*]s8N?%
rrN$>nG`L+r;QfeJ,K<Ir#bk:!9*\Pq#:?`p\tBo+92@rr;Qfm5Oe[Q_u0N7i;<NTrX\r,!9*\P
q#:?Pp\tBo&-)Z^r;Qfe5Oe[Q_u0N7_>=03#Q4T%iV3BIrrD$Prri<+s8U"7rrM&-nG`L+r;Qc5
qYpO#r;QcUp]($g!9*YO!sel+_u0N7i:$[G_u0N7KDPTJKDb`LiV3BIrrBn/rr[oRs2"X5!5\.(
!5na7!!iB#!5\U5!9*\Pq#:?3pAY61s8V'Urr</irrBt7rr<<#rrBn5rrD$Ps7lTo_tO*4i.(dc
rVlot#OhZm_u9T9rX\l*!9!eT!9*\Pq#:>HpAY6a5QB[?rrN$.n,EC*rVlot+8Z!;nGN:diV3BI
rr@iJrr`$<s7$!e!Vdc*rrBt8rrN$>qYpTcJ,TBIiV3BIrr@iJrr`0(s7$!e!T632rrBt8rrN$^
qYpTkJ,TBIiV3BIrr@iJrr`6&s7$!e!Pj3RrrBt8rrMmZqYpTk5Q1T^iV3BIrr<T&rr[fOpj`;C
!!2Nf!5nd8!Vh0@rrN$^rVllVp]($g!"\c&#JbiaJ,fQJ"7H0h_u9T9pj`/?!W51\rrD$Ps7lTo
&,#r-i#h`Ds8Vj!mf*:)rVlofJ,90Gr#bn;!9*\Pq#:=)p&>9l#P`fKs55!errBt8rrDQarrN*@
rVllVp]('h!WEW&rs/H%pcnfY!'foO!5nd8!:]ga!WF2>rrD$Ps7uZqrZCe4"TTN,s7cT]rrBt8
rrDQarrN*@rVllVp]('h!WF25rrp1<5Q?69mJd1(rVllVq#:=)rVllVp]('h!WF25rrDQe!!!Ps
rrBt8rrD$Qrr<T.rrD$Ps7uZqrZCe4!<2os!.XD9!5nd8!9*_Q!"]&.!9*\Pq>UKp+7oL7^]4?:
m/I('rVllVq#:=)rVllVp]('h!W51Rrr`0!!'fiM!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*
!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8
!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!9*nV!9*_Q
!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.
!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2
q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn
5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn5P+mU
rZCG*!:]se!:]ga!WF2>rr@iKs7uZqr'0fQ!WF2+rrMnErr2ufq>UKp+8u3>&,6,"rrN$^oD\jj
+6rk,pj`;C!:]ga!WF2>rr<T(s7uZqr'0fQ!WF2+rrMnErr3#gJ,90Gr#bn;!"\i(q>UKn5P+mU
rZCG*!VenYrrMnEqYpTo5Q:Z`rX\c'q>UKn5P+mUrZCG*!W51]rrMnEqYpTo5Q:Z`rZCn7q>UKn
5P+mUrZCG*!W51]rrMmZqYpTk5Q:Z`rZCn7q>UKn5P+mUrZCG*!W51]rrN$^qYpTkJ,]HKrZCn7
q>UKn5P+mUrZCG*!WF2?rrN$>qYpTcJ,]HKr'0rUq>UKn5P+mUrZCG*!WF2?rrN*@qYpQbrVlor
5PP3RrrN$^oD\jj+6rk,rX]#.!WEW+rrD!UrrMmZp]('h!W51RrrN*@l2L_orVlj&qYpQ3rVlon
J+s!=rrN$^oD\jj+6ie*&,lM.#Q"H#_>XB7pj`&<q>UKn5P+mUrZCD)!!iK&!/(.J!/(7M!UtU5
s7uZqrZCb3!W51Hrr@iQrrBn3rr<<&rrDQ^s7uZqrZCb3!W51Hrr@]MrrBn3rr<<&rrD!Ns7uZq
rZCb3!W51HrrBt8rrD!SrrN*0rVllVpAasg!WF24rrN$^l2Lb$rVlofJ,K<Ir#bn;!9*YOq>UKp
+7oL5r'0HG!9*nV!VenWrrMmZrVll8pAasg!WEW$rrMmZl2LbBrVlor+8l->n:1E:!5nO1q#:=)
oD\jdJ*Ht5i;NZVrWiB$!5SO4!/("Fq#:=)oD\jdJ*Ht5nGN:d"8r0!Jc,NJL\CcCrr<T$rrMnE
l2LeRJ,TBIJc,NJ"8r0!#PS2mrr<T$rrMnEl2LeZ5Q1T_^jl@`!W33$rrN*0pAapf!/L1G!:]4P
!W51\rrM%"rr3#g&,lM/rZCk6q#:>LoD\g[kl1\]+8u3?p]pfu!PgqurrN$>pAapf!/L1G!:]4P
!WF2>rs&B$s8W&uJ,TBJr'0oTq#:>HoD\gKkl1\_&,cG1!$D71!W;rupcnKPq#:?3oD\gLkPkMe
r;Qc4rVup'r;QfeJ+ip;rrBt.rrD$@rr@iPrrDQf!!",=rrDQ]s7lTo_=R[,_<:guKDb`Lrr)op
rrD!Ms7lToiUd'L_rq%"_>F66huF;brrBn.s7lToiUd'L_rq%"iU[!K_tF')rrD!Krr@]7rrD!J
rr@]Es7lTonFQY[LZe[<n:1'0!!i2sq#:BaJ+Wa@#Nu*fpcnEN!WEW&s7lTppj_r9!"\8m!Vdc/
rrN$.p&Fge!Vh0:rr<SmrrN$>o`"si+8,[/rrMmZp&>'l&*NrnrX\Z$!VenPs7lTpr'0lS!WF2'
rr<;rrrMV=p&Fge!W4&4rrN$>k5PF6o`"pLo`+^d!WF26rrN$^k5PFto`"p-o`+^d!WEW&rrMmZ
k5PG>o`"oDo`+[c!"\c&!Vh0,rrM&-p&>!oo`+[c!!i2s!UtU$rrMURpAY0m#PA&jrr@]ErrD!=
rrMm:pAY0k&+onrrr@]ErrD!=rrN*(pAY0_5P5!MrrBn.rrBmrrr</prrM&-o`+[c!9*VN!5mmt
!.jkD!5S4+p\t6Op&>#EjSo4qpAY,DoDeRb!UtU4rr<;brrM%Bq#:Bo"7uQerrMnEpAY+'jSo8M
+8Gj:r!2inp\t9h5PP0YrX\)i!W32trrMU2oDeRb!W4&6rrN$>jSo8["8Mlsi'6i5p\t9n&,6))
pcmg=!!)fo!J#[ks7cNorWi2t!Ur>6rrKo"qYpTq!V69arr<;urrMV=j8T/<&,Q;,p]L*epAY,F
p\t6Oir9&S"8`#ui",DYpAY-/p\t60ir9&Y!;c]rJ3WW)pAY-Np\t5GiVrq/5Q(N^rW)KgpAY0_
J,'$D#N>[`i!92[!Up3]s7ZHnpcnTS!WEVgrrMlpr;QeJ&+T\nrrMm:q>UKn&)mNirW!K.rrVrq
5OndIrrN$.q>UKj+5m/'J,k*!rr<&gs7QBl"8Vrti.'\b!:]md!!i#np&>#Cq>UH1hu<]Uqu?^]
nGi1]!5SF1!.j#,!9!hV!!D]ip&>'N5PtH]rWD!VrVuqJn,N(\!Uq3.rrN$&a8bi4!VcosrrMU"
a8bi4!WE2urrM%Ba8bf3!!)or!J#[?s7H<l^d%et!WE,>s7H<ln-Apl!Up?6s7H<lp]:?n!Pf5c
s7H<rrW#1_s8E!_`rGZ1"b6^Ts53mrs7?6jnGN=e#K?`7rrDuq!!"+[s760l^]4?8`;fE."8i-!
+2n2as0;U/s0;U/s0;U/s3CWIquQita6EWLrri=Hs8V9Hs3CWIrdFhHkNW#lrri=Ns8V9Hs3CWN
rdPgTkD,:3'8Q#UcMn4MH][B&1F@1,1[b:grsAZ,N6Z$\2KOn(mf1T4$3#:AcfTKoF.NF#s3CWN
rdUHak';u.Sq$2.cMn4MJ"4jIH,aosJ+!?^rsA[QSBp>CAojP,mf1T4$3#4?k@ZRt,G,Y;s3CWN
quI4F_hV#"%u9TQZ2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/q>UKb&,uS/_tsB5o>gn,
rrMr9rr2u]qYpQea8bu8!VtpXrrVB`n,<7drl5!6rrMrYrr3&_s3LZD!;sk:q>V!$iJ^MRjthXE
-=.`1,K#J^s7u[+q8poUcfZIt1F/L7bk%7DJ'.fert+rCc8k(N):!LIg#:0H4N;lns7u]pq$t\p
#Nn+m!BbT-r:<%rJ'.fes8Vm)c?]HQ3R3+<3ViUE4O/H!s7u]pq$t\qs5uDfIm4hHr:<%rJ'.fe
s8Vm)c?T*H3R0cNR.:+G4O/H!s7u[+q=ott:ZjaW'0MdYlr0=tJ'.fert+\t6p;^0(up>k4rtag
_hLCus0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;TS~>
%%EndData
showpage
%%Trailer
end
%%EOF

524
fzd/pig1.ps Normal file
View File

@ -0,0 +1,524 @@
%!PS-Adobe-3.0
%%Creator: GIMP PostScript file plugin V 1.12 by Peter Kirchgessner
%%Title: /home/robin/proj/java/constraint_editor/exp42/docs/papers/fzd/pig1.ps
%%CreationDate: Wed Apr 27 08:33:18 2005
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%Pages: 1
%%BoundingBox: 14 14 375 177
%%EndComments
%%BeginProlog
% Use own dictionary to avoid conflicts
10 dict begin
%%EndProlog
%%Page: 1 1
% Translate for offset
14.173228 14.173228 translate
% Translate to begin of first scanline
0.000000 162.000000 translate
360.000000 -162.000000 scale
% Image geometry
360 162 8
% Transformation matrix
[ 360 0 0 162 0 0 ]
% Strings to hold RGB-samples per scanline
/rstr 360 string def
/gstr 360 string def
/bstr 360 string def
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
true 3
%%BeginData: 8631 ASCII Bytes
colorimage
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
M?!AOJcD/<J,~>
M?!AOJcD/<J,~>
JcC<$RK%d~>
M#[JTrr;rtVuQ\qs8N'!JcGWIJ,~>
M#[JTrr;rtVuQ\qs8N'!JcGWIJ,~>
JcC<$RK%d~>
M#[JTrVultWW2turVuisVuQPmh>`!~>
M#[JTrVultWW2turVuisVuQPmh>`!~>
JcC<$RK%d~>
M#[JTrVultWrN)!qu?ZrVZ6Yrrr;rthZ&*~>
M#[JTrVultWrN)!qu?ZrVZ6Yrrr;rthZ&*~>
JcC<$RK%d~>
M#[JTrVultWrN)!qYpNqVZ6Yrr;ZcshuA3~>
M#[JTrVultWrN)!qYpNqVZ6Yrr;ZcshuA3~>
JcC<$RK%d~>
M#[JTrr;uuWrN)!ScA]ir;ZcshuA3~>
M#[JTrr;uuWrN)!ScA]ir;ZcshuA3~>
JcC<$RK%d~>
j8T)ZVuQPmX8i2"ScA]iqu?Zri;\<~>
j8T)ZVuQPmX8i2"ScA]iqu?Zri;\<~>
JcC<$RK%d~>
jT#2ZW;lktrVuisXT/;#ScA]iqu?Zri;\<~>
jT#2ZW;lktrVuisXT/;#ScA]iqu?Zri;\<~>
JcC<$RK%d~>
jT#2ZW;lktr;ZcsXT/;#ScA]iqu?Zri;\<~>
jT#2ZW;lktr;ZcsXT/;#ScA]iqu?Zri;\<~>
JcC<$RK%d~>
jSo8]rrB"trrDusrrB/#rrAVirrDrrrrD!WJ,~>
jSo8]rrB"trrDusrrB/#rrAVirrDrrrrD!WJ,~>
JcC<$RK%d~>
jo>>\!ri6#WW2tur;ZcsX8i2"T)\fjqu?Zri;\<~>
jo>>\!ri6#WW2tur;ZcsX8i2"T)\fjqu?Zri;\<~>
JcC<$RK%d~>
jo5G`s8N'!WW2turVultWrN)!qu?ZrVZ6Yrr;ZcshuA3~>
jo5G`s8N'!WW2turVultWrN)!qu?ZrVZ6Yrr;ZcshuA3~>
JcC<$RK%d~>
k5YG]s8W&uX8htqW;lhsrr;uuV>pPqr;ZcshuA3~>
k5YG]s8W&uX8htqW;lhsrr;uuV>pPqr;ZcshuA3~>
JcC<$RK%d~>
k5PD]rVultJcEgkr;`VmrrE&urW(gTJ,~>
k5PD]rVultJcEgkr;`VmrrE&urW(gTJ,~>
JcC<$RK%d~>
k5Y8XJcC<$kPt>Xh>`!~>
k5Y8XJcC<$kPt>Xh>`!~>
JcC<$RK%d~>
kPtP^rVuisJcC<$]`3K~>
kPtP^rVuisJcC<$]`3K~>
JcC<$RK%d~>
kPkM^qu?ZrJcC<$]`3K~>
kPkM^qu?ZrJcC<$]`3K~>
JcC<$RK%d~>
kl:Y_qu?WqJcC<$^&NT~>
kl:Y_qu?WqJcC<$^&NT~>
JcC<$RK%d~>
l2U\^rVucqJcC<$^Ai]~>
l2U\^rVucqJcC<$^Ai]~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
ZiB_!VuQMlJcF:#J,~>
ZiB_!VuQMlJcF:#J,~>
JcC<$RK%d~>
^Amg*q#C-iVZ6Jm]`73r\c70~>
^Amg*q#C-iVZ6Jm]`73r\c70~>
JcC<$RK%d~>
`rGi7j8]#W]`7X)p&FsjaoD,9l2UPZ_>f#~>
`rGi7j8]#W]`7X)p&FsjaoD,9l2UPZ_>f#~>
JcC<$RK%d~>
bQ%J?f)P[KaT)&9jo>;[df91Ef`1jL`rCP~>
bQ%J?f)P[KaT)&9jo>;[df91Ef`1jL`rCP~>
JcC<$RK%d~>
d/X"Dc2[bCd/X"DgAh-PgAh'Nc2[_Bb5Zt~>
d/X"Dc2[bCd/X"DgAh-PgAh'Nc2[_Bb5Zt~>
JcC<$RK%d~>
e,TCI`W,o;oD\djk5YA[df9=Ii;``U`;ff:c2W:~>
e,TCI`W,o;oD\djk5YA[df9=Ii;``U`;ff:c2W:~>
JcC<$RK%d~>
f)P^L^]495pAY*ml2U__bl@\Cjo>;[^&S*4qu?Wqf`-I~>
f)P^L^]495pAY*ml2U__bl@\Cjo>;[^&S*4qu?Wqf`-I~>
JcC<$RK%d~>
f`1sO\c;[0q#:<om/R%ba8Z,>kl:Y_\GuR/rr;osf`-I~>
f`1sO\c;[0q#:<om/R%ba8Z,>kl:Y_\GuR/rr;osf`-I~>
JcC<$RK%d~>
gAh0Q[K$7,qu?Zrmf3:e_uK`:mJm.c[/]q%!<;rshuA3~>
gAh0Q[K$7,qu?Zrmf3:e_uK`:mJm.c[/]q%!<;rshuA3~>
JcC<$_#O<4huA3~>
h#IBSZ2Xe(r;ZcsnGiLg^]+96n,E@fYlF7oiW"E~>
h#IBSZ2Xe(r;ZcsnGiLg^]+96n,E@fYlF7oiW"E~>
JcC<$_Z0B2iW"E~>
h>[HTY5eM%s8W&uo)J^i]`.s3r;ZZpr;ZcsYlF1mir=N~>
h>[HTY5eM%s8W&uo)J^i]`.s3r;ZZpr;ZcsYlF1mir=N~>
JcDVIquEJkpAj4QJ,~>
hZ!QUX8i(trVuisqu?Zr\c2X0rr;fprr2ruYQ+%kir=N~>
hZ!QUX8i(trVuisqu?Zr\c2X0rr;fprr2ruYQ+%kir=N~>
JcG`LrW')#q>d;jpAj4QJ,~>
hu<ZVX8i%srVuisr;Q`s[f6@.s7QGrs6TgHs*t~>
hu<ZVX8i%srVuisr;Q`s[f6@.s7QGrs6TgHs*t~>
JcG`LrW',$p].,ip&O.QJ,~>
i;WcWX8i"r!<;lqrr2ru[/]h"XoIehj8XW~>
i;WcWX8i"r!<;lqrr2ru[/]h"XoIehj8XW~>
JcGQHYlFCsVZ6;hj8XW~>
irArWY5dtks8N'!ZiB_!Y5dhgjSs`~>
irArWY5dtks8N'!ZiB_!Y5dhgjSs`~>
ir9)\rr<%qs7lZ!s7QGhs7HBQs*t~>
j8\uVZ2a.jZiBXtWW2MhjSs`~>
j8\uVZ2a.jZiBXtWW2MhjSs`~>
j8],Z!<<#uVZ6DkZN'OsWW2MhjSs`~>
jT##UZN'7kZiBXtWW2MhjSs`~>
jT##UZN'7kZiBXtWW2MhjSs`~>
jT#2Z!<;utUAt2mZ2aFrWW2MhjSs`~>
jT##UWW2YlZN'OsWW2MhjSs`~>
jT##UWW2YlZN'OsWW2MhjSs`~>
jT##UWW)u!s7lZ"s7?;js7-0Ns*t~>
jT##UWrM\kZiBXtWW2MhjSs`~>
jT##UWrM\kZiBXtWW2MhjSs`~>
jT##UWrN%u!<;lq!WN/+s7?;js7-0Ns*t~>
jo>&TX8helZiB1g[K#k!j8XW~>
jo>&TX8helZiB1g[K#k!j8XW~>
jo>&TX8i/!!<;lq!WN/+s7lYis7?<Os*t~>
jo>&TX8helZiB:jZN'Osj8XW~>
jo>&TX8helZiB:jZN'Osj8XW~>
jo>&TX8i/!!<;ipZN'\"V#U&ej8XW~>
jo>&TX8help](6n^AmO"YlFCsir=N~>
jo>&TX8help](6n^AmO"YlFCsir=N~>
jo>&TX8hhmZ2aS!V#U,gir=N~>
jo>&TX8helrr;fp!WN/6s6Tfis7QHPs*t~>
jo>&TX8helrr;fp!WN/6s6Tfis7QHPs*t~>
jo>&TX8hhmZ2aOuV>p5hir=N~>
jo>&TWrMbm!<;`m]`7a,!<;`mYlFIuiW"E~>
jo>&TWrMbm!<;`m]`7a,!<;`mYlFIuiW"E~>
jo>,V!WN/"s7QGss7cSirrN3#s8)fTs*t~>
jo=]J[/]Fl])VU,rr;coYQ+V&!<;rshuA3~>
jo=]J[/]Fl])VU,rr;coYQ+V&!<;rshuA3~>
jo>,VW;l\oX8i"rU&Y#jhuA3~>
jT"WJZiBCm]Dq[,r;ZTnZ2ah(fDg@~>
jT"WJZiBCm]Dq[,r;ZTnZ2ah(fDg@~>
jT##UW;lVmXoJ;!JcGQGJ,~>
jT"WJZN'@n^An-3oDeRc\GuL-ec1.~>
jT"WJZN'@n^An-3oDeRc\GuL-ec1.~>
jT##UVuQ_r!<;utJcDDCJ,~>
jT"WJZ2a\$!<;cn_uKW7mf34crVucq_>jH6dJn^~>
jT"WJZ2a\$!<;cn_uKW7mf34crVucq_>jH6dJn^~>
jT#&VU]:8mJcDABJ,~>
j8\KH\,ZC,rr;rt!<;cnb5_;<l2U\^q#C0jcN!bAc2W:~>
j8\KH\,ZC,rr;rt!<;cnb5_;<l2U\^q#C0jcN!bAc2W:~>
j8]#WU&Y)lJcDABJ,~>
irArWs8Vfnrr;fp`;f]7pAamfe,T.BirAuXnGi1^j8\iRa8^Y~>
irArWs8Vfnrr;fp`;f]7pAamfe,T.BirAuXnGi1^j8\iRa8^Y~>
irAuXJcC<$]DmB~>
i;WcWrr;`npAagdh#I!HnGi=b!ri6#j8\ZMl2L_`nc/UhjT"6?^&NT~>
i;WcWrr;`npAagdh#I!HnGi=b!ri6#j8\ZMl2L_`nc/UhjT"6?^&NT~>
JcC<$RK%d~>
h#I0MlMoW>j8\oTs8W&urr;3_aSu5?K)^?~>
h#I0MlMoW>j8\oTs8W&urr;3_aSu5?K)^?~>
JcC<$RK%d~>
h#I3NVZ6Jmqu?TpJcE"TJ,~>
h#I3NVZ6Jmqu?TpJcE"TJ,~>
JcC<$RK%d~>
h#I3NVZ6JmJcDYJJ,~>
h#I3NVZ6JmJcDYJJ,~>
JcC<$RK%d~>
h#I3NVZ6MnJcDVIJ,~>
h#I3NVZ6MnJcDVIJ,~>
JcC<$RK%d~>
h#I6OV#U>mJcDVIJ,~>
h#I6OV#U>mJcDVIJ,~>
JcC<$RK%d~>
g&M'PU&Y,mJcDSHJ,~>
g&M'PU&Y,mJcDSHJ,~>
JcC<$RK%d~>
g&D$PT`4ulJcDPGJ,~>
g&D$PT`4ulJcDPGJ,~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
JcC<$RK%d~>
%%EndData
showpage
%%Trailer
end
%%EOF

982
fzd/pig2.ps Normal file
View File

@ -0,0 +1,982 @@
%!PS-Adobe-3.0
%%Creator: GIMP PostScript file plugin V 1.17 by Peter Kirchgessner
%%Title: pig2.ps
%%CreationDate: Sat Nov 4 12:56:07 2006
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%Pages: 1
%%BoundingBox: 14 14 366 321
%%EndComments
%%BeginProlog
% Use own dictionary to avoid conflicts
10 dict begin
%%EndProlog
%%Page: 1 1
% Translate for offset
14.173228346456694 14.173228346456694 translate
% Translate to begin of first scanline
0 305.98764385221079 translate
350.98582677165354 -305.98764385221079 scale
% Image geometry
351 306 8
% Transformation matrix
[ 351 0 0 306 0 0 ]
% Strings to hold RGB-samples per scanline
/rstr 351 string def
/gstr 351 string def
/bstr 351 string def
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
true 3
%%BeginData: 24699 ASCII Bytes
colorimage
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$df0Qm5!;%n9QIl#s*t~>
JcC<$df0Qj1,1L>6#+!as*t~>
JcC<$df0=BrT++Dm.T-4J,~>
JcC<$df0Tn51/<GcBq"VgAc[~>
JcC<$df0Tk1="b4b)nZ8gAc[~>
JcC<$df0UJjn\fNq!mM8gAc[~>
JcC<$df0Wo54&:Ks8L;0[+kV2~>
JcC<$df0Wl1@+r>s8L2!YhT2.~>
JcC<$df0CDjo#)W!r1pNg])d~>
JcC<$df0Bh54&7J"9*sarnRO(~>
JcC<$df0Be1@+o="9*[OrnRO(~>
JcC<$df0CDjo#&V!Uf7-s*t~>
JcC<$df0Ei54&:IrrTSmqV;+$~>
JcC<$df0Ef1@+r<rrTG]qV;+$~>
JcC<$df0CDjo#&V!qk[Sh#Dm~>
JcC<$df0Bh54&7J"9-5&n_F.p~>
JcC<$df0Be1@+o="9-+lnD+%o~>
JcC<$df0CDjo#&V!r(gTh#Dm~>
JcC<$df0Ei54&:IrrTVoqqV4%~>
JcC<$df0Ef1@+r<rrTG^qqV4%~>
JcC<$df0CDjo#&V!qk[Sh#Dm~>
JcC<$df0Bh54&7J"9+$irnRO(~>
JcC<$df0Be1@+o="9*dYrnRO(~>
JcC<$df0CDjo#&V!Uo@/s*t~>
JcC<$df0Wo54&:Ks8LJ6_;#!?~>
JcC<$df0Wl1@+r>s8LA(^"`R;~>
JcC<$df0CDjo#)W!r;!Qg])d~>
JcC<$df0Tn51/<Gd$mIjgAc[~>
JcC<$df0Tk1="b4c'18NgAc[~>
JcC<$df0UJjn\fNq=<\<gAc[~>
JcC<$df0Qm5!;%n96A,*s*t~>
JcC<$df0Qj1,1L>5\n3hs*t~>
JcC<$df0=BrT++Dm.]35J,~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$ci475\X%o%QFZ26s*t~>
JcC<$ci475\X%o%QFZ26s*t~>
JcC<$ci475\X%o%QFZ26s*t~>
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
JcC<$df0Bb7KrSf!X2'0huA3~>
JcC<$df0Bb7KrSf!X2'0huA3~>
JcC<$df0Bb7KrSf!X2'0huA3~>
JcC<$e,KL4FUe'F!Y';8i;\<~>
JcC<$e,KL4FUe'F!Y';8i;\<~>
JcC<$e,KL4FUe'F!Y';8i;\<~>
JcC<$e,KHZ3V<@Q3P")JJ,~>
JcC<$e,KHZ3V<@Q3P")JJ,~>
JcC<$e,KHZ3V<@Q3P")JJ,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH%"n_ir"bbh6J,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$e,KH7(\Ib/(RF"ZJ,~>
JcC<$eGfUEGmX-D!BI^Ks*t~>
JcC<$eGfUEGmX-D!BI^Ks*t~>
JcC<$eGfUEGmX-D!BI^Ks*t~>
JcC<$f)GjFQ665$!!3UPkMZAj~>
JcC<$f)GjFQ665$!!3UPkMZAj~>
JcC<$f)GjFQ665$!!3UPkMZAj~>
JcC<$f`)'AM\lKe!!3<n_;G9C~>
JcC<$f`)'AM\lKe!!3<n_;G9C~>
JcC<$f`)'AM\lKe!!3<n_;G9C~>
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
JcE4Z#QDDV90uX3e[PP\qmSEar;Zp#(Q%\WrrM[3r;ZgFgAc[~>
JcE4Z#QD8I5W;;_e$o>ZqmSEar;Zp#(Q%\WrrM[3r;ZgFgAc[~>
JcE1Y#57EHk327/\,QR-[l"6c!!<6<M=LB@!V.<1!!"D#s*t~>
JcE7[$2oKHSC-')HU#BYrr`"k.K]PK!s'R6p%JCdK)toN!=Jh\s*t~>
JcE7[$2o35QHn-oF#1PArr`"k.K]PK!s'R6p%JCdK)toN!=Jh\s*t~>
JcE4Z#k$jGq>0gPjnH@d"8AT@!rW*$!?mp)pAY/G!W<!!$NAf[J,~>
JcE:\"9,)bf_tgOrlk,Lrr_q[+9DE@!s1!SqXsjhiXu(g!<M$2s*t~>
JcE:\"9+oRf)>UMrlOlHrr_q[+9DE@!s1!SqXsjhiXu(g!<M$2s*t~>
JcE7[!qYRNr;Qfmrk/75op-^$r;Zp$/$/U?rrM*kqu?`uh:qs[~>
jo5F85Ni#ss4RDRr(NZirr__I(]jR8!s1<grU^$hAGQ9+K%p<U~>
jo5F01Zn[fs4RDRr'?[Xrr__I(]jR8!s1<grU^$hAGQ9+K%p<U~>
jo5DMjns]0fDbm7o!\Q#mtqq_r;Zp$1q3GTrr?U+!!%W*s*t~>
k5PPP6UdKKrs?_04Zttq=e5?eZi:-]51feErr_G/'*8%3!sM!+r:9jjed)6U!W;uu0AHMW~>
k5PPO2`[/-rs?V!0ekFA:RCkUZi:-[1=Z<6rr_G/'*8%3!sM!+r:9jjed)6U!W;uu0AHMW~>
k5PP^k2u6=rrDimjTFZ0o)>rp!rD$T\GlZoGS:,V!!<Bj_#3d'"P*hY!!3#u!&*+,J,~>
kPk_bV,F*cqQ^&,a$.o/i7bM5Jc<"U!m<dl])MikC(:(@!sVQHrUKmgr(R(i!!<*!!"7Q]J,~>
kPk_bTLYVCqQ^&,`%oWphUenuH2b/M!m!.\])MikC(:(@!sVQHrUKmgr(R(i!!<*!!"7Q]J,~>
k5PSUkk"$;Z2Y+)jn\fNqXs%>ZMt"$jnu^i!odr(qu?g':X8q/rrN$krVup"r;Zg*g])d~>
kl1nerE,W[6b`Q*rs?_0m/I%brj=ubZi:-[52-"Mrr`8U?4$N0!XW&_mf*I("98E@!W<!!!SuQ2
J,~>
kl1nerD&^J2nK!ors?V!li-qarin9QZi:-Y1>)T?rr`8U?4$N0!XW&_mf*I("98E@!W<!!!SuQ2
J,~>
k5PSKo)7_EZ2Xn#jo#)W!qk[SZi:+'jnc[j"9.(^$2ac)$!Q!Lrrp(=!!!r=r;Zj!h;&$\~>
kPk_-5Ni#uE3]ELa$/khs8W)*5k_Pa!r>H_^Ae8[:'^[s!Y&l$mJdUm1B7CVErZ1@!<<+Oh#Dm~>
kPk_*1Zn[`B<hIC`%pZXs8W)%2"e3T!r>$M^Ae8[:'^[s!Y&l$mJdUm1B7CVErZ1@!<<+Oh#Dm~>
kPk_\jo#/Hm'6QlpuVGPrrVlTrj2V+roWgdrrUJ@#Q+Q'%;F_ers\f]!!!(A!!!$#!!%W+s*t~>
kl1neH[#Jgcp-Kprs?_0m/I"[`))NoZi:.,RnDW;rrW2OjiIH'`'4D&!!3d\kj/6WV#^Pr0l$ah
!t,)/0\l\Y~>
kl1neF)M!Vbqn7_rs?V!li-nZ_*s1ZZi:.,Ps=.(rrW2LjN.?&`'4D&!!3d\kj/6WV#^Pr0l$ah
!t,)/0\l\Y~>
kPtSLs8N/rjnl@`#l*NZs8W)mkjYkW!qPOOr;Qfor5em>`'4D&!!3d\kj/6WV#^Pr0l$ah!t,)/
0\l\Y~>
l2Lkbl9RZ65QX-6rj2V*a$0Jfs#pL8rVj,&$2Sj<T[VZ3JjHH\rr`212$3^V!s'3on`p,`nf@c2
"MQhq!"(I]!"7T^J,~>
l2Lkbkqt9r1]fFlrj2V*`%q<Ks"XY$rVj,&$2SO(RaBa$HSq\Drr`212$3^V!s'3on`p,`nf@c2
"MQhq!"(I]!"7T^J,~>
kl1\]k5=<@nZr/pq"s.Qm]c]trpAn>q>0jRk4Hjs"8o_f!rW*$!>gR^lMh=a*WQ0C^,Q)m$8MS]
$f(c4~>
kl1[T;>o;QR7m>S[/UHQ50i!?e"]HsriuJ.rNpB46;rH_bl7e>VCDZG!!<6FR.]\C%YFc^!)!8.
!!!sk!!!&Vh>`!~>
kl1[N7fD'DP<epB[/UHN1<\G,d%*:WriuJ.rNB]p2Fr/>bl7e>VCDZG!!<6FR.]\C%YFc^!)!8.
!!!sk!!!&Vh>`!~>
kl1\Skl(>Zn`TnXrs8D]q"jj_oB,PGrs&/^kN;!rq98j@pSKDAr;Zp#+dhrdrsjY^!!#Xk(]XOT
KE(uQhVJ3^~>
l2M(f;jmXbs8M@N\$Q)@a$/khs8W)&5kfj0pAY6fQ665,!!<9QX8;#Z&*"3$!!q0U$NL/ih#RKU
K\cZY~>
l2M(f8<a&Qs8M=AZEsQ;`%pZXs8W)!2"lM#pAY6fQ665,!!<9QX8;#Z&*"3$!!q0U$NL/ih#RKU
K\cZY~>
kl1\InbrIhr9![YrrVuWr;HWso]?('s7ZHpop-^$r;Zp$/$&O0rt"-$!!!;UrsJf,4l$,=!/02.
J,~>
l2Lh$52uP@"9*RZrj;\3a$/khs8W)&5kfj0q#:HbMAH<l!!<<Z\GkUi!+l-0$Y]P;!rr=DrX/]+
1#;k[~>
l2Lh!1>r-2"9*:Irj;\3`%pZXs8W)!2"uS$q#:HbMAH<l!!<<Z\GkUi!+l-0$Y]P;!rr=DrX/]+
1#;k[~>
l2LhZjnnuU!U]3ZrrVuWr;HWso]?('s7lTrmtqn^r;Zp%1V!GGrr?X0!"3K>quZp!FoDaK!&<=0
J,~>
l2Ld+D>X>7_`le]rs?_0dGWs7W(;dEJcGTH"6XqB!W<!#"[Ks'jSoh?#QOi:jo=9?!!'\31&q:]
rnd[*~>
l2Ld"AGcB.^G=HKrs?V!cJIF.UHO5.JcGTH"6XqB!W<!#"[Ks'jSoh?#QOi:jo=9?!!'\31&q:]
rnd[*~>
l2LeNlhg\`pZ;7Yrs8D]q>:'coB5Rns7uZskBR[@r;Zp'5f3K\rt3Zb!!!Vms5<tY!5/=e!!!B*
hZ&*~>
OoGa.5!;%m6!^Acrdk+IrrV.n%K$2.##EPCj8Tbi8cShlK`D(I!!!&hs+::O!SuW4J,~>
OoGa+1,1L=2,g1Grdk+IrrV.n%K$2.##EPCj8Tbi8cShlK`D(I!!!&hs+::O!SuW4J,~>
OoGFVrT++Cl19K+qYpWUBast?!sVQHrT!njr(6qh!JLLQUAt8pnGe+@!!1p4s*t~>
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
quPjY!WuTtXoAJ?!!"+js*t~>
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
quPjY!WuTtXoAJ?!!"+js*t~>
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
quPjY!WuTtXoAJ?!!"+js*t~>
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
!!('hs*t~>
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
!!('hs*t~>
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
!!('hs*t~>
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
JcCB&#4k^n!!!.Xi;Wm[!!!/Gs*t~>
JcCB&#4k^n!!!.Xi;Wm[!!!/Gs*t~>
JcCB&#4k^n!!!.Xi;Wm[!!!/Gs*t~>
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
JcC<$lMgn5*r#^8$N:#*aiXR5~>
JcC<$lMgn5*r#^8$N:#*aiXR5~>
JcC<$lMgn5*r#^8$N:#*aiXR5~>
JcC<$l2LdP#ke6!!VOS7J,~>
JcC<$l2LdP#ke6!!VOS7J,~>
JcC<$l2LdP#ke6!!VOS7J,~>
JcC<$lMgqKFUIgB!<_N,s*t~>
JcC<$lMgqKFUIgB!<_N,s*t~>
JcC<$lMgqKFUIgB!<_N,s*t~>
JcC<$lMgmq3V<@Q"hDbTJ,~>
JcC<$lMgmq3V<@Q"hDbTJ,~>
JcC<$lMgmq3V<@Q"hDbTJ,~>
JcC<$lMgmN(\Ib/$'r^5J,~>
JcC<$lMgmN(\Ib/$'r^5J,~>
JcC<$lMgmN(\Ib/$'r^5J,~>
JcC<$lMgm<"n_ir"GFnsJ,~>
JcC<$lMgm<"n_ir"GFnsJ,~>
JcC<$lMgm<"n_ir"GFnsJ,~>
JcC<$lMgm<"n_ir"bb"tJ,~>
JcC<$lMgm<"n_ir"bb"tJ,~>
JcC<$lMgm<"n_ir"bb"tJ,~>
JcC<$lMgmN(\Ib/(RE2CJ,~>
JcC<$lMgmN(\Ib/(RE2CJ,~>
JcC<$lMgmN(\Ib/(RE2CJ,~>
JcC<$lMgmq3V<@Q3P!93J,~>
JcC<$lMgmq3V<@Q3P!93J,~>
JcC<$lMgmq3V<@Q3P!93J,~>
JcC<$lMgqKFUe'F!Y';8ao?k~>
JcC<$lMgqKFUe'F!Y';8ao?k~>
JcC<$lMgqKFUe'F!Y';8ao?k~>
JcC<$l2Lh$7KrSf!X2'0aT$b~>
JcC<$l2Lh$7KrSf!X2'0aT$b~>
JcC<$l2Lh$7KrSf!X2'0aT$b~>
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
JcC<$k5P\L\X%o%QFZ1ts*t~>
JcC<$k5P\L\X%o%QFZ1ts*t~>
JcC<$k5P\L\X%o%QFZ1ts*t~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$kl1\%55RJCA]4V!~>
JcC<$kl1\"1A`d+>K$Pl~>
JcC<$kl1YWqW._B`;b>~>
JcC<$kl1_&50Nl^!9_<#J,~>
JcC<$kl1_#1<BCM!9M0!J,~>
JcC<$kl1_YjnScN!;se8J,~>
JcC<$kl1b'53DjZs*t~>
JcC<$kl1b$1?AGLs*t~>
JcC<$kl1_YjnujmJ,~>
JcC<$kl1_&53BTZJ,~>
JcC<$kl1_#1??1LJ,~>
JcC<$kl1_YjnujmJ,~>
JcC<$kl1b'53DjZs*t~>
JcC<$kl1b$1?AGLs*t~>
JcC<$kl1_YjnujmJ,~>
JcC<$kl1\%55RSFiPbbH~>
JcC<$kl1\"1A`m.ho,PF~>
JcC<$kl1YWqW._S`;b>~>
JcC<$kl1_&50<`Y!;aY6J,~>
JcC<$kl1_#1<07H!;XS5J,~>
JcC<$kl1_YjnScM!<0q:J,~>
JcC<$kl1_&53BTZJ,~>
JcC<$kl1_#1??1LJ,~>
JcC<$kl1_YjnujmJ,~>
JcC<$kl1b'53DjZs*t~>
JcC<$kl1b$1?AGLs*t~>
JcC<$kl1_YjnujmJ,~>
JcC<$kl1_&50Nl^!9_<#J,~>
JcC<$kl1_#1<BCM!9M0!J,~>
JcC<$kl1_YjnScN!;se8J,~>
JcC<$kl1\%55RJCA]4V!~>
JcC<$kl1\"1A`d+>K$Pl~>
JcC<$kl1YWqW._B`;b>~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
JcC<$UAo`~>
%%EndData
showpage
%%Trailer
end
%%EOF

1676
fzd/simple.ps Normal file

File diff suppressed because it is too large Load Diff

1586
fzd/tripples.ps Normal file

File diff suppressed because it is too large Load Diff

View File

@ -118,7 +118,7 @@ Software documentation for fmmd tool.
\chapter{Algorithms and Mathematical Relationships Discovered}
%\input{fzd/fzd}
\input{fzd/fzd}
\chapter{A detailed look at the safety systems required by industrial burner controller}
%\input{indburner/indburner}