added fzd
This commit is contained in:
parent
830c1e4593
commit
3defa835d1
91
fzd/abc1.eps
Normal file
91
fzd/abc1.eps
Normal file
@ -0,0 +1,91 @@
|
||||
%!PS-Adobe-2.0 EPSF-2.0
|
||||
%%BoundingBox: 0 0 375 377
|
||||
%%Creator : Constraint Diagram editor V 0.025
|
||||
%%Diagram ..
|
||||
%%
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet A
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
212 277 56 sub moveto
|
||||
(A) show
|
||||
216 277 144 sub newpath moveto
|
||||
230 277 138 sub lineto
|
||||
241 277 124 sub lineto
|
||||
246 277 104 sub lineto
|
||||
241 277 85 sub lineto
|
||||
230 277 70 sub lineto
|
||||
216 277 64 sub lineto
|
||||
202 277 70 sub lineto
|
||||
191 277 84 sub lineto
|
||||
186 277 104 sub lineto
|
||||
191 277 124 sub lineto
|
||||
201 277 138 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet B
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
242 277 73 sub moveto
|
||||
(B) show
|
||||
245 277 161 sub newpath moveto
|
||||
259 277 155 sub lineto
|
||||
270 277 141 sub lineto
|
||||
275 277 121 sub lineto
|
||||
270 277 102 sub lineto
|
||||
259 277 87 sub lineto
|
||||
245 277 81 sub lineto
|
||||
231 277 87 sub lineto
|
||||
220 277 101 sub lineto
|
||||
215 277 121 sub lineto
|
||||
220 277 141 sub lineto
|
||||
230 277 155 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet C
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
210 277 89 sub moveto
|
||||
(C) show
|
||||
214 277 177 sub newpath moveto
|
||||
228 277 171 sub lineto
|
||||
239 277 157 sub lineto
|
||||
244 277 137 sub lineto
|
||||
239 277 118 sub lineto
|
||||
228 277 103 sub lineto
|
||||
214 277 97 sub lineto
|
||||
200 277 103 sub lineto
|
||||
189 277 117 sub lineto
|
||||
184 277 137 sub lineto
|
||||
189 277 157 sub lineto
|
||||
199 277 171 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
%% End of Diagram ..
|
||||
%%------------------------------------
|
||||
|
||||
showpage
|
||||
|
91
fzd/abc2.eps
Normal file
91
fzd/abc2.eps
Normal file
@ -0,0 +1,91 @@
|
||||
%!PS-Adobe-2.0 EPSF-2.0
|
||||
%%BoundingBox: 0 0 390 371
|
||||
%%Creator : Constraint Diagram editor V 0.025
|
||||
%%Diagram ...
|
||||
%%
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet A
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
249 271 27 sub moveto
|
||||
(A) show
|
||||
253 271 115 sub newpath moveto
|
||||
267 271 109 sub lineto
|
||||
291 271 98 sub lineto
|
||||
294 271 77 sub lineto
|
||||
287 271 54 sub lineto
|
||||
267 271 41 sub lineto
|
||||
253 271 35 sub lineto
|
||||
239 271 41 sub lineto
|
||||
228 271 55 sub lineto
|
||||
223 271 75 sub lineto
|
||||
228 271 95 sub lineto
|
||||
238 271 109 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet B
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
216 271 55 sub moveto
|
||||
(B) show
|
||||
219 271 143 sub newpath moveto
|
||||
233 271 137 sub lineto
|
||||
244 271 123 sub lineto
|
||||
249 271 103 sub lineto
|
||||
244 271 84 sub lineto
|
||||
233 271 69 sub lineto
|
||||
219 271 63 sub lineto
|
||||
205 271 69 sub lineto
|
||||
194 271 83 sub lineto
|
||||
189 271 103 sub lineto
|
||||
194 271 123 sub lineto
|
||||
204 271 137 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
|
||||
|
||||
%%-----------------------------------------------------
|
||||
%% DrawableSet C
|
||||
0 0 1 setrgbcolor
|
||||
/Times-Roman findfont
|
||||
15 scalefont
|
||||
setfont
|
||||
newpath
|
||||
256 271 83 sub moveto
|
||||
(C) show
|
||||
260 271 171 sub newpath moveto
|
||||
274 271 165 sub lineto
|
||||
285 271 151 sub lineto
|
||||
290 271 131 sub lineto
|
||||
285 271 112 sub lineto
|
||||
280 271 94 sub lineto
|
||||
260 271 91 sub lineto
|
||||
263 271 118 sub lineto
|
||||
252 271 133 sub lineto
|
||||
216 271 112 sub lineto
|
||||
208 271 127 sub lineto
|
||||
245 271 165 sub lineto
|
||||
closepath
|
||||
stroke
|
||||
%%-----------------------------------------------------
|
||||
|
||||
%% End of Diagram ...
|
||||
%%------------------------------------
|
||||
|
||||
showpage
|
||||
|
1506
fzd/abcgraph.ps
Normal file
1506
fzd/abcgraph.ps
Normal file
File diff suppressed because it is too large
Load Diff
1263
fzd/exampleareasubtraction1.eps
Normal file
1263
fzd/exampleareasubtraction1.eps
Normal file
File diff suppressed because it is too large
Load Diff
1263
fzd/exampleareasubtraction2.eps
Normal file
1263
fzd/exampleareasubtraction2.eps
Normal file
File diff suppressed because it is too large
Load Diff
1263
fzd/exampleareasubtraction3.eps
Normal file
1263
fzd/exampleareasubtraction3.eps
Normal file
File diff suppressed because it is too large
Load Diff
880
fzd/fzd.tex
Normal file
880
fzd/fzd.tex
Normal file
@ -0,0 +1,880 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%\documentclass[reviewversion,strict]{twocolconf}
|
||||
|
||||
|
||||
%\conferencename{EULER2005}
|
||||
|
||||
|
||||
% \begin{document}
|
||||
|
||||
|
||||
% \papertitle { Fast Zone Discrimination \thanks{Version 1.0 2004JUL31
|
||||
% {\tt twocolconf} class.}}
|
||||
% {
|
||||
% R P Clark\thanks{footnote}\\
|
||||
% \em Written as a by product of constraint editor production \\
|
||||
% \email{r.clark@energytechnologycontrol.com} \\
|
||||
%\and
|
||||
%Second author \\
|
||||
%\em Affiliation \\
|
||||
%\em Affiliation \\
|
||||
%\email{x@any.tld}\\
|
||||
%\and
|
||||
%Third author \\
|
||||
%\em Affiliation \\
|
||||
%\em Affiliation \\
|
||||
%\email{y@any.tld}\\
|
||||
%}
|
||||
|
||||
%\headertitle{Enables an alternate running header, if applicable to current layout}
|
||||
|
||||
|
||||
% \begin{abstract}
|
||||
|
||||
% This paper concentrates on an algorithmic method for determining the
|
||||
% available zones in an Euler Diagram. It introduces the concepts of pure
|
||||
% and enclosing relations between contours and chains of pure intersections.
|
||||
% By representing
|
||||
% spider/constraint diagrams as directed graphs, this then develops rules and
|
||||
% a recursive strategy
|
||||
% determining the available zones, and by deduction, eliminating examining contour combinations that
|
||||
% will not contain available zones.
|
||||
% \end{abstract}
|
||||
|
||||
|
||||
|
||||
\section{Introduction : Euler Diagram and Zones Available for use}
|
||||
|
||||
|
||||
\subsection{Defining Available Zones}
|
||||
|
||||
An Euler diagram as opposed to a Venn diagram defines a universe of discourse.
|
||||
In a Venn diagram all possible zones are visible and available
|
||||
for placing of existential objects.% \cite{wiki}.
|
||||
\par
|
||||
An Euler diagram, by not having to make all possible zones available
|
||||
restricts this and can place conjunctive constraints on the number combinations of
|
||||
attributes that the diagram respesents.
|
||||
\par
|
||||
When performing logical reasoning on euler diagrams with added existential objects,
|
||||
it is important to note which available zones do not have objects associated with them.
|
||||
These represent cases where the user has left them undefined, or considers them to
|
||||
be a general case. Either way they need to be flagged as an ommission error or
|
||||
collected. In order to do this a method of finding all available zones in an euler diagram is necessary.
|
||||
|
||||
\par
|
||||
|
||||
For a zone to be available for use it must
|
||||
|
||||
\begin{itemize}
|
||||
\item {Exist} meaning that the contours making up the zone must intersect.
|
||||
\item {Not be Obscured} The intersection must not be covered by other zones.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\par
|
||||
|
||||
Thus for a diagram $ D $ consisting of a set of zones $ Z $ where the zones in the diagram
|
||||
$ Z_{n} $
|
||||
are defined as a sets of intersection contours $ A_{n} $, and exclusion sets
|
||||
$ B_{n} $.
|
||||
|
||||
\subsubsection{Testing for Obscuration}
|
||||
|
||||
Obscuration is tested for by being able to subtract one shape from another
|
||||
with a resultant shape only containg the remainder of the subtraction.
|
||||
This is as defined in the Java Area classes \cite{javaarea} .
|
||||
A zone obscured by other contours is one that forms the area of intersection
|
||||
of the set $ A_{n} $ and then having all the areas from set $ B_{n} $ subtracted from it
|
||||
no surface area left.
|
||||
|
||||
Firstly let us define the meaning of availability in concrete area terms.
|
||||
In figure \ref{fig:ex1}, there is an Euler diagram with the following zones available.
|
||||
|
||||
|
||||
\par
|
||||
\vspace{0.3cm}
|
||||
\begin{tabular}{||l|l|c|c||} \hline \hline
|
||||
{\em Included set $A_{n}$ } & {\em Excluded $set B_{n}$ } & & {\em Available} \\ \hline
|
||||
\{ \} & \{ D C B A \} & 1 & Y \\ \hline
|
||||
\{ A \} & \{ D C B \} & 2 & Y \\ \hline
|
||||
\{ B \} & \{ D C A \} & 3 & Y \\ \hline
|
||||
\{ B A\} & \{ D C \} & 4 & Y \\ \hline
|
||||
\{ C \} & \{ D B A \} & 5 & N \\ \hline
|
||||
\{ C A \} & \{ D B \} & 6 & N \\ \hline
|
||||
\{ C B \} & \{ D A \} & 7 & N \\ \hline
|
||||
\{ C B A \} & \{ D \} & 8 & N \\ \hline
|
||||
\{ D \} & \{ C B A \} & 9 & Y \\ \hline
|
||||
\{ D A \} & \{ C B \} & 10 & N \\ \hline
|
||||
\{ D B \} & \{ C A \} & 11 & Y \\ \hline
|
||||
\{ D B A\} & \{ C \} & 12 & N \\ \hline
|
||||
\{ D C \} & \{ B A \} & 13 & Y \\ \hline
|
||||
\{ D C A \} & \{ B \} & 14 & N \\ \hline
|
||||
\{ D C B \} & \{ A \} & 15 & Y \\ \hline
|
||||
\{ D C B A \} & \{ \} & 16 & N \\ \hline
|
||||
\hline
|
||||
\end{tabular}
|
||||
\vspace{0.3cm}
|
||||
|
||||
Note $B \cap C$ and $ C $ are not available in this diagram because it is impossible to place objects on them.
|
||||
Objects could be placed on $ B \cap C \cap D $ and $ B \cap D $ however.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4.2cm
|
||||
\special{psfile=fzd/exampleareasubtraction1.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Simple Euler Diagram
|
||||
\label{fig:ex1}}
|
||||
\end{figure}
|
||||
|
||||
Examining the intersection $ A \cap B $ the corresponding Area is shown in red
|
||||
in figure \ref{fig:ex2}.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4.2cm
|
||||
\special{psfile=fzd/exampleareasubtraction2.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Area representation of intersection between set A and B
|
||||
\label{fig:ex2}}
|
||||
\end{figure}
|
||||
|
||||
The area to be subtracted is shown in blue in figure \ref{fig:ex3}.
|
||||
Note that here the intersection exists
|
||||
and is not obscured by the areas made up from the other contours.
|
||||
It is therefore available.
|
||||
It can be seen that the zone $ B \cap C $ is not available in the
|
||||
diagram because it is obscured by the
|
||||
areas comprised of the other contours $ C \cup D $
|
||||
(in fact in this diagram only $ D $ is required to prove obscuration
|
||||
because $ C \subset D $ ).
|
||||
|
||||
\begin{figure}
|
||||
\vskip 4cm
|
||||
\special{psfile=fzd/exampleareasubtraction3.eps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Area Intersection]{
|
||||
Area representation of exclusion Zone to be subtracted
|
||||
\label{fig:ex3}}
|
||||
\end{figure}
|
||||
|
||||
%\begin{picture}(200,200)(10,10)
|
||||
%\put(20,0){\circle{20}}
|
||||
%\end{picture}
|
||||
|
||||
|
||||
%\clearpage
|
||||
|
||||
\subsubsection{Formal expression of Area Operations}
|
||||
|
||||
This section deals with operations on the concrete diagrams using Areas.
|
||||
An intersection for instance therefore represents an intersection of the Areas
|
||||
denoted by the contours.
|
||||
|
||||
|
||||
\equation
|
||||
\label{available5}
|
||||
{AreaIntersection}_{n} = \; \stackrel{\bigcap a }{a \in A_{n} \wedge a \not\in B_{n}}
|
||||
\endequation
|
||||
|
||||
Note this implies contours in $B_{n}$ could intersect with the zone formed by $A_{n}$, but where all
|
||||
contours in $B_{n}$ represent those excluded from the zone under scrutinty.
|
||||
|
||||
\par
|
||||
The $AreaIntersection_{n}$ may form a zonal region,% \cite{cried},
|
||||
but for the purposes of this investigation,
|
||||
may be interpreted as a boolean variable.
|
||||
There is either surface area or not. The zone exists or does not.
|
||||
|
||||
\equation
|
||||
\label{available6}
|
||||
{AreaExclusion}_{n} = \; \stackrel{\bigcup b }{b \not\in A_{n} \wedge b \in B_{n} }
|
||||
\endequation
|
||||
|
||||
|
||||
|
||||
%\begin{eqnarray}
|
||||
\equation
|
||||
\label{available7}
|
||||
\begin{array}[t]{c}
|
||||
{RemainingIntersection}_{n} = \\
|
||||
{AreaIntersection}_{n} - {AreaExclusion}_{n}
|
||||
\end{array}
|
||||
\endequation
|
||||
%\end{eqnarray}
|
||||
Note the subtraction here is again, an Area operation.
|
||||
The remaining intersection could be one or more visible zones on the diagram,
|
||||
but as long as there is some surface area
|
||||
left, then the zone has not been obscured.
|
||||
It can thus be used as a boolean variable. If $surface\_area > 0 $ exists in the ${RemainingIntersection}_{n}$ then
|
||||
the expression is true.
|
||||
|
||||
|
||||
%\clearpage
|
||||
|
||||
\subsubsection{Testing for zone Availability}
|
||||
|
||||
Firstly that the intersection exists in the concrete diagram.
|
||||
\equation
|
||||
\label{available1}
|
||||
%Z_{n} = (A_{n},B_{n}) \Rightarrow \forall \; A_{n} \; \mid \; a \cap A_{n}
|
||||
Z_{n} = (A_{n},B_{n}) \; \Rightarrow \; AreaIntersection_{n}
|
||||
\endequation
|
||||
|
||||
If the above implication is true we can go on to test for obscuration.
|
||||
.
|
||||
\equation
|
||||
\label{available2}
|
||||
Z_{n} = (A_{n},B_{n}) \Rightarrow \; RemainingIntersection_{n}
|
||||
\endequation
|
||||
|
||||
And finally the sets A and B added together must be equal to the set of all countours in
|
||||
diagram D, i.e. all contours must be represented in $A_{n}$ and $B_{n}$.
|
||||
|
||||
\equation
|
||||
\label{available3}
|
||||
B_{n} \cup A_{n} = D
|
||||
\endequation
|
||||
|
||||
A zone is thus considered {\em available} if the above criteria (i.e. equations \ref{available1},\ref{available2},\ref{available3} ) are true.
|
||||
|
||||
\subsection {Algorthms for finding Available Zones}
|
||||
|
||||
One could take all possible combinations of contours and check each case.
|
||||
For all combinations of contours, examine to find out if the intersection exists, and then if it does, examine all
|
||||
the excluded contours and ensure that they do not obscure the intersection. If both conditions are trus the zone is 'available'.
|
||||
\par
|
||||
Checking all possible combinations is henceforth referred to as the 'Brute force method'.
|
||||
\par
|
||||
The brute force method is simple, and
|
||||
would be practical for small numbers of contours. However as constraint/spider
|
||||
diagrams become used in practise larger numbers of contours and very large diagrams will become common.
|
||||
\par
|
||||
For instance were a diagram to contain 32 contours, to brute forcecheck for the existance of all contours would take
|
||||
all possible combinations of 32 objects. This corresponds to a binary count and thus $ 2^{32} $ possible zones to check for.
|
||||
\par
|
||||
A diagram with 32 contours would contain a potential of over 4 billion zones.
|
||||
\par
|
||||
Multiply that by the on average 16 operations ( area intersection compares ) that must be carried
|
||||
out for each zone, added to an average of 16 obscuration comparisons,
|
||||
and an astronomical number of area comparisons would be required ($ 32.2^{32} $).
|
||||
%A similar problem existed with computational frequency analysis
|
||||
%in the mid 1960's where the algorithmically more efficient FFT \cite{fft} became the industry standard
|
||||
%as opposed to the DFT.
|
||||
\par
|
||||
In general then the brute force zone search, with obscuration testing, takes
|
||||
\equation
|
||||
2^{N}.2.\frac{N}{2}
|
||||
\endequation
|
||||
|
||||
or
|
||||
|
||||
\equation
|
||||
\label{bruteforce}
|
||||
N.2^{N}
|
||||
\endequation
|
||||
|
||||
\par
|
||||
|
||||
This author therefore sees an efficient algorithm for determining available zones as a necessity
|
||||
for a practical euler/spider diagram analyser.
|
||||
|
||||
\par
|
||||
The algorithm described in this paper works on the principle of examining the
|
||||
contours for two types of relationships.
|
||||
This information is then used to create directed graphs, which are then traversed. From the spanning trees,
|
||||
most of the non available zones are eliminated early on. For zones which may be available, two tests are required.
|
||||
The first that they actually exist in the concrete diagram, and secondly that they are not obscured by
|
||||
combinations of other contours.
|
||||
The initial searches form two cross products of the contours (see \ref{detpe} )
|
||||
performing $2.N^2$ area operations.
|
||||
|
||||
After these initial area operations subsets of the contours can be defined (pure intersection chains)
|
||||
by traversing the pure intersection relationships. The pure intersection chains
|
||||
are subsets of the contours in the diagram.
|
||||
These subsets of the contours are denoted as the set $G$.
|
||||
In searching for the availability of zones, area operations only need be applied
|
||||
within each set $G$.
|
||||
By only having to search within subsets of the contours effeciency of the algorithm is improved.
|
||||
For the brute force algorithm, $ G \equiv N $.
|
||||
|
||||
For each potential zone identified, it must be checked against $G\#$ other contours
|
||||
where $ G \subseteq N$
|
||||
for proof of concrete existence and
|
||||
for obscuration. The set $ G $ is divided into two, those included in the prospective zone $I$
|
||||
and those outside and
|
||||
used to check for obscuration $ O $ . Note $ O + I \leq N $ because $ G \subseteq N $.
|
||||
Thus for this algorithm, where $ Z\# $ is the number of potential zones as identified by tree spanning
|
||||
|
||||
\equation
|
||||
\label{seteq}
|
||||
2.N^{2} + Z\#.G
|
||||
\endequation
|
||||
|
||||
\equation
|
||||
\label{incobs}
|
||||
2.N^{2} + Z\#.(O + I)
|
||||
\endequation
|
||||
|
||||
Thus for a $ Venn N $ diagram this algorithm is less efficient by $ 2.N^{2} $
|
||||
i.e. for a Venn N diagram $Z\# = N^{2}$
|
||||
|
||||
\equation
|
||||
%\label{fzditer1}
|
||||
2.N^{2} + 2^{N}.2.\frac{N}{2}
|
||||
\endequation
|
||||
|
||||
\equation
|
||||
%\label{fzditer1}
|
||||
2.N^{2} + 2^{N+1}
|
||||
\endequation
|
||||
|
||||
|
||||
But for any diagram less
|
||||
complicated than Venn N, where $ Z\# $
|
||||
is small in comparison with $2^{N}$ the algorithm becomes far more efficient.
|
||||
|
||||
Examples of complexity savings are shown in section \ref{complexity}.
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/piee.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
A Pure Intersection and an Enclosure
|
||||
\label{fig:piee}}
|
||||
\end{figure}
|
||||
\subsection { Relationships between Contours }
|
||||
|
||||
The algorithm for fast finding of available zones depends upon defining three new relationships between contours.
|
||||
|
||||
\begin{itemize}
|
||||
\item {Pure Intersection}
|
||||
\item {Enclosure}
|
||||
\item {Belonging to a Pure Intersection Chain}
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection { Pure Intersection }
|
||||
|
||||
A pair of contours are said to have 'pure intersection' if the contours overlap.
|
||||
|
||||
\subsubsection{Enclosure}
|
||||
|
||||
A countour is said to be enclosed if it fits completely within another contour.
|
||||
|
||||
\subsubsection { Pure Intersection Chains }
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pic.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Zone Chain
|
||||
\label{fig:pic}}
|
||||
\end{figure}
|
||||
|
||||
Pairs of contours may belong to the same pure intersection chain.
|
||||
Pure Intersection chains are a chain of contours that can all
|
||||
be linked together by pure intersection relationships ( see figure \ref{fig:pic} ).
|
||||
Contours in the pure intersection chain may enclose other members
|
||||
in the same chain, but not the contour that they are purely intersected with (see figure \ref{fig:picwaie}).
|
||||
\par
|
||||
Pure intersections relationships for the diagram in figure \ref{fig:pic} are :-
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
A & \stackrel{pi}\longrightarrow & B \\
|
||||
B & \stackrel{pi}\longrightarrow & A \\
|
||||
B & \stackrel{pi}\longrightarrow & C \\
|
||||
C & \stackrel{pi}\longrightarrow & B \\
|
||||
D & \stackrel{pi}\longrightarrow & C \\
|
||||
C & \stackrel{pi}\longrightarrow & D \\
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
\par
|
||||
Relationships for the diagram in figure \ref{fig:picwaie} include one enclosure.
|
||||
|
||||
$$
|
||||
\begin{array}{lcl}
|
||||
A & \stackrel{pi}\longrightarrow & B \\
|
||||
B & \stackrel{pi}\longrightarrow & A \\
|
||||
B & \stackrel{pi}\longrightarrow & C \\
|
||||
C & \stackrel{pi}\longrightarrow & B \\
|
||||
D & \stackrel{pi}\longrightarrow & C \\
|
||||
C & \stackrel{pi}\longrightarrow & D \\
|
||||
E & \stackrel{pi}\longrightarrow & C \\
|
||||
C & \stackrel{pi}\longrightarrow & E \\
|
||||
\\
|
||||
E & \stackrel{enc}\longrightarrow & D \\
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
Because {\em A,B,C,D} all share pure intersection connections they all belong to the same pure intersection chain.
|
||||
|
||||
NB: Three or more linked pure intersections contitute a 'pure intersection chain'.
|
||||
|
||||
\subsubsection { Determining the Pure Intersection and Enclosure Relationships }
|
||||
\label{detpe}
|
||||
By applying java Area searches for enclosure and intersection on each
|
||||
contour against all others a collection of pure intersection relationships
|
||||
and enclosure relationships can be determined.
|
||||
This forms a list of relationship pairs from the cross product of all the contours.
|
||||
|
||||
\equation
|
||||
%\label{crossprodsingle}
|
||||
\begin{array}{l}
|
||||
pi(a,b) \; \Rightarrow
|
||||
%\stackrel{\Delta}{=}
|
||||
\; \forall \; C \; \bullet \; a \; X \; \forall C \; \bullet \; b \\
|
||||
\; \bullet (a \cap b) \; \wedge \; \neg (a \supseteq b) \; \wedge \; \neg (b \supseteq a) \\
|
||||
\end{array}
|
||||
\endequation
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pice.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Chain with an implicit Enclosure
|
||||
\label{fig:picwaie}}
|
||||
\end{figure}
|
||||
|
||||
\subsubsection {Determining Enclosure }
|
||||
|
||||
When a contour completely encloses another contour, it has an enclosing relationship.
|
||||
See figure \ref{fig:piee}
|
||||
|
||||
To determine the enclosure relationships for the diagram,
|
||||
all contours are checked for enclosure relationships with each other.
|
||||
This again, forms a list of relationship pairs from cross product of all the contours.
|
||||
|
||||
|
||||
\equation
|
||||
%\label{crossprodsingle}
|
||||
\begin{array}{l}
|
||||
enc(a,b) \;
|
||||
%\stackrel{\Delta}{=}
|
||||
\Rightarrow \; \forall \; C \; \; \bullet a \; X \; \forall \; C \; \bullet \; b \\
|
||||
\; \bullet (a \supset b) \\
|
||||
\end{array}
|
||||
\endequation
|
||||
|
||||
|
||||
\subsection { Rules that can be derived from the three relationships }
|
||||
|
||||
\subsubsection { Rule 1: Simple Zone Creation }
|
||||
|
||||
Any contour not belonging to a pure intersection chain, will create a zone containing itself, and any enclosing contours.
|
||||
|
||||
\subsubsection { Rule 2: All Pure Intersection chains and enclosures can be represented on a directed graph }
|
||||
|
||||
By displaying pure intersection relations and enclosure relations in different colours
|
||||
both can be represented on the same coloured directed graph (CDG). I have chosen blue for pure
|
||||
intersections and red for enclosures for the examples that follow.
|
||||
|
||||
|
||||
Figure \ref{fig:pig1} Shows a CDG for the diagram in figure \ref{fig:pic}. Note that traversing through this graph reveals all the intersections, and that there are no loops in the traversal, meaning that no multiple intersections exist.
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pig1.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Coloured Directed Graph of Pure Intersection Chain
|
||||
\label{fig:pig1}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/pig2.ps hoffset=0 voffset=0 hscale=40 vscale=40}\caption[Pure Intersection Zone Capture Method]{
|
||||
Coloured Directed Graph of Pure Intersection Chain with an implicit Enclosure
|
||||
\label{fig:pig2}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsubsection { Graph Traversal }
|
||||
|
||||
By traversing the graphs and applying tests for implicit enclosure within a pure intersection chain
|
||||
from each contour belonging to it, and applying any enclosure relations all possible
|
||||
zone combinations are revealed.
|
||||
A path may not loop, i.e. it cannot branch to a contour all ready examined in the path.
|
||||
|
||||
\subsubsection{ Rule 3: Traversal Reduction : Avoiding Repeated Area checking }
|
||||
As each potential zone is discovered and checked it is temporarily stored,
|
||||
and if re-discovered on a new path, is not subjected to Area testing.
|
||||
|
||||
\subsubsection { Rule 4: Pure Intersection Pair Zone Creation }
|
||||
|
||||
If any pure intersection exists, a potential zone exists. This zone
|
||||
will intersect with any contour which has an enclosure relationship with
|
||||
any of the pair in the pure intersection.
|
||||
It may also be enclosed by a member of the pure intersection chain it belongs to.
|
||||
Thus where a pair intersection exists, checking for its existence is unnecessary,
|
||||
but checking for obscuration is.
|
||||
\par
|
||||
Note by only searching within the pure intersection chain, unnecessary obscuration tests are avoided
|
||||
and this refines the obscuration test in equation \ref{available7}.
|
||||
\par
|
||||
If a zone does not belong to a pure intersection chain, no obscuration testing is necessary.
|
||||
\par
|
||||
Note : In figure \ref{fig:picwaie} note that contours \em{D} and \em{E} are in
|
||||
the same pure intersection chain, but that
|
||||
\em{E} also encloses \em{D}.
|
||||
|
||||
|
||||
|
||||
|
||||
\subsubsection { Rule 5: Multiple Zone Creation }
|
||||
|
||||
|
||||
A circular reference (often described as a circuit \cite{gtl} \cite{alggraph}) containing more than one pair of pure intersections
|
||||
indicates the possibility
|
||||
of a multiple intersection of the contours in the path. The converse is true.
|
||||
Should there be no circular path, there can be
|
||||
multiple intersection along this path.
|
||||
\par
|
||||
This is best shown as an example, see figures \ref{fig:abc1}, \ref{fig:abc2} and \ref{fig:abc3}.
|
||||
Consider the three contours A, B and C.
|
||||
These belong to the same pure intersection chain,
|
||||
and the graph has a circular reference. However one contains a an $ A \cap B \cap C $
|
||||
zone and the other does not.
|
||||
\par
|
||||
Multiple intersections due to enclosure are discovered by traversing the
|
||||
enclosure relations.
|
||||
\par
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abc1.eps hoffset=0 voffset=0 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
Circular reference with multiple zone
|
||||
\label{fig:abc1}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abc2.eps hoffset=0 voffset=-20 hscale=60 vscale=60}\caption[Pure Intersection Zone Capture Method]{
|
||||
Circular reference without multiple zone
|
||||
\label{fig:abc2}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\label{fzd}
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/abcgraph.ps hoffset=0 voffset=-10 hscale=30 vscale=30}\caption[Pure Intersection Zone Capture Method]{
|
||||
Pure Intersection Zone and Enclosure
|
||||
\label{fig:abcgraph}}
|
||||
\end{figure}
|
||||
|
||||
In order to examine multiple intersections, the spanning tree from the contour under inspection must be
|
||||
recursively iterated (only within the pure intersection chain it belongs to i.e. within the subset $G$).
|
||||
|
||||
Should a path arrive back at its start vertex, a circular reference has been found
|
||||
and there is the possibility of a multiple intersection zone, see figure \ref{fig:abcgraph}.
|
||||
\par
|
||||
Note that the contour maps for {A,B,C} in figure \ref{fig:abc1} and \ref{fig:abc2}
|
||||
are identical. The actual presence of the multiple intersection zone existing in the concrete diagram, must be tested for
|
||||
using area comparisions.
|
||||
The test must use coordinates from the concrete diagram to perform an Area comparison.
|
||||
\par
|
||||
However, by only searching for them when a circular path is found, unnecessary searches are not undertaken.
|
||||
This is the principal strength of this algorithm.
|
||||
|
||||
This will eliminate most non visible zones from requiring area searches.
|
||||
|
||||
\subsection{Zone Obscuration Test}
|
||||
|
||||
A zone enclosed by a member of its pure intersection, or enclosed completely will
|
||||
be correctly cwdiscovered by the recursive and iterative process. However, it is possible that two or
|
||||
more contours may combine to obscure a contour. This must be tested for, by
|
||||
taking the area intersection of all contours comprising the potential zone,
|
||||
and then subtracting all other areas. If any area remains, the zone is unobscured.
|
||||
\par
|
||||
Note that the obscuration test only need be applied within the pure intersection chain.
|
||||
This is because a contour can only have a pure intersection chain or enclosure relationship with any other contour.
|
||||
If the contour is enclosed it simply adds to the 'included ' contours.
|
||||
Now only one (or more members in combination) of the same pure intersection chain can obscure a zone within it.
|
||||
This reduces the number of obscuration tests to perform.
|
||||
|
||||
\par
|
||||
If a zone is discovered and is not obscured, it is deemed a visible zone see equations \ref{available1},\ref{available2},\ref{available3},\ref{available4}.
|
||||
|
||||
|
||||
\section{ Graph Traversal and Algorithm Development }
|
||||
|
||||
Using the rules from the previous section and some dry runs of the
|
||||
procedure an efficient recursive algorithm has been developed.
|
||||
Essentially, a spanning tree is created originating from each contour
|
||||
in the diagram, using the pure intersection relationships.
|
||||
|
||||
\subsection { Traversal of a Simple Pure Intersection Chain }
|
||||
|
||||
Starting with the pure intersection chain in figure \ref{fig:pic}, with the contour A.
|
||||
Note that create zone -or- CZ means that the potential zone, with intersecting elements
|
||||
is checked for enclosure by all contours in the diagram with an enclosing relationship, and then
|
||||
specifically created as an Area\cite{javaarea}, and this Area object is checked for
|
||||
existence and for obscuration. NP means a repeated path, where zones rediscovered will not be
|
||||
re-investigated as area objects.
|
||||
\par
|
||||
Iteration 1. Contour A
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
A & & & CZ & A \\
|
||||
A & \stackrel{pi}\longrightarrow & B & CZ & A \cap B \\
|
||||
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C\\
|
||||
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D \\
|
||||
\end{array}
|
||||
$$
|
||||
Note the individual case of A is considered, and then on through the chain of pure intersections.
|
||||
Contour A is now marked as processed.
|
||||
Next contour B is processed.
|
||||
\par
|
||||
Iteration 2. Contour B
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
B & & & CZ & B\\
|
||||
B & \stackrel{pi}\longrightarrow & A & NP \\
|
||||
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \\
|
||||
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D\\
|
||||
\end{array}
|
||||
$$
|
||||
Iteration 3. Contour C
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
C & & & CZ & C\\
|
||||
C & \stackrel{pi}\longrightarrow & B & NP & \\
|
||||
C & \stackrel{pi}\longrightarrow & D & CZ & C \cap D \\
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
Iteration 4. Contour D
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
D & & & CZ & D \\
|
||||
D & \stackrel{pi}\longrightarrow & C & NP \\
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
Using these iterations we have found all seven zones and only rediscovered
|
||||
three during the iterations.
|
||||
Only simple area searches were used to build the relation tables,
|
||||
also for a brute for concrete area compare method,
|
||||
we would have had to examine $ 2^{N} $ or 16 searches with an average of 4 compares (64 operations).
|
||||
|
||||
\subsection { Traversal of a Pure Intersection Chain with Implicit Enclosure }
|
||||
|
||||
The iteration for the diagram in figure \ref{fig:picwaie} is very similar to that
|
||||
above, but the zones $ D \cup E \cup C $ would be created because of checking for enclosure within
|
||||
a pure intersection chain, and $ C \cup E $ following the pure intersection path
|
||||
$ C \; \stackrel{pi}\longrightarrow \; D $ and the standalone zone $ E $.
|
||||
|
||||
|
||||
\subsection { Traversal of a Pure Intersection Chain with Circular Reference }
|
||||
|
||||
Here we encounter the possibility of a multiple intersection zone. The {\em CZ} action
|
||||
must find the intersection, and then check that it really exists using area compares.
|
||||
The iteration chain then for Figure \ref{fig:abc1} or \ref{fig:abc2}.
|
||||
|
||||
\par
|
||||
Iteration 1. Contour A
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
A & & & CZ & A \\
|
||||
A & \stackrel{pi}\longrightarrow & B & CZ & A \cap B \\
|
||||
B & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \\
|
||||
C & \stackrel{pi}\longrightarrow & A & CZ & C \cap A \\
|
||||
C & \stackrel{pi}\longrightarrow & C & CZ & B \cap C \cap A \\
|
||||
\end{array}
|
||||
$$
|
||||
Note the last iteration has discovered a circular path. The CZ action will now investigate the presence
|
||||
of the $ B \cap C \cap A $ intersection and register it if it is in the concrete diagram.
|
||||
|
||||
Iteration 2. Contour B.
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
B & & & CZ & B \\
|
||||
B & \stackrel{pi}\longrightarrow & A & NP & \\
|
||||
B & \stackrel{pi}\longrightarrow & C & NP & \\
|
||||
\end{array}
|
||||
$$
|
||||
|
||||
Iteration 3. Contour C.
|
||||
$$
|
||||
\begin{array}{lclcl}
|
||||
C & & & CZ & C \\
|
||||
C & \stackrel{pi}\longrightarrow & A & NP & \\
|
||||
C & \stackrel{pi}\longrightarrow & B & NP & \\
|
||||
\end{array}
|
||||
$$
|
||||
So, using the unordered relationships, determined by individual area compares, we are able to determine the
|
||||
7 visible zones by graph traversal, and one Area check (for $ A \cup B\cup C $).
|
||||
|
||||
\section{Algorithm Efficiency : Iteration Comparisons against Brute Force Method}
|
||||
\label{complexity}
|
||||
The examples show in diagram form here use 8 contours per diagram. Using the Brute force method these would require $N 2^{N}$ or
|
||||
2048 area compares to determine all visible zones.
|
||||
By duplicating the structures, iteration values can be calculated for 16 contour diagrams of the same visual complexity.
|
||||
|
||||
\subsection { Simple pairs of contours}
|
||||
|
||||
The simple diagram, shown in figure \ref{fig:simple}, consists of four
|
||||
overlapping pairs of contours. To determine the
|
||||
enclosure and pure intersection relations, two cross products of area
|
||||
searches are required. Thus $2 \;N^{2} $, i.e. 128 searches.
|
||||
\par
|
||||
Zones derived from single or pair contours do not need to be checked for existence. The pure intersection
|
||||
relation has already determined the pair zone exists and a single contour always creates a zone.
|
||||
Checking is required for obscuration is not required because none of the contours belong to a pure intersection.
|
||||
\par
|
||||
The total number of area compares/operations is therefore $2.64 \equiv 128 $
|
||||
\par
|
||||
As a general case, for extrapolating larger diagrams of the same pattern
|
||||
|
||||
\equation
|
||||
\label{gensp}
|
||||
2.N^{2}
|
||||
\endequation
|
||||
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/simple.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Simple Pure Intersection Pairs]{
|
||||
Simple Pure Intersection Pairs
|
||||
\label{fig:simple}}
|
||||
\end{figure}
|
||||
|
||||
\subsection {Two Venn 3 totally Enclosed Once : a more Complex Diagram}
|
||||
|
||||
The second diagram, see figure \ref{fig:tev3}, contains two Venn 3 configurations each enclosed by a contour.
|
||||
Breaking this down, we have two single zones (i.e. G and H). These do not belong to a pure intersection chain and therefore require tests no for obscuration.
|
||||
\par
|
||||
Examining the two Venn3 structures, these require an existance check for the tripple intersection ( 3 area operations ). As the number of
|
||||
contours to check for obscuration against it is 0, they do not obscuration testing.
|
||||
\par
|
||||
The 3 pairs require obscuration testing with the other countour. Thus 2 area operations to construct the shape of the zone,
|
||||
and 1 area operation to test for obscuration, thus 3 per pair.
|
||||
\par
|
||||
The three single zones in the pure intersection require 1 area operation to construct the shape of the contour, and two to test for obscuration.
|
||||
Thus 3 per pair.
|
||||
|
||||
|
||||
|
||||
This diagram therefore requires $128 + 2.(9 + 9) \equiv 146 $ area compares.
|
||||
|
||||
|
||||
|
||||
\equation
|
||||
\label{genev3}
|
||||
2.N^{2} + \frac{N}{4}.(18)
|
||||
\endequation
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/tripples.ps hoffset=0 voffset=-10 hscale=40 vscale=40}\caption[Two Enclosed Venn 3]{
|
||||
Two Enclosed Ven 3
|
||||
\label{fig:tev3}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\subsection {Extrapolating for N Contour Diagrams}
|
||||
|
||||
Duplicating the structures in the diagrams in figures \ref{fig:tev3} and \ref{fig:simple},
|
||||
and using the general
|
||||
case equations (\ref{genev3} and \ref{gensp}), a plot of area searches required
|
||||
against diagram complexity
|
||||
can be drawn. These graphs clearly shows that the fzd method efficiency increases with the
|
||||
number of contours in a diagram.
|
||||
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/perf1.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
Perfomance from 0 to 8 contours
|
||||
\label{fig:perf1}}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\vskip 6cm
|
||||
\special{psfile=fzd/perf2.ps hoffset=0 voffset=-10 hscale=60 vscale=60}\caption[Performance Comparison]{
|
||||
Performance from 8 to 64 contours
|
||||
\label{fig:perf2}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% ALREADY DONE ! Obscuration is now only looked at within pure intersection chains.
|
||||
% 05AUG2006
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
% \subsection { A general Case and Algorithm efficiency plotted against number of Contours }
|
||||
|
||||
% \subsection {Further Optimisation}
|
||||
|
||||
% If sections of the diagram can be identified that do not interact (enclose or purely intersect with other parts)
|
||||
% these can be analysed separately and reduce the $I$ and $O$ values. For instance in the Venn3 enclosed once,
|
||||
% the tests for existence and obscuration, need only be applied within each of the two identical
|
||||
% (in the abstract sense) separate structures. This would make the set G, discussed in equation \ref{seteq}
|
||||
% half the size of the number of contours in the diagram. Work on identifying separate areas and the
|
||||
% potential for nesting Euler diagrams is discussed in \cite{nied}.
|
||||
|
||||
|
||||
|
||||
% \equation
|
||||
% \label{gopt}
|
||||
% \begin{array}{l}
|
||||
% G_{optimal} \; \stackrel{\Delta}{=} \; \forall \; C \; \bullet \; a \; X \; \forall \; C \; \bullet \; b \\
|
||||
% \; \bullet (a \stackrel{pi}\longrightarrow b) \; \vee \; (a \stackrel{enc}\longrightarrow b) \; \vee \;
|
||||
% (b \stackrel{enc}\longrightarrow a) \\
|
||||
%:wq
|
||||
%:wq \end{array}
|
||||
% \endequation
|
||||
|
||||
% The optimal G sets are those within the diagram connected by any pure intersection or enclosure relationship.
|
||||
% This is expressed formally in equation \ref{gopt}.
|
||||
|
||||
% \parsep=0pt
|
||||
% \itemsep=0pt
|
||||
% \parskip=3pt
|
||||
%
|
||||
% \small
|
||||
% \begin{thebibliography}{119}
|
||||
%
|
||||
%
|
||||
%
|
||||
% \bibitem{javaapp1} Gosling et. all {\em The Java Application Programming Interface Vol I : Addisson Wesley : ISBN 0 201 63453 8 }
|
||||
%
|
||||
% \bibitem{javaapp2} Gosling et. all {\em The Java Application Programming Interface Vol II : Addisson Wesley : ISBN 0 201 63459 7 }
|
||||
%
|
||||
% \bibitem{fft} Robert D Stum, Donald E Kirk {\em Discrete Systems and Digital Signal Processing : Addison-Wesley : ISBN 0-201-09518-1 }
|
||||
%
|
||||
% \bibitem{sem} Jim Woodcock, Martin Loomes {\em Software Engineering Mathematics : Pitman : ISBN 0-273-02673-9 }
|
||||
%
|
||||
% \bibitem{alggraph} Alan Gibbons {\em Algorithmic Graph Theory : Cambridge University Press : ISBN 0-521-28881-9 }
|
||||
%
|
||||
%
|
||||
% \bibitem{gtl} Cadwell {\em http://www.utm.edu/cgi-bin/caldwell/tutor/departments/math/graph/intro}
|
||||
%
|
||||
% \bibitem{dmnt} R Garnier, J Taylor {\em Discrete Mathematics for New Technology : IoP : ISBN 0-7503-0135-X }
|
||||
%
|
||||
% \bibitem{dmfss} D C Ince {\em An Introduction to Discrete Mathematics, Formal System Specification and Z : Oxford : ISBN 0-19-853836-7 }
|
||||
%
|
||||
% \bibitem{wiki} R.P. Clark et. all {\em http://en.wikipedia.org/wiki/Euler\_diagram : Wikipedia Euler Diagram reference }
|
||||
%
|
||||
% \bibitem{nied} J.A. Flower, J Howse, J Taylor {\em Nesting in Euler Diagrams } http://www.cmis.brighton.ac.uk/Research/vmg/papers/GTVMT02.pdf
|
||||
%
|
||||
% \bibitem{cried} Howse J, Stapleton G, Flower J, Taylor J {\em Corresponding regions in Euler diagrams} http://www.cmis.brighton.ac.uk/Research/vmg/papers/D2K2HSFT.pdf
|
||||
%
|
||||
% \bibitem{geneuler} Jean Flower, John Howse {\em Generating Euler Diagrams :Proceedings of Diagrams 2002, Callaway Gardens, Georgia, April 2002, Springer Verlag } http://www.it.bton.ac.uk/research/vmg/VisualModellingGroup.html
|
||||
%
|
||||
% \bibitem{javaarea} Sun Micro Systems {\em http://java.sun.com/j2se/1.3/docs/api/java/awt/geom/Area.html }
|
||||
%
|
||||
% \end{thebibliography}
|
||||
%
|
||||
|
||||
%\end{document}
|
||||
|
||||
%\theend
|
||||
|
||||
|
||||
|
||||
|
||||
|
1643
fzd/perf1.ps
Normal file
1643
fzd/perf1.ps
Normal file
File diff suppressed because it is too large
Load Diff
1700
fzd/perf2.ps
Normal file
1700
fzd/perf2.ps
Normal file
File diff suppressed because it is too large
Load Diff
1520
fzd/pic.ps
Normal file
1520
fzd/pic.ps
Normal file
File diff suppressed because it is too large
Load Diff
1496
fzd/pice.ps
Normal file
1496
fzd/pice.ps
Normal file
File diff suppressed because it is too large
Load Diff
135
fzd/piee.ps
Normal file
135
fzd/piee.ps
Normal file
@ -0,0 +1,135 @@
|
||||
%!PS-Adobe-3.0
|
||||
%%Creator: GIMP PostScript file plugin V 1.12 by Peter Kirchgessner
|
||||
%%Title: /home/robin/proj/java/constraint_editor/exp42/docs/papers/fzd/piee.ps
|
||||
%%CreationDate: Mon Apr 25 23:16:36 2005
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%Pages: 1
|
||||
%%BoundingBox: 14 14 655 495
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
% Use own dictionary to avoid conflicts
|
||||
10 dict begin
|
||||
%%EndProlog
|
||||
%%Page: 1 1
|
||||
% Translate for offset
|
||||
14.173228 14.173228 translate
|
||||
% Translate to begin of first scanline
|
||||
0.000000 480.000000 translate
|
||||
640.000000 -480.000000 scale
|
||||
% Image geometry
|
||||
640 480 1
|
||||
% Transformation matrix
|
||||
[ 640 0 0 480 0 0 ]
|
||||
currentfile /ASCII85Decode filter /RunLengthDecode filter
|
||||
%%BeginData: 7887 ASCII Bytes
|
||||
image
|
||||
Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/
|
||||
Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/
|
||||
Z2_*/Z2_*/Z2_*/l2Lk`!!#7.s69Oc^]4?:c2[)/!<2os!.W;olMgkRr;Zg.cN!20"i(0=s*t3s
|
||||
s6BUf!$D7@p]/V>li."`!<)ou!'eg0li."\#Q=Z'i#g;Fli."D+8u3?p]o.Fli."$J,TBJrWCLH
|
||||
li-s8qu6Wsci<A3!WE2urrKobd/WJ4!W33"rrM%Bd/WJ4!Vdc6rrMm:d/WJ4!Ur>NrrN$.d/WJ4
|
||||
!T8J)rrN*(d/WJ4!5SF1!!CUJm/I'<q>UH2d/WJ4!!i?"!8u6(mJd4d#PnB#i.'/SmJd4b&,H5+
|
||||
n3>>#mJd4b+8Pp;pcm1+mJd4^5Pb<[r#a>dmJd4VJ,0*FrX[EVmJd1Ep\t3udJrV6!9!VO!!gpO
|
||||
mJd1&p\t5GdJrV6!/(%G!5[(_mJd0Ap\t6PdJrV6!!i8u!8u9)mJd.sp\t6_dJrY7!WEW(rrMV=
|
||||
df8b8!WF28rrMnEkPkPVmJlVS!W4&6rrMmZkl:V^!.XJ;mf*=c5PP0Yr'0HG!9!hV!!D]imf*=_
|
||||
5PP0Yr#b5(!<2lr!'fuQmf*=_J+rsDrZCG*#4MTm#QOi0nGhqV!UtU5rrN*0lMh'=!.Y%K!!)Ng
|
||||
mf*:Vp&>"&li.%c!"])/!r)a[nc/%W!9!PM!!hii!VcZmrrIW\nc/%W!9*VN!/Kn?!T44\rrMTk
|
||||
nc/%W!9*VN!/Kn?!J!E4rrN*!nc/%W!5\@.!/'Y<!WE)qrrIX7o)J.X!5nL0!5n1'!VccnrrM$g
|
||||
o)J.X!5nL0!5n1'!T4LbrrMlso)J.X!/'tE!5\%%!PgqrrrN*"o)J.X!/L7I!9*;E!!)fo!J#[k
|
||||
s6fmeL\:ZIiU-XGrWDrq!T636s6fmeL\:ZIiU-XGr!3#s!Uq3&s6fme#PJ)si9gOFn/qH*!W32o
|
||||
s6fme&,#r&nEp5Vi'7#:!WE2ms6fme&,#r&nEp5U_"Rd.Jb/p0rr<T&rrDQUrr@WDrrBk+s6fme
|
||||
&,#r&nEp5U"8;`qi.(D!n,EFf&,#r'n:0p,!WE>trrMURo`+C[!WF26rrMnEn,EF`+85^8r"&H"
|
||||
n,EFf+8,X7pj_c4!Ur>IrrN*(o`+C[!WF26rrMnEn,EFHJ+`gA"8)W^rrN*@p&>'fJ+*C;i:R$L
|
||||
KCo34rrN*@p&>'fJ+*C;_=[a-_=[crrrN*@p&>'fJ+*C;KCo0Di:R'<rrN*@p&>'fJ+*C;#PA#s
|
||||
n:1-2n,EFf+8,X7pj_f5!WEW%rrMmZp&FL\!WF26rrMnEnG`Oe+8#R6r#bV3n,EFf+8,X7pj_f5
|
||||
!Vdc/rrN$.p&FO]!e:1kp&>'fJ+3I=pcnEN!WEW&s760mqu?^<+8,X7pj_f5!UtU1rr<;ss760i
|
||||
_#=<6+8,X7pj_f5!9!GJ!/'tEoD\ggr;Zg>p&>'fJ+3I<iU[!K_tF'$rrqll!.Y%Sp&>'fJ+3I<
|
||||
_=IU+_=dj"rrmoTs8V!Wp&>'fJ+3I<KC]$Bi:[-Brs/N'5QCc_!'g2W!Vh06rr@iFrrDQ]s7H<l
|
||||
p]:Bo!r`01pAY0gJ+3I<#P.lqn:103o`"s]#QF`)rX]>.rrMnEnc&Xh&+]`$pcnKPo`"s-5Q:Za
|
||||
rZ2+6rrMnEnc&Xh+7fF4r'0oTo`"mkrVm!!++Sk8rrMnEnc&Xf+7fF4r#bY4p&>'l"9&6%rZC&_
|
||||
p\t9hJ+<O>r'0cP!WF27s7QBmp]pct"9'D3&,6))pj_i6!VenMrrN*0pAagc!Uq30rr`6Br!2ur
|
||||
!Vh07rrMV=nc&RopAagc!T63@rr`62rWDop!UtU/rrDQXrr@iJs7QBl_#+-5&-%4TrrDQXrrD!H
|
||||
rr@]Fs7QBlJc#HK&-'H>rrDQXrrD$IrrBt1s7QBl"8i*#&-(R;q#:?`nG`LInG`L+pAajd!W3K*
|
||||
rrWf3p`K;2!:]LX!5n=+!9*YOpAY0g+8c'?#QO]4q#:?PnG`L+nG`LIpAajd!VenVrr\&VrX\f(
|
||||
!9*GI!/'e@!9!SNpAY0_J,B6JL]@AZq#:?QnG`KDnG`LXpAajd!9!_R",HpVKD>HHiUHjI#Oq`o
|
||||
n:134pAY-/qYpYMs8Tq1rrBn)rr<T!rrMnEp]'se!/(.J"2k0=i;!<P_sm[+&+KT"pj`&<pAY*t
|
||||
qYp]9s8VS<q>UH4nc&Xh&+KT"pcnNQp\t9n#Q"H'_>jQ)5Pb<ZKCSsBrZCY0!W51Vs7cNorX\l*
|
||||
"QBC\pcnTS!/L+E!WF21rrN$^p](!f!W4&9rrh<\s83u7rr@iErrN$^nG`Og+8>g0rrMmZqYp]V
|
||||
s8W'/q>UF"nc&Xf5Oe[RrZCn7p\t9hJ,90FnG`Ff&,H5*&+TZ#r'0]N!WF28s7cNon:1<7"Rpp@
|
||||
rs/E#!WEW"rrMmZq>UH`q>UKp&,6+urrD!Qrri+Hs8R`JrrN*@nc&XbJ,90HhuF;`rr<T(s7cNn
|
||||
iVEKVpcnfY_tsB6r#bJ/!Vh0ArrE&t!;ZWp&,6+urrBn2rri6as8Tq3rrN$^nc&XbJ,B6GnGWCf
|
||||
+8Z!;&,6+urr@]Irri6As8V$RrrMmZnc&UYqYp]6!"],8qYpPNp](!f!/(+I"TBMCs5<bR!Vh07
|
||||
rrDQbrr`<Ds6p'crr@iKs7cNn#PnB'rX]&/n:1?8!UtU/rrDQcrs&B$s8W&uJ,B6GL\LiCrr<T)
|
||||
rr`l4s7h*@rrDQXrrDQcrrMm"rr3#75PtH\L\LiDrrN*0q#:I%s8VjYqu6ZSnG`LIqu6]T+9)9@
|
||||
n.5Er!5nR2q#:Bo+8Gj=L]@DP5PtH\iUHjIiVWWU^jl@`!W33"rrBt2s7lTpr#b_6"G?aSr#bh9
|
||||
!5\1)!9*hT!.k(J!!E,u!5nR2q#:Bm5PY6]_>jQ7+8c'<KCJm@iVWWT"8r0!Jc#HI_tX3+rrMmZ
|
||||
q#:KTs8W'/qu6X$nG`LIr;Qfs#Q4T%_#+-3_tX3+rrMnEq#:?Prr2s/qu6X$nG`LIr;Qfq+8l->
|
||||
n:1B9!5nR2q#:BiJ,'$Hn:1K<&,cG.rX\Mu!5na7!VenWrrMmZr;QcUp]($g!UtU6rri*]s8N?%
|
||||
rrN$>nG`L+r;QfeJ,K<Ir#bk:!9*\Pq#:?`p\tBo+92@rr;Qfm5Oe[Q_u0N7i;<NTrX\r,!9*\P
|
||||
q#:?Pp\tBo&-)Z^r;Qfe5Oe[Q_u0N7_>=03#Q4T%iV3BIrrD$Prri<+s8U"7rrM&-nG`L+r;Qc5
|
||||
qYpO#r;QcUp]($g!9*YO!sel+_u0N7i:$[G_u0N7KDPTJKDb`LiV3BIrrBn/rr[oRs2"X5!5\.(
|
||||
!5na7!!iB#!5\U5!9*\Pq#:?3pAY61s8V'Urr</irrBt7rr<<#rrBn5rrD$Ps7lTo_tO*4i.(dc
|
||||
rVlot#OhZm_u9T9rX\l*!9!eT!9*\Pq#:>HpAY6a5QB[?rrN$.n,EC*rVlot+8Z!;nGN:diV3BI
|
||||
rr@iJrr`$<s7$!e!Vdc*rrBt8rrN$>qYpTcJ,TBIiV3BIrr@iJrr`0(s7$!e!T632rrBt8rrN$^
|
||||
qYpTkJ,TBIiV3BIrr@iJrr`6&s7$!e!Pj3RrrBt8rrMmZqYpTk5Q1T^iV3BIrr<T&rr[fOpj`;C
|
||||
!!2Nf!5nd8!Vh0@rrN$^rVllVp]($g!"\c&#JbiaJ,fQJ"7H0h_u9T9pj`/?!W51\rrD$Ps7lTo
|
||||
&,#r-i#h`Ds8Vj!mf*:)rVlofJ,90Gr#bn;!9*\Pq#:=)p&>9l#P`fKs55!errBt8rrDQarrN*@
|
||||
rVllVp]('h!WEW&rs/H%pcnfY!'foO!5nd8!:]ga!WF2>rrD$Ps7uZqrZCe4"TTN,s7cT]rrBt8
|
||||
rrDQarrN*@rVllVp]('h!WF25rrp1<5Q?69mJd1(rVllVq#:=)rVllVp]('h!WF25rrDQe!!!Ps
|
||||
rrBt8rrD$Qrr<T.rrD$Ps7uZqrZCe4!<2os!.XD9!5nd8!9*_Q!"]&.!9*\Pq>UKp+7oL7^]4?:
|
||||
m/I('rVllVq#:=)rVllVp]('h!W51Rrr`0!!'fiM!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*
|
||||
!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8
|
||||
!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!5nd8!9*_Q!"]&.!9*\Pq>UKn5P+mUrZCG*!9*nV!9*_Q
|
||||
!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.
|
||||
!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2
|
||||
q>UKn5P+mUrZCG*!9*nV!9*_Q!"]&.!5nR2q>UKn5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn
|
||||
5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn5P+mUrZCG*!:]se!9*_Q!"]&.!/L=Kq>UKn5P+mU
|
||||
rZCG*!:]se!:]ga!WF2>rr@iKs7uZqr'0fQ!WF2+rrMnErr2ufq>UKp+8u3>&,6,"rrN$^oD\jj
|
||||
+6rk,pj`;C!:]ga!WF2>rr<T(s7uZqr'0fQ!WF2+rrMnErr3#gJ,90Gr#bn;!"\i(q>UKn5P+mU
|
||||
rZCG*!VenYrrMnEqYpTo5Q:Z`rX\c'q>UKn5P+mUrZCG*!W51]rrMnEqYpTo5Q:Z`rZCn7q>UKn
|
||||
5P+mUrZCG*!W51]rrMmZqYpTk5Q:Z`rZCn7q>UKn5P+mUrZCG*!W51]rrN$^qYpTkJ,]HKrZCn7
|
||||
q>UKn5P+mUrZCG*!WF2?rrN$>qYpTcJ,]HKr'0rUq>UKn5P+mUrZCG*!WF2?rrN*@qYpQbrVlor
|
||||
5PP3RrrN$^oD\jj+6rk,rX]#.!WEW+rrD!UrrMmZp]('h!W51RrrN*@l2L_orVlj&qYpQ3rVlon
|
||||
J+s!=rrN$^oD\jj+6ie*&,lM.#Q"H#_>XB7pj`&<q>UKn5P+mUrZCD)!!iK&!/(.J!/(7M!UtU5
|
||||
s7uZqrZCb3!W51Hrr@iQrrBn3rr<<&rrDQ^s7uZqrZCb3!W51Hrr@]MrrBn3rr<<&rrD!Ns7uZq
|
||||
rZCb3!W51HrrBt8rrD!SrrN*0rVllVpAasg!WF24rrN$^l2Lb$rVlofJ,K<Ir#bn;!9*YOq>UKp
|
||||
+7oL5r'0HG!9*nV!VenWrrMmZrVll8pAasg!WEW$rrMmZl2LbBrVlor+8l->n:1E:!5nO1q#:=)
|
||||
oD\jdJ*Ht5i;NZVrWiB$!5SO4!/("Fq#:=)oD\jdJ*Ht5nGN:d"8r0!Jc,NJL\CcCrr<T$rrMnE
|
||||
l2LeRJ,TBIJc,NJ"8r0!#PS2mrr<T$rrMnEl2LeZ5Q1T_^jl@`!W33$rrN*0pAapf!/L1G!:]4P
|
||||
!W51\rrM%"rr3#g&,lM/rZCk6q#:>LoD\g[kl1\]+8u3?p]pfu!PgqurrN$>pAapf!/L1G!:]4P
|
||||
!WF2>rs&B$s8W&uJ,TBJr'0oTq#:>HoD\gKkl1\_&,cG1!$D71!W;rupcnKPq#:?3oD\gLkPkMe
|
||||
r;Qc4rVup'r;QfeJ+ip;rrBt.rrD$@rr@iPrrDQf!!",=rrDQ]s7lTo_=R[,_<:guKDb`Lrr)op
|
||||
rrD!Ms7lToiUd'L_rq%"_>F66huF;brrBn.s7lToiUd'L_rq%"iU[!K_tF')rrD!Krr@]7rrD!J
|
||||
rr@]Es7lTonFQY[LZe[<n:1'0!!i2sq#:BaJ+Wa@#Nu*fpcnEN!WEW&s7lTppj_r9!"\8m!Vdc/
|
||||
rrN$.p&Fge!Vh0:rr<SmrrN$>o`"si+8,[/rrMmZp&>'l&*NrnrX\Z$!VenPs7lTpr'0lS!WF2'
|
||||
rr<;rrrMV=p&Fge!W4&4rrN$>k5PF6o`"pLo`+^d!WF26rrN$^k5PFto`"p-o`+^d!WEW&rrMmZ
|
||||
k5PG>o`"oDo`+[c!"\c&!Vh0,rrM&-p&>!oo`+[c!!i2s!UtU$rrMURpAY0m#PA&jrr@]ErrD!=
|
||||
rrMm:pAY0k&+onrrr@]ErrD!=rrN*(pAY0_5P5!MrrBn.rrBmrrr</prrM&-o`+[c!9*VN!5mmt
|
||||
!.jkD!5S4+p\t6Op&>#EjSo4qpAY,DoDeRb!UtU4rr<;brrM%Bq#:Bo"7uQerrMnEpAY+'jSo8M
|
||||
+8Gj:r!2inp\t9h5PP0YrX\)i!W32trrMU2oDeRb!W4&6rrN$>jSo8["8Mlsi'6i5p\t9n&,6))
|
||||
pcmg=!!)fo!J#[ks7cNorWi2t!Ur>6rrKo"qYpTq!V69arr<;urrMV=j8T/<&,Q;,p]L*epAY,F
|
||||
p\t6Oir9&S"8`#ui",DYpAY-/p\t60ir9&Y!;c]rJ3WW)pAY-Np\t5GiVrq/5Q(N^rW)KgpAY0_
|
||||
J,'$D#N>[`i!92[!Up3]s7ZHnpcnTS!WEVgrrMlpr;QeJ&+T\nrrMm:q>UKn&)mNirW!K.rrVrq
|
||||
5OndIrrN$.q>UKj+5m/'J,k*!rr<&gs7QBl"8Vrti.'\b!:]md!!i#np&>#Cq>UH1hu<]Uqu?^]
|
||||
nGi1]!5SF1!.j#,!9!hV!!D]ip&>'N5PtH]rWD!VrVuqJn,N(\!Uq3.rrN$&a8bi4!VcosrrMU"
|
||||
a8bi4!WE2urrM%Ba8bf3!!)or!J#[?s7H<l^d%et!WE,>s7H<ln-Apl!Up?6s7H<lp]:?n!Pf5c
|
||||
s7H<rrW#1_s8E!_`rGZ1"b6^Ts53mrs7?6jnGN=e#K?`7rrDuq!!"+[s760l^]4?8`;fE."8i-!
|
||||
+2n2as0;U/s0;U/s0;U/s3CWIquQita6EWLrri=Hs8V9Hs3CWIrdFhHkNW#lrri=Ns8V9Hs3CWN
|
||||
rdPgTkD,:3'8Q#UcMn4MH][B&1F@1,1[b:grsAZ,N6Z$\2KOn(mf1T4$3#:AcfTKoF.NF#s3CWN
|
||||
rdUHak';u.Sq$2.cMn4MJ"4jIH,aosJ+!?^rsA[QSBp>CAojP,mf1T4$3#4?k@ZRt,G,Y;s3CWN
|
||||
quI4F_hV#"%u9TQZ2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/Z2_*/q>UKb&,uS/_tsB5o>gn,
|
||||
rrMr9rr2u]qYpQea8bu8!VtpXrrVB`n,<7drl5!6rrMrYrr3&_s3LZD!;sk:q>V!$iJ^MRjthXE
|
||||
-=.`1,K#J^s7u[+q8poUcfZIt1F/L7bk%7DJ'.fert+rCc8k(N):!LIg#:0H4N;lns7u]pq$t\p
|
||||
#Nn+m!BbT-r:<%rJ'.fes8Vm)c?]HQ3R3+<3ViUE4O/H!s7u]pq$t\qs5uDfIm4hHr:<%rJ'.fe
|
||||
s8Vm)c?T*H3R0cNR.:+G4O/H!s7u[+q=ott:ZjaW'0MdYlr0=tJ'.fert+\t6p;^0(up>k4rtag
|
||||
_hLCus0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
|
||||
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
|
||||
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
|
||||
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/
|
||||
s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;U/s0;TS~>
|
||||
%%EndData
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
524
fzd/pig1.ps
Normal file
524
fzd/pig1.ps
Normal file
@ -0,0 +1,524 @@
|
||||
%!PS-Adobe-3.0
|
||||
%%Creator: GIMP PostScript file plugin V 1.12 by Peter Kirchgessner
|
||||
%%Title: /home/robin/proj/java/constraint_editor/exp42/docs/papers/fzd/pig1.ps
|
||||
%%CreationDate: Wed Apr 27 08:33:18 2005
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%Pages: 1
|
||||
%%BoundingBox: 14 14 375 177
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
% Use own dictionary to avoid conflicts
|
||||
10 dict begin
|
||||
%%EndProlog
|
||||
%%Page: 1 1
|
||||
% Translate for offset
|
||||
14.173228 14.173228 translate
|
||||
% Translate to begin of first scanline
|
||||
0.000000 162.000000 translate
|
||||
360.000000 -162.000000 scale
|
||||
% Image geometry
|
||||
360 162 8
|
||||
% Transformation matrix
|
||||
[ 360 0 0 162 0 0 ]
|
||||
% Strings to hold RGB-samples per scanline
|
||||
/rstr 360 string def
|
||||
/gstr 360 string def
|
||||
/bstr 360 string def
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
|
||||
true 3
|
||||
%%BeginData: 8631 ASCII Bytes
|
||||
colorimage
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
M?!AOJcD/<J,~>
|
||||
M?!AOJcD/<J,~>
|
||||
JcC<$RK%d~>
|
||||
M#[JTrr;rtVuQ\qs8N'!JcGWIJ,~>
|
||||
M#[JTrr;rtVuQ\qs8N'!JcGWIJ,~>
|
||||
JcC<$RK%d~>
|
||||
M#[JTrVultWW2turVuisVuQPmh>`!~>
|
||||
M#[JTrVultWW2turVuisVuQPmh>`!~>
|
||||
JcC<$RK%d~>
|
||||
M#[JTrVultWrN)!qu?ZrVZ6Yrrr;rthZ&*~>
|
||||
M#[JTrVultWrN)!qu?ZrVZ6Yrrr;rthZ&*~>
|
||||
JcC<$RK%d~>
|
||||
M#[JTrVultWrN)!qYpNqVZ6Yrr;ZcshuA3~>
|
||||
M#[JTrVultWrN)!qYpNqVZ6Yrr;ZcshuA3~>
|
||||
JcC<$RK%d~>
|
||||
M#[JTrr;uuWrN)!ScA]ir;ZcshuA3~>
|
||||
M#[JTrr;uuWrN)!ScA]ir;ZcshuA3~>
|
||||
JcC<$RK%d~>
|
||||
j8T)ZVuQPmX8i2"ScA]iqu?Zri;\<~>
|
||||
j8T)ZVuQPmX8i2"ScA]iqu?Zri;\<~>
|
||||
JcC<$RK%d~>
|
||||
jT#2ZW;lktrVuisXT/;#ScA]iqu?Zri;\<~>
|
||||
jT#2ZW;lktrVuisXT/;#ScA]iqu?Zri;\<~>
|
||||
JcC<$RK%d~>
|
||||
jT#2ZW;lktr;ZcsXT/;#ScA]iqu?Zri;\<~>
|
||||
jT#2ZW;lktr;ZcsXT/;#ScA]iqu?Zri;\<~>
|
||||
JcC<$RK%d~>
|
||||
jSo8]rrB"trrDusrrB/#rrAVirrDrrrrD!WJ,~>
|
||||
jSo8]rrB"trrDusrrB/#rrAVirrDrrrrD!WJ,~>
|
||||
JcC<$RK%d~>
|
||||
jo>>\!ri6#WW2tur;ZcsX8i2"T)\fjqu?Zri;\<~>
|
||||
jo>>\!ri6#WW2tur;ZcsX8i2"T)\fjqu?Zri;\<~>
|
||||
JcC<$RK%d~>
|
||||
jo5G`s8N'!WW2turVultWrN)!qu?ZrVZ6Yrr;ZcshuA3~>
|
||||
jo5G`s8N'!WW2turVultWrN)!qu?ZrVZ6Yrr;ZcshuA3~>
|
||||
JcC<$RK%d~>
|
||||
k5YG]s8W&uX8htqW;lhsrr;uuV>pPqr;ZcshuA3~>
|
||||
k5YG]s8W&uX8htqW;lhsrr;uuV>pPqr;ZcshuA3~>
|
||||
JcC<$RK%d~>
|
||||
k5PD]rVultJcEgkr;`VmrrE&urW(gTJ,~>
|
||||
k5PD]rVultJcEgkr;`VmrrE&urW(gTJ,~>
|
||||
JcC<$RK%d~>
|
||||
k5Y8XJcC<$kPt>Xh>`!~>
|
||||
k5Y8XJcC<$kPt>Xh>`!~>
|
||||
JcC<$RK%d~>
|
||||
kPtP^rVuisJcC<$]`3K~>
|
||||
kPtP^rVuisJcC<$]`3K~>
|
||||
JcC<$RK%d~>
|
||||
kPkM^qu?ZrJcC<$]`3K~>
|
||||
kPkM^qu?ZrJcC<$]`3K~>
|
||||
JcC<$RK%d~>
|
||||
kl:Y_qu?WqJcC<$^&NT~>
|
||||
kl:Y_qu?WqJcC<$^&NT~>
|
||||
JcC<$RK%d~>
|
||||
l2U\^rVucqJcC<$^Ai]~>
|
||||
l2U\^rVucqJcC<$^Ai]~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
ZiB_!VuQMlJcF:#J,~>
|
||||
ZiB_!VuQMlJcF:#J,~>
|
||||
JcC<$RK%d~>
|
||||
^Amg*q#C-iVZ6Jm]`73r\c70~>
|
||||
^Amg*q#C-iVZ6Jm]`73r\c70~>
|
||||
JcC<$RK%d~>
|
||||
`rGi7j8]#W]`7X)p&FsjaoD,9l2UPZ_>f#~>
|
||||
`rGi7j8]#W]`7X)p&FsjaoD,9l2UPZ_>f#~>
|
||||
JcC<$RK%d~>
|
||||
bQ%J?f)P[KaT)&9jo>;[df91Ef`1jL`rCP~>
|
||||
bQ%J?f)P[KaT)&9jo>;[df91Ef`1jL`rCP~>
|
||||
JcC<$RK%d~>
|
||||
d/X"Dc2[bCd/X"DgAh-PgAh'Nc2[_Bb5Zt~>
|
||||
d/X"Dc2[bCd/X"DgAh-PgAh'Nc2[_Bb5Zt~>
|
||||
JcC<$RK%d~>
|
||||
e,TCI`W,o;oD\djk5YA[df9=Ii;``U`;ff:c2W:~>
|
||||
e,TCI`W,o;oD\djk5YA[df9=Ii;``U`;ff:c2W:~>
|
||||
JcC<$RK%d~>
|
||||
f)P^L^]495pAY*ml2U__bl@\Cjo>;[^&S*4qu?Wqf`-I~>
|
||||
f)P^L^]495pAY*ml2U__bl@\Cjo>;[^&S*4qu?Wqf`-I~>
|
||||
JcC<$RK%d~>
|
||||
f`1sO\c;[0q#:<om/R%ba8Z,>kl:Y_\GuR/rr;osf`-I~>
|
||||
f`1sO\c;[0q#:<om/R%ba8Z,>kl:Y_\GuR/rr;osf`-I~>
|
||||
JcC<$RK%d~>
|
||||
gAh0Q[K$7,qu?Zrmf3:e_uK`:mJm.c[/]q%!<;rshuA3~>
|
||||
gAh0Q[K$7,qu?Zrmf3:e_uK`:mJm.c[/]q%!<;rshuA3~>
|
||||
JcC<$_#O<4huA3~>
|
||||
h#IBSZ2Xe(r;ZcsnGiLg^]+96n,E@fYlF7oiW"E~>
|
||||
h#IBSZ2Xe(r;ZcsnGiLg^]+96n,E@fYlF7oiW"E~>
|
||||
JcC<$_Z0B2iW"E~>
|
||||
h>[HTY5eM%s8W&uo)J^i]`.s3r;ZZpr;ZcsYlF1mir=N~>
|
||||
h>[HTY5eM%s8W&uo)J^i]`.s3r;ZZpr;ZcsYlF1mir=N~>
|
||||
JcDVIquEJkpAj4QJ,~>
|
||||
hZ!QUX8i(trVuisqu?Zr\c2X0rr;fprr2ruYQ+%kir=N~>
|
||||
hZ!QUX8i(trVuisqu?Zr\c2X0rr;fprr2ruYQ+%kir=N~>
|
||||
JcG`LrW')#q>d;jpAj4QJ,~>
|
||||
hu<ZVX8i%srVuisr;Q`s[f6@.s7QGrs6TgHs*t~>
|
||||
hu<ZVX8i%srVuisr;Q`s[f6@.s7QGrs6TgHs*t~>
|
||||
JcG`LrW',$p].,ip&O.QJ,~>
|
||||
i;WcWX8i"r!<;lqrr2ru[/]h"XoIehj8XW~>
|
||||
i;WcWX8i"r!<;lqrr2ru[/]h"XoIehj8XW~>
|
||||
JcGQHYlFCsVZ6;hj8XW~>
|
||||
irArWY5dtks8N'!ZiB_!Y5dhgjSs`~>
|
||||
irArWY5dtks8N'!ZiB_!Y5dhgjSs`~>
|
||||
ir9)\rr<%qs7lZ!s7QGhs7HBQs*t~>
|
||||
j8\uVZ2a.jZiBXtWW2MhjSs`~>
|
||||
j8\uVZ2a.jZiBXtWW2MhjSs`~>
|
||||
j8],Z!<<#uVZ6DkZN'OsWW2MhjSs`~>
|
||||
jT##UZN'7kZiBXtWW2MhjSs`~>
|
||||
jT##UZN'7kZiBXtWW2MhjSs`~>
|
||||
jT#2Z!<;utUAt2mZ2aFrWW2MhjSs`~>
|
||||
jT##UWW2YlZN'OsWW2MhjSs`~>
|
||||
jT##UWW2YlZN'OsWW2MhjSs`~>
|
||||
jT##UWW)u!s7lZ"s7?;js7-0Ns*t~>
|
||||
jT##UWrM\kZiBXtWW2MhjSs`~>
|
||||
jT##UWrM\kZiBXtWW2MhjSs`~>
|
||||
jT##UWrN%u!<;lq!WN/+s7?;js7-0Ns*t~>
|
||||
jo>&TX8helZiB1g[K#k!j8XW~>
|
||||
jo>&TX8helZiB1g[K#k!j8XW~>
|
||||
jo>&TX8i/!!<;lq!WN/+s7lYis7?<Os*t~>
|
||||
jo>&TX8helZiB:jZN'Osj8XW~>
|
||||
jo>&TX8helZiB:jZN'Osj8XW~>
|
||||
jo>&TX8i/!!<;ipZN'\"V#U&ej8XW~>
|
||||
jo>&TX8help](6n^AmO"YlFCsir=N~>
|
||||
jo>&TX8help](6n^AmO"YlFCsir=N~>
|
||||
jo>&TX8hhmZ2aS!V#U,gir=N~>
|
||||
jo>&TX8helrr;fp!WN/6s6Tfis7QHPs*t~>
|
||||
jo>&TX8helrr;fp!WN/6s6Tfis7QHPs*t~>
|
||||
jo>&TX8hhmZ2aOuV>p5hir=N~>
|
||||
jo>&TWrMbm!<;`m]`7a,!<;`mYlFIuiW"E~>
|
||||
jo>&TWrMbm!<;`m]`7a,!<;`mYlFIuiW"E~>
|
||||
jo>,V!WN/"s7QGss7cSirrN3#s8)fTs*t~>
|
||||
jo=]J[/]Fl])VU,rr;coYQ+V&!<;rshuA3~>
|
||||
jo=]J[/]Fl])VU,rr;coYQ+V&!<;rshuA3~>
|
||||
jo>,VW;l\oX8i"rU&Y#jhuA3~>
|
||||
jT"WJZiBCm]Dq[,r;ZTnZ2ah(fDg@~>
|
||||
jT"WJZiBCm]Dq[,r;ZTnZ2ah(fDg@~>
|
||||
jT##UW;lVmXoJ;!JcGQGJ,~>
|
||||
jT"WJZN'@n^An-3oDeRc\GuL-ec1.~>
|
||||
jT"WJZN'@n^An-3oDeRc\GuL-ec1.~>
|
||||
jT##UVuQ_r!<;utJcDDCJ,~>
|
||||
jT"WJZ2a\$!<;cn_uKW7mf34crVucq_>jH6dJn^~>
|
||||
jT"WJZ2a\$!<;cn_uKW7mf34crVucq_>jH6dJn^~>
|
||||
jT#&VU]:8mJcDABJ,~>
|
||||
j8\KH\,ZC,rr;rt!<;cnb5_;<l2U\^q#C0jcN!bAc2W:~>
|
||||
j8\KH\,ZC,rr;rt!<;cnb5_;<l2U\^q#C0jcN!bAc2W:~>
|
||||
j8]#WU&Y)lJcDABJ,~>
|
||||
irArWs8Vfnrr;fp`;f]7pAamfe,T.BirAuXnGi1^j8\iRa8^Y~>
|
||||
irArWs8Vfnrr;fp`;f]7pAamfe,T.BirAuXnGi1^j8\iRa8^Y~>
|
||||
irAuXJcC<$]DmB~>
|
||||
i;WcWrr;`npAagdh#I!HnGi=b!ri6#j8\ZMl2L_`nc/UhjT"6?^&NT~>
|
||||
i;WcWrr;`npAagdh#I!HnGi=b!ri6#j8\ZMl2L_`nc/UhjT"6?^&NT~>
|
||||
JcC<$RK%d~>
|
||||
h#I0MlMoW>j8\oTs8W&urr;3_aSu5?K)^?~>
|
||||
h#I0MlMoW>j8\oTs8W&urr;3_aSu5?K)^?~>
|
||||
JcC<$RK%d~>
|
||||
h#I3NVZ6Jmqu?TpJcE"TJ,~>
|
||||
h#I3NVZ6Jmqu?TpJcE"TJ,~>
|
||||
JcC<$RK%d~>
|
||||
h#I3NVZ6JmJcDYJJ,~>
|
||||
h#I3NVZ6JmJcDYJJ,~>
|
||||
JcC<$RK%d~>
|
||||
h#I3NVZ6MnJcDVIJ,~>
|
||||
h#I3NVZ6MnJcDVIJ,~>
|
||||
JcC<$RK%d~>
|
||||
h#I6OV#U>mJcDVIJ,~>
|
||||
h#I6OV#U>mJcDVIJ,~>
|
||||
JcC<$RK%d~>
|
||||
g&M'PU&Y,mJcDSHJ,~>
|
||||
g&M'PU&Y,mJcDSHJ,~>
|
||||
JcC<$RK%d~>
|
||||
g&D$PT`4ulJcDPGJ,~>
|
||||
g&D$PT`4ulJcDPGJ,~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
JcC<$RK%d~>
|
||||
%%EndData
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
982
fzd/pig2.ps
Normal file
982
fzd/pig2.ps
Normal file
@ -0,0 +1,982 @@
|
||||
%!PS-Adobe-3.0
|
||||
%%Creator: GIMP PostScript file plugin V 1.17 by Peter Kirchgessner
|
||||
%%Title: pig2.ps
|
||||
%%CreationDate: Sat Nov 4 12:56:07 2006
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%Pages: 1
|
||||
%%BoundingBox: 14 14 366 321
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
% Use own dictionary to avoid conflicts
|
||||
10 dict begin
|
||||
%%EndProlog
|
||||
%%Page: 1 1
|
||||
% Translate for offset
|
||||
14.173228346456694 14.173228346456694 translate
|
||||
% Translate to begin of first scanline
|
||||
0 305.98764385221079 translate
|
||||
350.98582677165354 -305.98764385221079 scale
|
||||
% Image geometry
|
||||
351 306 8
|
||||
% Transformation matrix
|
||||
[ 351 0 0 306 0 0 ]
|
||||
% Strings to hold RGB-samples per scanline
|
||||
/rstr 351 string def
|
||||
/gstr 351 string def
|
||||
/bstr 351 string def
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter rstr readstring pop}
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter gstr readstring pop}
|
||||
{currentfile /ASCII85Decode filter /RunLengthDecode filter bstr readstring pop}
|
||||
true 3
|
||||
%%BeginData: 24699 ASCII Bytes
|
||||
colorimage
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$df0Qm5!;%n9QIl#s*t~>
|
||||
JcC<$df0Qj1,1L>6#+!as*t~>
|
||||
JcC<$df0=BrT++Dm.T-4J,~>
|
||||
JcC<$df0Tn51/<GcBq"VgAc[~>
|
||||
JcC<$df0Tk1="b4b)nZ8gAc[~>
|
||||
JcC<$df0UJjn\fNq!mM8gAc[~>
|
||||
JcC<$df0Wo54&:Ks8L;0[+kV2~>
|
||||
JcC<$df0Wl1@+r>s8L2!YhT2.~>
|
||||
JcC<$df0CDjo#)W!r1pNg])d~>
|
||||
JcC<$df0Bh54&7J"9*sarnRO(~>
|
||||
JcC<$df0Be1@+o="9*[OrnRO(~>
|
||||
JcC<$df0CDjo#&V!Uf7-s*t~>
|
||||
JcC<$df0Ei54&:IrrTSmqV;+$~>
|
||||
JcC<$df0Ef1@+r<rrTG]qV;+$~>
|
||||
JcC<$df0CDjo#&V!qk[Sh#Dm~>
|
||||
JcC<$df0Bh54&7J"9-5&n_F.p~>
|
||||
JcC<$df0Be1@+o="9-+lnD+%o~>
|
||||
JcC<$df0CDjo#&V!r(gTh#Dm~>
|
||||
JcC<$df0Ei54&:IrrTVoqqV4%~>
|
||||
JcC<$df0Ef1@+r<rrTG^qqV4%~>
|
||||
JcC<$df0CDjo#&V!qk[Sh#Dm~>
|
||||
JcC<$df0Bh54&7J"9+$irnRO(~>
|
||||
JcC<$df0Be1@+o="9*dYrnRO(~>
|
||||
JcC<$df0CDjo#&V!Uo@/s*t~>
|
||||
JcC<$df0Wo54&:Ks8LJ6_;#!?~>
|
||||
JcC<$df0Wl1@+r>s8LA(^"`R;~>
|
||||
JcC<$df0CDjo#)W!r;!Qg])d~>
|
||||
JcC<$df0Tn51/<Gd$mIjgAc[~>
|
||||
JcC<$df0Tk1="b4c'18NgAc[~>
|
||||
JcC<$df0UJjn\fNq=<\<gAc[~>
|
||||
JcC<$df0Qm5!;%n96A,*s*t~>
|
||||
JcC<$df0Qj1,1L>5\n3hs*t~>
|
||||
JcC<$df0=BrT++Dm.]35J,~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$ci475\X%o%QFZ26s*t~>
|
||||
JcC<$ci475\X%o%QFZ26s*t~>
|
||||
JcC<$ci475\X%o%QFZ26s*t~>
|
||||
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
|
||||
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
|
||||
JcC<$dJjUG_0%aS"U,]&Fi!\+s*t~>
|
||||
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
|
||||
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
|
||||
JcC<$df0F@X@<Zr!!<["XRk?LJ,~>
|
||||
JcC<$df0Bb7KrSf!X2'0huA3~>
|
||||
JcC<$df0Bb7KrSf!X2'0huA3~>
|
||||
JcC<$df0Bb7KrSf!X2'0huA3~>
|
||||
JcC<$e,KL4FUe'F!Y';8i;\<~>
|
||||
JcC<$e,KL4FUe'F!Y';8i;\<~>
|
||||
JcC<$e,KL4FUe'F!Y';8i;\<~>
|
||||
JcC<$e,KHZ3V<@Q3P")JJ,~>
|
||||
JcC<$e,KHZ3V<@Q3P")JJ,~>
|
||||
JcC<$e,KHZ3V<@Q3P")JJ,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH%"n_ir"bbh6J,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$e,KH7(\Ib/(RF"ZJ,~>
|
||||
JcC<$eGfUEGmX-D!BI^Ks*t~>
|
||||
JcC<$eGfUEGmX-D!BI^Ks*t~>
|
||||
JcC<$eGfUEGmX-D!BI^Ks*t~>
|
||||
JcC<$f)GjFQ665$!!3UPkMZAj~>
|
||||
JcC<$f)GjFQ665$!!3UPkMZAj~>
|
||||
JcC<$f)GjFQ665$!!3UPkMZAj~>
|
||||
JcC<$f`)'AM\lKe!!3<n_;G9C~>
|
||||
JcC<$f`)'AM\lKe!!3<n_;G9C~>
|
||||
JcC<$f`)'AM\lKe!!3<n_;G9C~>
|
||||
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
|
||||
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
|
||||
JcC<$gA_9=GnL/V!!<BU2%BE_!t@`$oABRu~>
|
||||
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
|
||||
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
|
||||
JcC<$h#@H9C(:(@%L5bTn\K>e!!!$23H`10hZ&*~>
|
||||
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
|
||||
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
|
||||
JcC<$hu<fXgg:Bc!!3I0f_tgNk;E5=!]mmTh#Dm~>
|
||||
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
|
||||
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
|
||||
JcC<$i;Wl*:C$gu!s&mHhY[<Rq'#_;!)hPNJ,~>
|
||||
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
|
||||
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
|
||||
JcC<$ir9(u56Ula!YKhEq>UJg!WE'!:"oVt~>
|
||||
JcE4Z#QDDV90uX3e[PP\qmSEar;Zp#(Q%\WrrM[3r;ZgFgAc[~>
|
||||
JcE4Z#QD8I5W;;_e$o>ZqmSEar;Zp#(Q%\WrrM[3r;ZgFgAc[~>
|
||||
JcE1Y#57EHk327/\,QR-[l"6c!!<6<M=LB@!V.<1!!"D#s*t~>
|
||||
JcE7[$2oKHSC-')HU#BYrr`"k.K]PK!s'R6p%JCdK)toN!=Jh\s*t~>
|
||||
JcE7[$2o35QHn-oF#1PArr`"k.K]PK!s'R6p%JCdK)toN!=Jh\s*t~>
|
||||
JcE4Z#k$jGq>0gPjnH@d"8AT@!rW*$!?mp)pAY/G!W<!!$NAf[J,~>
|
||||
JcE:\"9,)bf_tgOrlk,Lrr_q[+9DE@!s1!SqXsjhiXu(g!<M$2s*t~>
|
||||
JcE:\"9+oRf)>UMrlOlHrr_q[+9DE@!s1!SqXsjhiXu(g!<M$2s*t~>
|
||||
JcE7[!qYRNr;Qfmrk/75op-^$r;Zp$/$/U?rrM*kqu?`uh:qs[~>
|
||||
jo5F85Ni#ss4RDRr(NZirr__I(]jR8!s1<grU^$hAGQ9+K%p<U~>
|
||||
jo5F01Zn[fs4RDRr'?[Xrr__I(]jR8!s1<grU^$hAGQ9+K%p<U~>
|
||||
jo5DMjns]0fDbm7o!\Q#mtqq_r;Zp$1q3GTrr?U+!!%W*s*t~>
|
||||
k5PPP6UdKKrs?_04Zttq=e5?eZi:-]51feErr_G/'*8%3!sM!+r:9jjed)6U!W;uu0AHMW~>
|
||||
k5PPO2`[/-rs?V!0ekFA:RCkUZi:-[1=Z<6rr_G/'*8%3!sM!+r:9jjed)6U!W;uu0AHMW~>
|
||||
k5PP^k2u6=rrDimjTFZ0o)>rp!rD$T\GlZoGS:,V!!<Bj_#3d'"P*hY!!3#u!&*+,J,~>
|
||||
kPk_bV,F*cqQ^&,a$.o/i7bM5Jc<"U!m<dl])MikC(:(@!sVQHrUKmgr(R(i!!<*!!"7Q]J,~>
|
||||
kPk_bTLYVCqQ^&,`%oWphUenuH2b/M!m!.\])MikC(:(@!sVQHrUKmgr(R(i!!<*!!"7Q]J,~>
|
||||
k5PSUkk"$;Z2Y+)jn\fNqXs%>ZMt"$jnu^i!odr(qu?g':X8q/rrN$krVup"r;Zg*g])d~>
|
||||
kl1nerE,W[6b`Q*rs?_0m/I%brj=ubZi:-[52-"Mrr`8U?4$N0!XW&_mf*I("98E@!W<!!!SuQ2
|
||||
J,~>
|
||||
kl1nerD&^J2nK!ors?V!li-qarin9QZi:-Y1>)T?rr`8U?4$N0!XW&_mf*I("98E@!W<!!!SuQ2
|
||||
J,~>
|
||||
k5PSKo)7_EZ2Xn#jo#)W!qk[SZi:+'jnc[j"9.(^$2ac)$!Q!Lrrp(=!!!r=r;Zj!h;&$\~>
|
||||
kPk_-5Ni#uE3]ELa$/khs8W)*5k_Pa!r>H_^Ae8[:'^[s!Y&l$mJdUm1B7CVErZ1@!<<+Oh#Dm~>
|
||||
kPk_*1Zn[`B<hIC`%pZXs8W)%2"e3T!r>$M^Ae8[:'^[s!Y&l$mJdUm1B7CVErZ1@!<<+Oh#Dm~>
|
||||
kPk_\jo#/Hm'6QlpuVGPrrVlTrj2V+roWgdrrUJ@#Q+Q'%;F_ers\f]!!!(A!!!$#!!%W+s*t~>
|
||||
kl1neH[#Jgcp-Kprs?_0m/I"[`))NoZi:.,RnDW;rrW2OjiIH'`'4D&!!3d\kj/6WV#^Pr0l$ah
|
||||
!t,)/0\l\Y~>
|
||||
kl1neF)M!Vbqn7_rs?V!li-nZ_*s1ZZi:.,Ps=.(rrW2LjN.?&`'4D&!!3d\kj/6WV#^Pr0l$ah
|
||||
!t,)/0\l\Y~>
|
||||
kPtSLs8N/rjnl@`#l*NZs8W)mkjYkW!qPOOr;Qfor5em>`'4D&!!3d\kj/6WV#^Pr0l$ah!t,)/
|
||||
0\l\Y~>
|
||||
l2Lkbl9RZ65QX-6rj2V*a$0Jfs#pL8rVj,&$2Sj<T[VZ3JjHH\rr`212$3^V!s'3on`p,`nf@c2
|
||||
"MQhq!"(I]!"7T^J,~>
|
||||
l2Lkbkqt9r1]fFlrj2V*`%q<Ks"XY$rVj,&$2SO(RaBa$HSq\Drr`212$3^V!s'3on`p,`nf@c2
|
||||
"MQhq!"(I]!"7T^J,~>
|
||||
kl1\]k5=<@nZr/pq"s.Qm]c]trpAn>q>0jRk4Hjs"8o_f!rW*$!>gR^lMh=a*WQ0C^,Q)m$8MS]
|
||||
$f(c4~>
|
||||
kl1[T;>o;QR7m>S[/UHQ50i!?e"]HsriuJ.rNpB46;rH_bl7e>VCDZG!!<6FR.]\C%YFc^!)!8.
|
||||
!!!sk!!!&Vh>`!~>
|
||||
kl1[N7fD'DP<epB[/UHN1<\G,d%*:WriuJ.rNB]p2Fr/>bl7e>VCDZG!!<6FR.]\C%YFc^!)!8.
|
||||
!!!sk!!!&Vh>`!~>
|
||||
kl1\Skl(>Zn`TnXrs8D]q"jj_oB,PGrs&/^kN;!rq98j@pSKDAr;Zp#+dhrdrsjY^!!#Xk(]XOT
|
||||
KE(uQhVJ3^~>
|
||||
l2M(f;jmXbs8M@N\$Q)@a$/khs8W)&5kfj0pAY6fQ665,!!<9QX8;#Z&*"3$!!q0U$NL/ih#RKU
|
||||
K\cZY~>
|
||||
l2M(f8<a&Qs8M=AZEsQ;`%pZXs8W)!2"lM#pAY6fQ665,!!<9QX8;#Z&*"3$!!q0U$NL/ih#RKU
|
||||
K\cZY~>
|
||||
kl1\InbrIhr9![YrrVuWr;HWso]?('s7ZHpop-^$r;Zp$/$&O0rt"-$!!!;UrsJf,4l$,=!/02.
|
||||
J,~>
|
||||
l2Lh$52uP@"9*RZrj;\3a$/khs8W)&5kfj0q#:HbMAH<l!!<<Z\GkUi!+l-0$Y]P;!rr=DrX/]+
|
||||
1#;k[~>
|
||||
l2Lh!1>r-2"9*:Irj;\3`%pZXs8W)!2"uS$q#:HbMAH<l!!<<Z\GkUi!+l-0$Y]P;!rr=DrX/]+
|
||||
1#;k[~>
|
||||
l2LhZjnnuU!U]3ZrrVuWr;HWso]?('s7lTrmtqn^r;Zp%1V!GGrr?X0!"3K>quZp!FoDaK!&<=0
|
||||
J,~>
|
||||
l2Ld+D>X>7_`le]rs?_0dGWs7W(;dEJcGTH"6XqB!W<!#"[Ks'jSoh?#QOi:jo=9?!!'\31&q:]
|
||||
rnd[*~>
|
||||
l2Ld"AGcB.^G=HKrs?V!cJIF.UHO5.JcGTH"6XqB!W<!#"[Ks'jSoh?#QOi:jo=9?!!'\31&q:]
|
||||
rnd[*~>
|
||||
l2LeNlhg\`pZ;7Yrs8D]q>:'coB5Rns7uZskBR[@r;Zp'5f3K\rt3Zb!!!Vms5<tY!5/=e!!!B*
|
||||
hZ&*~>
|
||||
OoGa.5!;%m6!^Acrdk+IrrV.n%K$2.##EPCj8Tbi8cShlK`D(I!!!&hs+::O!SuW4J,~>
|
||||
OoGa+1,1L=2,g1Grdk+IrrV.n%K$2.##EPCj8Tbi8cShlK`D(I!!!&hs+::O!SuW4J,~>
|
||||
OoGFVrT++Cl19K+qYpWUBast?!sVQHrT!njr(6qh!JLLQUAt8pnGe+@!!1p4s*t~>
|
||||
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
|
||||
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
|
||||
JcCH("9.%]#lFZ(#[5m=rt<<R!!!=S`q3I8!!WE&h#[QVMVeA`~>
|
||||
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
|
||||
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
|
||||
JcCN*"9-SA#Q4W)!=ii$hZ!S?qZ-Wsrr<9+@]&5u!!$Zgs*t~>
|
||||
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
|
||||
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
|
||||
JcCQ+!l[A,r;Zp#'78rurrK,-o`4sl!WkXIhuA3~>
|
||||
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
|
||||
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
|
||||
JcCZ."8o_e!rW*$!>gR^gA_BCUI>n&!Whup!=?-js*t~>
|
||||
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
|
||||
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
|
||||
JcC`0"8J`C!rW*$!?dd&e,K^Oih?GR!!WQ,r;Zj-[GV"7~>
|
||||
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
|
||||
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
|
||||
JcCf2"8%m%!W<!#!@t5Hci4F(!<<,Gs7XNb9LaWqhuA3~>
|
||||
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
|
||||
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
|
||||
JcCl4"7V0b!W<!#"#RRfc2Rp+!!!)rfDg@~>
|
||||
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
|
||||
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
|
||||
JcCr6"6XtC!W<!#"@0g%bPqZ<!!!5Ss*t~>
|
||||
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
|
||||
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
|
||||
JcD#8!oR`$qu?g(:XB!]rrXPI!#!l_J,~>
|
||||
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
|
||||
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
|
||||
JcD,;"9.(]$2ac)$!Z*&rrWc3!%c_$J,~>
|
||||
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
|
||||
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
|
||||
JcD2="9-VA#Q4W)!=`c#`;]oC!!$-Ps*t~>
|
||||
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
|
||||
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
|
||||
JcD5>!lRA-r;Zp#'78r\rrhoo!!&S@s*t~>
|
||||
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
|
||||
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
|
||||
JcD>A"9#ef!rN$"(PqXurrg4>!!2'0s*t~>
|
||||
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
|
||||
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
|
||||
JcDDC"8JcE!rW*$!?mg%^]+F]!!!)uf)L7~>
|
||||
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
|
||||
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
|
||||
JcDJE"8%m%!W<!#!\:5F^&J0u!!!;Ts*t~>
|
||||
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
|
||||
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
|
||||
JcDPG"7V-a!W<!#"#RUg]DhsT!!!nes*t~>
|
||||
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
|
||||
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
|
||||
MuO%F\X%o%QFZ1ars._tQ@spW\``ki"6XqC!W<!#"@0j'\c2a>!!"q-s*t~>
|
||||
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
|
||||
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
|
||||
NW0CX_0%aS"U,]&Fi![Xrt+e<FZC6A"W'1A_=R^,i+WYu!!<F$c2G0P"TAK'!,:!`J,~>
|
||||
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
|
||||
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
|
||||
i;X&F\X%o%QFZ1frr_ko7Lf4p!t@`$o=4f&o;kCjqZ$d/7]XpA$2ac*$!Z-_[f6Kq!<<,)ec1.~>
|
||||
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
|
||||
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
|
||||
ir9DX_0%aS"U,]&Fi![[rrU#+"o/-""\-><rrU#+"o/-"";V1=!!3UDhm<=cX8i5$m+),d~>
|
||||
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
|
||||
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
|
||||
j8T5QX@<Zr!!<["XRj((!p=\8pAb7(Fm$@9!p=\8o)Jjn&priIrrcm5!!E5Ns*t~>
|
||||
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
|
||||
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
|
||||
j8T1s7KrSf!X2'0]DhoB3V<@Q3P!<4&cM=]d(H?HMLBPX>#ImV3[G.)!!3snnur&q1]RLaeGk%~>
|
||||
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
|
||||
quPjY!WuTtXoAJ?!!"+js*t~>
|
||||
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
|
||||
quPjY!WuTtXoAJ?!!"+js*t~>
|
||||
jSo;EFUe'F!Y';8]`/"u(\Ib/(RFUk,5UZ[`j;A&KQh<A<_l(G2_QU,+<275&J#9W#mUY<"9S],
|
||||
quPjY!WuTtXoAJ?!!"+js*t~>
|
||||
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
|
||||
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
|
||||
jSo7k3V<@Q3Oug&!JCXL!"f5<%h8sR#mLP:!s8T+!<E0$]Dqs9KWP1U#QOiieGk%~>
|
||||
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
|
||||
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
|
||||
jSo7H(\Ib/!YN'b!=o4B!;uru!XSr3"9o&9$4I.?o`,!rKWY7WquQiuI+81H~>
|
||||
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
|
||||
!!('hs*t~>
|
||||
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
|
||||
!!('hs*t~>
|
||||
jSo76"cNH[!?qRI!sAc3#71_G%M9Hn)^$FV0/bs_9ib_>GD26SZc1V`q=FUeQ5B2o!>h'(rrCmS
|
||||
!!('hs*t~>
|
||||
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
|
||||
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
|
||||
jSo76"eYi/#TYKQ3^?;7>@qi'Mjp]Ycf4Trbl7^S3V<@Q3Ou9l"IB)g!VFnAJ,~>
|
||||
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
|
||||
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
|
||||
jSo7H(\Ib/!YN'b!ZDLKpAb7(Fm$@9!p=\8pAb7%Fm#n,"',C%#1NU&~>
|
||||
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
|
||||
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
|
||||
jSo7k3V<@Q3Oud%!l7>0q#CI"7_uV7!l7>0p](=#Suhqo.KBG[e,Op~>
|
||||
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
|
||||
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
|
||||
jSo;EFUe'F!Y';8]Di!)X@<Zr!!<["XRit%"7rT`%JTo(*mLhe!tkS6-I`!F~>
|
||||
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
|
||||
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
|
||||
j8T1s7KrSf!X2'0\c3'/_0%aS"U,]&Fi![XrsA;5FZC6A"W&]srVusBd]WTP"TSNue,Op~>
|
||||
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
|
||||
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
|
||||
j8T5QX@<Zr!!<["XRiq$#NrX`KS5Z%kHb*nkIHn3KU00P(&e16+kEmt"S`#u!0Yh2J,~>
|
||||
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
|
||||
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
|
||||
ir9DX_0%aS"U,]&Fi![#s4@8O^D?eK!@?-urrgOG!!1a$s*t~>
|
||||
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
|
||||
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
|
||||
i;X&F\X%o%QFZ10s4%&L^(UDF!@HL*rrduT!!<#Gs*t~>
|
||||
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
|
||||
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
|
||||
JcDbM!P/sD!!+J"Zi:+t!!!8Ps*t~>
|
||||
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
|
||||
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
|
||||
JcD_L!P&jB!!+S$[/U4P!!!_]s*t~>
|
||||
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
|
||||
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
|
||||
JcD\K!OWI;!!+Y/[Jp=;!!"Y"s*t~>
|
||||
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
|
||||
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
|
||||
JcDYJ!OE@:!!+_-[f6F4!!$ETs*t~>
|
||||
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
|
||||
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
|
||||
JcDVI!ON@9!!+b-\Gl^"!<<+tdf4g~>
|
||||
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
|
||||
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
|
||||
JcDSH!NQY.!!+k;\c2Z>rVurYdf4g~>
|
||||
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
|
||||
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
|
||||
JcDSH!rf>3rVusVi4ApkEW?(ArR1^r~>
|
||||
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
|
||||
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
|
||||
JcDMF!Nlk1!!+t9]Dhso!!!DSs*t~>
|
||||
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
|
||||
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
|
||||
JcDJE!M^#$!!,+E]`/'P!!!qbs*t~>
|
||||
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
|
||||
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
|
||||
JcDJE!rf,*rVus[j1YHp$31&edJn^~>
|
||||
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
|
||||
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
|
||||
JcDDC!M]u#!!,1F^]+H8!rr=BdJn^~>
|
||||
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
|
||||
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
|
||||
JcDDC!r\YqrVuscm(iW(irK,[\^CG-~>
|
||||
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
|
||||
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
|
||||
JcD>A!MTl!!!,@J_>aY8!!!&fdJn^~>
|
||||
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
|
||||
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
|
||||
JcD;@!LX2l!!,CQ_Z'^H!!!2Ls*t~>
|
||||
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
|
||||
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
|
||||
JcD;@!rS;grVusjmDJr+0E;(^d/SU~>
|
||||
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
|
||||
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
|
||||
JcD5>!M'Jp!!,OR`;]oS!!".gs*t~>
|
||||
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
|
||||
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
|
||||
JcD2=#*9#h!!,^\`W$#G!!#O9s*t~>
|
||||
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
|
||||
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
|
||||
JcD2=#Q0Ve!!!$qn&PG2qZ-ZsK[BaL~>
|
||||
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
|
||||
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
|
||||
JcD,;!KmZd!!,g_aSu7mrVurDd/SU~>
|
||||
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
|
||||
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
|
||||
JcD,;#Q9G^!!!$unB(\5P5kR`psB%k~>
|
||||
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
|
||||
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
|
||||
JcD):#Q'>]!!!%"n]Lk6:B1A!ci8L~>
|
||||
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
|
||||
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
|
||||
JcD#8#)<<]!!-$jbPqYk!!!VWs*t~>
|
||||
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
|
||||
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
|
||||
JcD#8#Q'&T!!!%)o$%+9&-)\[ci8L~>
|
||||
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
|
||||
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
|
||||
JcCu7#Ps&T!!!%)p!*L="TSO(ci8L~>
|
||||
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
|
||||
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
|
||||
JcCo5#(H^T!!-?tci4.>!<<+eci8L~>
|
||||
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
|
||||
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
|
||||
JcCo5#PiWI!!!%0o[*U@`;fl=gX#nM~>
|
||||
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
|
||||
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
|
||||
JcCl4#Pr]I!!!(1pX0!DI/j6Lr6PCn~>
|
||||
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
|
||||
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
|
||||
JcCi3#Q/cJ!!!(3p<rsC5l^ljcMrC~>
|
||||
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
|
||||
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
|
||||
JcCf2#PW<A!!!%6pXB-E*rl9WcMrC~>
|
||||
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
|
||||
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
|
||||
JcCc1#Pr??!!!(8qpbWJ$ig8bcMrC~>
|
||||
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
|
||||
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
|
||||
JcC`0#Pi9>!!!(=pX]?IrWE3$A^:=+~>
|
||||
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
|
||||
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
|
||||
JcC]/#PMs8!!!(>q:GWLlN$tcXNpir~>
|
||||
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
|
||||
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
|
||||
JcCZ.#Pr'6!!!(Aqq1oOZ2ak*l-B<Z~>
|
||||
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
|
||||
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
|
||||
JcCW-#PVj4!!!(Dpt>ZMC&e5:rm(Oo~>
|
||||
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
|
||||
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
|
||||
JcCT,#PDO,!!!+Gr7_/Q2#mUac2W:~>
|
||||
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
|
||||
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
|
||||
JcCQ+#PVR+!!!+KqqM,Q)?9aYc2W:~>
|
||||
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
|
||||
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
|
||||
JcCN*#P;C)!!!+Lq:tuP#ljric2W:~>
|
||||
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
|
||||
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
|
||||
JcCK)#P;4$!!!.QrndYXr;ls!GKp/<~>
|
||||
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
|
||||
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
|
||||
JcCH(#P2$u!!!.UqqqDVirK,[_9N"1~>
|
||||
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
|
||||
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
|
||||
JcCE'#P)!u!!!.Sqr%JWS,`Nip!*Me~>
|
||||
JcCBk^n!!!.Xi;Wm[!!!/Gs*t~>
|
||||
JcCBk^n!!!.Xi;Wm[!!!/Gs*t~>
|
||||
JcCBk^n!!!.Xi;Wm[!!!/Gs*t~>
|
||||
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
|
||||
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
|
||||
JcC?%#OkRk!!!1]r8R_Y/H>b]bl<1~>
|
||||
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
|
||||
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
|
||||
JcC<$!Urqb!!3=]r8[eZ&c_nYbl<1~>
|
||||
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
|
||||
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
|
||||
JcC<$#QO3b!<<*(PN2ZF"onWsbl<1~>
|
||||
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
|
||||
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
|
||||
JcC<$s8N>k9E>+n"d/`Frri-!!!&#&s*t~>
|
||||
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
|
||||
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
|
||||
JcC<$rr3#e8,`Ji#F#/Mrrg[K!!1Wos*t~>
|
||||
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
|
||||
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
|
||||
JcC<$rVlo_6iI&d#G1,Y"GZsW!r1">J,~>
|
||||
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
|
||||
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
|
||||
JcC<$r;Qf`7fEAh#akSTrrYgm!!^XHJ,~>
|
||||
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
|
||||
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
|
||||
JcC<$qu6]`5lL`a#b(#X"![dG'[-N,~>
|
||||
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
|
||||
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
|
||||
JcC<$qYpTY4T5<]$)["f!tG;2/Be'D~>
|
||||
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
|
||||
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
|
||||
JcC<$q>UK[5Q1Wa$(q4`rrWE)!*dYHJ,~>
|
||||
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
|
||||
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
|
||||
JcC<$q#:BX3W9!Z$)Htg"RuNn!27U9J,~>
|
||||
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
|
||||
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
|
||||
JcC<$p\t9R2uWdX$`rdr"MFd8!TM<&J,~>
|
||||
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
|
||||
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
|
||||
JcC<$pAY0V3;rmZ$`<pmrrdHE!!<)As*t~>
|
||||
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
|
||||
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
|
||||
JcC<$p&>'O1]@@T%'K+""$Q\b$HiC!~>
|
||||
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
|
||||
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
|
||||
JcC<$o`"sJ1B%7S%^PX)!uq:@)9Vu0~>
|
||||
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
|
||||
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
|
||||
JcC<$oD\jR1&_.R%^5I'!t##.2Tl&M~>
|
||||
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
|
||||
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
|
||||
JcC<$o)AaF/cG_N%^u!/!s8N'DT`!0~>
|
||||
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
|
||||
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
|
||||
JcC<$nc&XC/,fML&\%H5"R#jd!4g8PJ,~>
|
||||
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
|
||||
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
|
||||
JcC<$nG`OI.fKDK&\%K6!3,qt!:J#0J,~>
|
||||
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
|
||||
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
|
||||
JcC<$n,EF=./j2I'"do<"(VB3"j-dp~>
|
||||
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
|
||||
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
|
||||
JcC<$mf*=>-2mlF'>F8A"#9iV%E\X#~>
|
||||
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
|
||||
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
|
||||
JcC<$mJd4?-2mlF'YjJD!u(_8*m+G4~>
|
||||
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
|
||||
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
|
||||
JcC<$m/I+4,Q7ZO(9Y36KS5Z%k6Cte6co@Y~>
|
||||
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
|
||||
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
|
||||
JcC<$li."7+8u6J$S3(t"W'1?!WW4Pao?k~>
|
||||
JcC<$lMgn5*r#^8$N:#*aiXR5~>
|
||||
JcC<$lMgn5*r#^8$N:#*aiXR5~>
|
||||
JcC<$lMgn5*r#^8$N:#*aiXR5~>
|
||||
JcC<$l2LdP#ke6!!VOS7J,~>
|
||||
JcC<$l2LdP#ke6!!VOS7J,~>
|
||||
JcC<$l2LdP#ke6!!VOS7J,~>
|
||||
JcC<$lMgqKFUIgB!<_N,s*t~>
|
||||
JcC<$lMgqKFUIgB!<_N,s*t~>
|
||||
JcC<$lMgqKFUIgB!<_N,s*t~>
|
||||
JcC<$lMgmq3V<@Q"hDbTJ,~>
|
||||
JcC<$lMgmq3V<@Q"hDbTJ,~>
|
||||
JcC<$lMgmq3V<@Q"hDbTJ,~>
|
||||
JcC<$lMgmN(\Ib/$'r^5J,~>
|
||||
JcC<$lMgmN(\Ib/$'r^5J,~>
|
||||
JcC<$lMgmN(\Ib/$'r^5J,~>
|
||||
JcC<$lMgm<"n_ir"GFnsJ,~>
|
||||
JcC<$lMgm<"n_ir"GFnsJ,~>
|
||||
JcC<$lMgm<"n_ir"GFnsJ,~>
|
||||
JcC<$lMgm<"n_ir"bb"tJ,~>
|
||||
JcC<$lMgm<"n_ir"bb"tJ,~>
|
||||
JcC<$lMgm<"n_ir"bb"tJ,~>
|
||||
JcC<$lMgmN(\Ib/(RE2CJ,~>
|
||||
JcC<$lMgmN(\Ib/(RE2CJ,~>
|
||||
JcC<$lMgmN(\Ib/(RE2CJ,~>
|
||||
JcC<$lMgmq3V<@Q3P!93J,~>
|
||||
JcC<$lMgmq3V<@Q3P!93J,~>
|
||||
JcC<$lMgmq3V<@Q3P!93J,~>
|
||||
JcC<$lMgqKFUe'F!Y';8ao?k~>
|
||||
JcC<$lMgqKFUe'F!Y';8ao?k~>
|
||||
JcC<$lMgqKFUe'F!Y';8ao?k~>
|
||||
JcC<$l2Lh$7KrSf!X2'0aT$b~>
|
||||
JcC<$l2Lh$7KrSf!X2'0aT$b~>
|
||||
JcC<$l2Lh$7KrSf!X2'0aT$b~>
|
||||
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
|
||||
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
|
||||
JcC<$l2LkWX@<Zr!!<["XRjO5J,~>
|
||||
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
|
||||
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
|
||||
JcC<$kl2%^_0%aS"U,]&Fi![is*t~>
|
||||
JcC<$k5P\L\X%o%QFZ1ts*t~>
|
||||
JcC<$k5P\L\X%o%QFZ1ts*t~>
|
||||
JcC<$k5P\L\X%o%QFZ1ts*t~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$kl1\%55RJCA]4V!~>
|
||||
JcC<$kl1\"1A`d+>K$Pl~>
|
||||
JcC<$kl1YWqW._B`;b>~>
|
||||
JcC<$kl1_&50Nl^!9_<#J,~>
|
||||
JcC<$kl1_#1<BCM!9M0!J,~>
|
||||
JcC<$kl1_YjnScN!;se8J,~>
|
||||
JcC<$kl1b'53DjZs*t~>
|
||||
JcC<$kl1b$1?AGLs*t~>
|
||||
JcC<$kl1_YjnujmJ,~>
|
||||
JcC<$kl1_&53BTZJ,~>
|
||||
JcC<$kl1_#1??1LJ,~>
|
||||
JcC<$kl1_YjnujmJ,~>
|
||||
JcC<$kl1b'53DjZs*t~>
|
||||
JcC<$kl1b$1?AGLs*t~>
|
||||
JcC<$kl1_YjnujmJ,~>
|
||||
JcC<$kl1\%55RSFiPbbH~>
|
||||
JcC<$kl1\"1A`m.ho,PF~>
|
||||
JcC<$kl1YWqW._S`;b>~>
|
||||
JcC<$kl1_&50<`Y!;aY6J,~>
|
||||
JcC<$kl1_#1<07H!;XS5J,~>
|
||||
JcC<$kl1_YjnScM!<0q:J,~>
|
||||
JcC<$kl1_&53BTZJ,~>
|
||||
JcC<$kl1_#1??1LJ,~>
|
||||
JcC<$kl1_YjnujmJ,~>
|
||||
JcC<$kl1b'53DjZs*t~>
|
||||
JcC<$kl1b$1?AGLs*t~>
|
||||
JcC<$kl1_YjnujmJ,~>
|
||||
JcC<$kl1_&50Nl^!9_<#J,~>
|
||||
JcC<$kl1_#1<BCM!9M0!J,~>
|
||||
JcC<$kl1_YjnScN!;se8J,~>
|
||||
JcC<$kl1\%55RJCA]4V!~>
|
||||
JcC<$kl1\"1A`d+>K$Pl~>
|
||||
JcC<$kl1YWqW._B`;b>~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
JcC<$UAo`~>
|
||||
%%EndData
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
1676
fzd/simple.ps
Normal file
1676
fzd/simple.ps
Normal file
File diff suppressed because it is too large
Load Diff
1586
fzd/tripples.ps
Normal file
1586
fzd/tripples.ps
Normal file
File diff suppressed because it is too large
Load Diff
@ -118,7 +118,7 @@ Software documentation for fmmd tool.
|
||||
|
||||
|
||||
\chapter{Algorithms and Mathematical Relationships Discovered}
|
||||
%\input{fzd/fzd}
|
||||
\input{fzd/fzd}
|
||||
|
||||
\chapter{A detailed look at the safety systems required by industrial burner controller}
|
||||
%\input{indburner/indburner}
|
||||
|
Loading…
Reference in New Issue
Block a user